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Abstract

:

Artisanal small-scale gold mining (ASGM) in the Amazon results in the dumping of tons of mercury into the environment annually. Despite consensus on the impacts of mercury on human health, there are still unknowns regarding: (i) the extent to which mercury from ASGM can be dispersed in the environment until it becomes toxic to humans; and (ii) the economic value of losses caused by contamination becomes evident. The main objective of this study is to propose a methodology to evaluate the impacts of ASGM on human health in different contexts in the Brazilian Amazon. We connect several points in the literature based on hypotheses regarding mercury dispersion in water, its transformation into methylmercury, and absorption by fish and humans. This methodology can be used as a tool to estimate the extent of environmental damage caused by artisanal gold mining, the severity of damage to the health of individuals contaminated by mercury and, consequently, can contribute to the application of fines to environmental violators. The consequences of contamination are evaluated by dose-response functions relating to mercury concentrations in hair and the development of the following health outcomes: (i) mild mental retardation, (ii) acute myocardial infarction, and (iii) hypertension. From disability-adjusted life years and statistical life value, we found that the economic losses range from 100,000 to 400,000 USD per kilogram of gold extracted. A case study of the Yanomami indigenous land shows that the impacts of mercury from illegal gold mining in 2020 totaled 69 million USD, which could be used by local authorities to compensate the Yanomami people.
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1. Introduction


The Minamata disaster in Japan, in which thousands of people were seriously impacted by mercury dumped by various industries, culminated in the Minamata Convention in 2013. As a result, mercury’s use has been restricted [1] and it is now considered by the World Health Organization (WHO) as one of the six most dangerous substances to health due to its high toxicity and the risks it poses to human health and the environment [2].



Mercury is a heavy metal widely distributed across the planet and is therefore classified as a global pollutant [3,4]. This metal can be found in nature in three main chemical forms: ionic mercurial forms (e.g., Hg[II]), in its elemental form (e.g., Hg0), and in organomercurial forms (e.g., methylmercury) [5]. Although all mercurial forms have the potential to cause toxic health effects on people, methylmercury is the most dangerous [6]. This organomercurial species affects the central nervous system, causing neurobehavioral effects, motor coordination disorders, and cardiovascular diseases [7,8,9]. Since it chronically affects the population, its effects can arise over many years and cause severe damage to an entire generation. This mercurial form is especially harmful to pregnant women due to the fact that the fetal brain is more sensitive to the action of methylmercury, causing many neurodevelopment problems to occur including mental retardation, learning delays, visual and auditory alterations, and other harmful effects [10,11,12].



Despite its damage to human health, mercury is still widely used in legal and illegal gold mining in Brazil, an activity that has been growing every year due to the high gold price and lack of inspections [13]. The situation becomes even more serious since this increase is largely concentrated in indigenous areas, mainly affecting the Yanomami and Munduruku traditional territories [14,15]. Gold mining uses mercury during the amalgamation process, which unites mercury with gold. Although much of the mercury is reused in the process, some is lost and is dispersed in rivers, soils, and the atmosphere [16,17,18,19,20]. The Brazilian Ministry of the Environment estimated that, in 2016, between 18.5 and 221 tons of mercury were lost during gold mining in Brazil (in the form of both emissions to the atmosphere and release in rivers and soils) [21].



While the repression of illegal activities can imply the imposition of fines related to damages, there are still important methodological bottlenecks to establish responsibilities, and no standardized approach to evaluate damages. Methodological bottlenecks depend on several factors. Firstly, it is necessary to differentiate between natural mercury (i.e., particles mineralized present in soil and sediment) and additional mercury from human activities (i.e., mercury that is intentionally released in the environment) [22,23,24,25,26,27]. Secondly, there are other potential sources of mercury, such as deforestation from agriculture and cattle ranching [28,29,30,31,32,33,34]. Although some studies argue that these activities can have a greater aggregate impact on mercury release into the environment than small-scale gold mining [35,36,37,38,39,40,41,42,43], global statistics indicate that 30% of mercury in the environment results from anthropogenic activities, of which small-scale gold mining accounts for 37% of all releases and is a major source of contamination [44]. The third factor is related to the difficulty in attributing responsibility to specific mines. Although there is evidence of increased mercury concentration in the Amazonian population, this increase is generated by the combined effect of several illegal gold mines. Moreover, besides the mines existing today, there are mines that ceased to exist decades ago, leaving a cumulative impact [45,46]. Therefore, the accountability of specific gold mines has become a great challenge given the complexity of the mercury cycle.



The mercurial form used in the gold ore extraction process is metallic mercury, also known as elemental mercury (Hg0). The fraction of metallic mercury that is not recovered during the extraction process contaminates the atmosphere and rivers in the Amazon region. Once released into aquatic systems, a part of metallic mercury is oxidized and can be methylated by the action of microorganisms or abiotic factors. This process gives rise to the most dangerous mercury species, methylmercury (MeHg). Methylmercury is biomagnified along the aquatic food chain, contaminating fish and other organisms used for food such as turtles, crabs, shrimp and alligators. Furthermore, much of the toxicity of methylmercury is due to its high neurotoxic potential and its ability to overcome the blood-brain and placentary barriers.



A vast body of literature has analyzed the increase in contamination levels in the Amazon population [47,48,49,50,51,52,53,54,55,56,57,58]. Vasconcellos et al. [49] found an average methylmercury hair level of 7.0 μg/g in the Munduruku indigenous community in Tapajós and Vega et al. [58] observed that the Yanomami indigenous community, also in Brazil, had hair methylmercury levels higher than 6.0 μg/g, which is far above the maximum recommended level of 1.0 μg/g by the United States Environmental Protection Agency (U.S.EPA) [59] and 2.3 μg/g recommended by The Food and Agriculture Organization of the United Nations (FAO/WHO) [60]. Despite evidence of the contamination of the population, to the best of our knowledge, no study in the world has attributed the relative share of responsibility of artisanal and small-scale gold mining (ASGM) extraction to the health impacts of the population.



On the other hand, the available literature has extensively documented the impact of mercury on health outcomes. For example, the cohort studies conducted in the Faroe Islands and New Zealand indicate that even in low doses, the consumption of mercury-contaminated fish during pregnancy can cause important cognitive alterations in children [61,62]. In this sense, mercury’s potential neurotoxic effects in children and adults of the Amazon have been analyzed in some studies [63,64,65,66,67,68]. The most common effects in children are cognitive problems, neurodevelopmental impairment, and psychomotor disorders. Depending on the mercury exposure level in the prenatal period, the child may be born with mild mental retardation. Axelrad et al. [69] showed that for each additional 1.0 µg/g of methylmercury in maternal hair a reduction of 0.18 IQ points is expected in the child. According to Vasconcellos et al. [10], the methylmercury hair concentrations detected in women of reproductive age in the Amazon region are high enough to cause the emergence of cases of mild mental retardation. In adults, decreased visual field, neurobehavioral, and motor coordination disorders are most frequently reported [68]. Meanwhile, literature on the impact of mercury on increases in cardiovascular disease is still not unanimous [70,71], but there is evidence of this relationship in non-Amazonian countries [8,9,47,48]. Salonen et al. [8] showed an increased risk of myocardial infarction of 69% in men over 40 years when hair mercury levels were above or equal to 2.0 µg/g, compared to men with levels below to 2.0 µg/g.



Several studies have addressed the relationship between extracted gold kilograms and effects on human health [72,73,74,75,76]. For evaluating public policies associated with mercury impacts on human health, we used a combination of non-monetary indicator–disability adjusted life years (DALY) [77,78,79] and monetary indicator–value of statistical life (VSL) [80], based on willingness to pay for risk reduction [81,82]. Many studies use this relationship between VSL and DALY. Neumann et al. [83] review studies that depart from the analysis in DALY to assess the impact through a monetary indicator. Fan et al. [84] estimate COVID-19’s impact from DALY and Statistical Value of Life. Grandjean and Bellanger [85] calculate disease burden associated with environmental chemical exposures, including methylmercury worth US$15 billion for Europe and the United States.



Many authors have studied methylmercury ingestion by humans via contaminated fish consumption, analyzed the impact of this contaminant on human health, and established relationships between average mercury intake and negative effects on human health [8,10,47,48]. However, these studies do not distinguish the potential origin of mercury (i.e., whether it is natural or additional mercury). For this reason, we sought to develop a methodology that would allow us to analyze mercury dispersal by gold mines, making it possible to link the human health impact per gold mine from the input unit, such as impacted hectares or gram of gold extracted.



The main literature gaps addressed here are: (i) the potential area of mercury dispersal in the water, as well as the estimation of the maximum affected population, given the average level of contamination and fish consumption; (ii) the definition of dose-response functions for different health outcomes and population groups; and (iii) the valuation of health impacts of mercury in monetary terms. Therefore, we seek to link a chain of events, concepts, and value estimates from the literature through a series of hypotheses, which allow us to relate the use of mercury in small-scale gold mines to health outcomes and their negative economic values.



Considering all of the gaps mentioned, the main objective of this study was to develop a precise methodology to estimate the health damage caused exclusively by the mercury used in ASGM (that is, avoiding counting the natural mercury present in Amazonian soils). For estimation calculations, the amount of gold that is extracted in a given location and the amount of mercury used and discarded during the process were considered. The study provides value estimates that can support social impact assessment, define fines for illegal gold miners, and provide parameters for the evaluation of public policies related to inspection and prevention of this activity. The methodology construction contributes to the incorporation of impacts on human health by decision makers and expands the discussion on the effects of illegal mining activities in a strategic area such as the Amazon for economic development. This study is the first to estimate the average impacts that a gold mine can generate on human health due to the use of mercury and its ingestion from fish consumption.




2. Materials and Methods


This section, based on an extensive literature review, establishes the hypotheses to make the connections between average mercury use, its dispersion in the environment, potential absorption by humans, and its effects on human health. The study area is the Brazilian Amazon, which concentrates 93% of all small-scale mining in Brazil [86]. Gold mining is more concentrated in the states of Pará and Mato Grosso, in addition to significant impacts in the state of Roraima, and more specifically in Yanomami Indigenous Land.



We establish links between several factors, using average values from the literature, in a chain which can be divided into two major goals: how mercury used in gold mining is dispersed in water until it reaches humans, and the quantification of the impact on human health from mercury ingestion.



To complete the logical line presented in Figure 1 below, an extensive bibliographic review was carried out on various topics such as biophysics, biochemistry, epidemiology, and public health.



The study begins with the presentation of the relationship between the use of mercury from gold mines and the effects of increasing methylmercury concentration in the hair of the affected population. Then, the study assesses which adverse effects on human health are considered when there is an increase in the level of methylmercury in the hair.



2.1. Dispersion of Mercury Used by Gold Mining and the Extent of Exposure and the Health Risk the Affected Population


We aim to relate the use of mercury by gold mining with the increased mercury concentration in the hair of the affected population. We divided into two main specific objectives. The first is to explain how the mercury used in gold mining is dispersed in water until it reaches humans. The second is to describe how mercury from gold mining and human mercury intake affects the population.



2.1.1. Variables That Define How the Mercury Used in Gold Mining Is Dispersed in the Water until It Reaches Humans


The following variables have the objective of explaining which variables are important in defining how the mercury used in gold mining is dispersed in the water until it reaches humans. For this, the next three described variables are the proportion of mercury used for each kilogram of mined gold, the proportion of mercury released in water and soil and emitted into the atmosphere, and the proportion of mercury that transforms into methylmercury (methylation). The last section presents a summary of these variables.



Proportion of Mercury Used for Each Kilogram of Mined Gold


Mercury is used in the amalgamation process, which, when combined with gold, forms a metallic alloy called amalgam. The literature shows that the proportion of mercury used in the extraction process can vary in both Brazil and worldwide due to different factors (such as different yields for gold extraction). This proportion can vary considerably from 1.3–8.0 g of mercury for each g of gold extracted [17,72,74,87,88,89]. An average ratio (Hg:Au) of 2.6:1 demonstrated by Castilho and Domingos [17] is assumed here, since it was obtained as an average from different gold mines in Brazil.




Proportion of Mercury Released in Water and Soil and Emitted into the Atmosphere


The mercury used in gold mining is dispersed in both soils and rivers, as well as in the atmosphere. This study analyzes only the release of mercury in aquatic environments, since the objective is to understand the effects of methylmercury on human health from ingesting contaminated fish. Therefore, we sought to review the literature that indicates the proportion of mercury released in soil and water. This proportion can vary from 12–35%, with the lowest proportion (12%) being a conservative scenario [17,18,19,20,88]. It is important to mention that such studies already consider environmental controls such as filtering in the amalgamation process (which recovers 50% of the mercury).




Proportion of Mercury That Transforms into Methylmercury (Methylation)


When mercury is dumped into an aquatic environment, part of it is transformed into an organic mercury compound called methylmercury, which is about 30 times more toxic than inorganic mercury [90] and is ingested via the consumption of contaminated fish. Once ingested by humans, methylmercury is rapidly absorbed by the gastrointestinal tract and widely distributed throughout the body, including reaching the central nervous system, which can cause IQ loss in children and cardiovascular diseases [8,9,10,47,48,72,73,74,75,76].



Given the knowledge of the amount of mercury released into water, another process widely discussed in the literature is the proportion of mercury that transforms into methylmercury (MeHg).



The literature shows that the methylation process occurs in different contexts in the Amazon, with conditions such as low pH and high levels of dissolved organic carbon favoring mercury oxidation and methylation [90]. Several studies have shown that the methylation rate can vary between 3% and 22% [91,92,93,94,95,96,97]. Conservatively, the choice for the lowest methylation rate indicates that 3% of mercury released into the water will change to methylmercury over time.




Variable’s Interaction to Explain How Mercury Used in Gold Mining Is Dispersed in the Water until it Reaches Humans


The formula below demonstrates the results found from Section 2.1.1:


  X =    A ∗ B ∗ C ∗ D   



(1)




where:



X = mercury used by mining, is released into aquatic environments and undergoes methylation



A = gold amount extracted by mining (kilos)



B = proportion of mercury used for extraction of each kilogram of gold (%)



C = proportion of mercury released in the water (%)



D = methylation rate (%)





2.1.2. Variables That Describe How Mercury from Gold Mining and Human Mercury Intake Define the Affected Population


After estimating the amount of mercury that is dispersed in the environment and potentially consumed by humans, we estimated how this amount will be consumed: (i) by individuals who eat contaminated fish daily; and (ii) by the number of individuals that may absorb this amount of mercury across their lives. Therefore, we need to understand how many people may be exposed (up to an average contamination level) by a consuming a given additional amount of mercury throughout their lifetime.



The average long-term contamination level of one individual is estimated based on the daily contaminated fish consumption, which gives us the total amount of mercury that will lead one individual to the negative health outcomes considered. Based on this individual total consumption, we can estimate how many individuals could be impacted at the same contamination level within a given impact area.



Methylmercury Absorption by Fish


Methylmercury is a chemical substance that is absorbed by the trophic chain in aquatic environments [98]. Through biomagnification, substances or elements in living organisms travels through the food webs and accumulates at the highest trophic level, differing between predatory and non-predatory species [99,100,101].



As an organic form of Hg, MeHg has extremely neurotoxic effects and is readily accumulated in biota due to its lipophilic and protein-binding properties [102,103]. A series of studies have shown the average levels of contamination of aquatic species in the Brazilian Amazon [49,52,53,54,55,56,57,58,104,105,106,107,108,109]. For example, contamination can reach 0.13 to 2.85 μg Hg/g for certain fish species [104] and Dórea et al. [55] detected mean mercury levels of 0.578 g Hg/g piscivorous fish and 0.052 g Hg/g non-piscivorous fish in the upper Tapajós basin.



To use recommended values at a global level, this study chose the Codex Alimentarius [110], jointly developed by the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO). According to Codex [110], the maximum permitted mercury levels are 1.0 μg/g and 0.5 μg/g for predatory and non-predatory fish trade, respectively.




Average Daily Intake of Fish and Methylmercury for Different Profiles in Brazil


The Amazon region is historically known for eating fish, whether in riverside and indigenous populations or large urban centers. Riverside dwellers, for example, eat more fish, with an average consumption of 189 to 243 g of fish per day [18,49,50,109,111,112,113]. Meanwhile, the indigenous population have an average daily fish consumption of 100 g per day [49] from fishing. Finally, the urban population, such as in Belém city (Pará state), have a more diversified diet with other proteins and, therefore, consume an average of 57 g per day [114].



To calculate the average daily mercury intake per person, we described the average weight of an individual in each population profile as 70 kg for urban people [115], 65 kg for riverside dwellers [49], and 53 kg for indigenous people [50].



Chronic ingestion of mercury-contaminated fish by the Amazon population increases health risks.



The formula below represents how average daily intake is calculated:


  I =  P ∗   [     Cm ∗ Cont  )  W   ]   



(2)




where:



I = average mercury daily intake (μg/kg bw (Bw = body weight)/day)



P = proportion of urban, indigenous, and riverside populations in the municipality affected by gold mining. Therefore, a balance between these factors is necessary.



Cm = average fish consumption per day (g/day) for population type



Cont = average contamination in fish (µg/g fish) (depends on fish absorption of methylmercury presented in Section 2.1.2)



W = individual weight (kg) for type of population



The average daily intake is related to contextual factors of the location that is being affected by gold mining, such as the proportion of indigenous, riverside, and urban populations.




Variable Time for Methylmercury Ingestion by Fish and Humans


Several studies have demonstrated the instability and complexity of methylation and demethylation [91,92,93,94,95,96,97]. Bisinoti and Jardim [116] demonstrated that all mercury-containing river and lake sediments are dangerous since confined mercury can remain active as a substrate for methylation for approximately 100 years. Thus, the conservative hypothesis is that mercury is bioavailable in the environment for 50 years and can cause harm to human health for this duration.



Based on this hypothesis, it is possible to quantify the mercury consumption for an average individual over 50 years using the following formula:


  Z =  Y ∗ T   



(3)




where:



Z = average mercury intake per person over 50 years (g/50 years per person)



T = time (50 years = 18,250 days)



Y = average mercury daily intake per person (g/day per person) (conversion based on average individual weight (kg) and average mercury daily intake (μg/kg bw/day)



Therefore, it is assumed that the daily mercury intake by each social group in the region (riverside, indigenous, and urban population) will chronically occur over 50 years. In other words, individuals with an average daily intake of 0.76 g/kg/day will have a total intake of 0.9 g over 50 years, resulting in an average increase in mercury contamination of 5.0 µg/g µg/g (hair). Such information is essential to understand how methylmercury released by gold mining will be distributed among fish consumers in the region.



Knowledge regarding mercury release by gold mining and subsequent impacts on fish and daily mercury intake by humans, when associated with the time variable, requires a hypotheses on the proportion of methylmercury that will be absorbed during this period. We hypothesize that all bioavailable methylmercury from gold mining will be consumed by humans, that is, will be consumed between 0.22% and 4.5% of the total mercury used by ASGM. This hypothesis does not imply that all methylmercury will be instantly absorbed by humans, but rather chronically absorbed over 50 years by humans at the top of the trophic chain. This type of hypothesis is needed due to the literature gap on tracing mercury molecules from ASGM until human absorption.




Changes in the Methylmercury Hair Concentration Level


Methylercury will accumulate in the hairs of people who consume of fish contaminated by mercury. This clear relationship between contaminated fish consumption and methylmercury accumulation in hair was demonstrated by the Poulin and Gibbs [11]. According to the World Health Organization [117], an average daily intake of 0.1 μg/kg of methylmercury leads to a concentration of 1.0 µg/g of methylmercury in hair. Thus, it is possible to estimate how gold mining influences methylmercury concentration in hair.


  F =  I  0.1    



(4)




where:



F = hair methylmercury concentration (in ug/g)



I = average mercury daily intake (μg/kg bw/day)




Population Impacted by Increased Methylmercury Concentration in Hair


Knowledge about the amount of mercury released by gold mining, methylated in the aquatic environment (Section 2.1.1), and distributed over time (50 years) with the average intake per person (grams of mercury in 50 years) (Section 2.1.2), contributes to defining the population affected by mercury used in gold mining as the formula can be presented as follows:


  Pop =  X Z   



(5)




where:



Pop = population affected by mercury contamination from gold mining



Z = average mercury intake per person



X = estimated amount of methylmercury from mining that reaches the top of the trophic chain.



Socioeconomic characterization of the affected population is considered, where groups with higher fish consumption are expected to have higher contamination values. The average daily intake of mercury through fish consumption is differentiated by the riverside population, which has a higher fish consumption, and urban population, having a lower fish consumption and a lower chance of being exposed.



Additionally, we considered the population density as a limiting factor of the total number of people that may be exposed within a given radius. Mercury distribution in river and tributaries is influenced by the distance from gold mines [118]. Therefore, we stipulate a limit for mercury impact that depends on the population size in the neighboring mining area. The amount of mercury close to the source of contamination is high and decreases as the analysis distance increases, indicating low concentrations far from the analysis point [119,120]. Studies have also shown that, when assessing the amount of mercury in cities close to gold mining areas, the mercury concentration in the hair of the population living near the mines was greater than in people living far from the gold mines [121,122]. However, river confluence events, where one river flows into another (whose mercury concentration is higher), may indicate a pattern of increasing mercury concentration after a certain distance [123,124].



Several studies present the average distance that metallic mercury can travel in rivers, ranging from 4 to 100 km [36,124,125,126,127,128,129,130], as a function of river characteristics (flood events, rain, and increased water flow). In the Amazonian context, studies such as Roulet et al. [36] have shown that the significant impact radius is approximately 50 km downstream. However, it should be noted that organic mercury (methylmercury) can travel longer distances as it is absorbed by fish, which can migrate up to 2000 km, such as Brachyplatystoma (Piratinga) [131,132,133,134,135,136]). Therefore, we conservatively assumed that mercury will be dispersed to a radius of 100 km (that is, we did not consider the long distances traveled by some species of fish since there is heterogeneity of migration depending on the species and it would be complex to standardize for the Amazon region).



The effects of this release are limited to the number of people within a 100 km radius. A highly contaminated region with a low population density means that few humans will be affected, although it continues to have a significant impact on the region’s fauna. Likewise, urban areas close to the center of contamination have a high population density, potentially causing damage to human health of more individuals.




Variable’s Interaction to Explain How Mercury Used in Gold Mining Is Dispersed in the Water until It Reaches Humans


The formula below demonstrates these results found from Section 2.1.2:


   F    =  [     (   Cm ∗ Cont   )   W   ]  ∗  P  0.1    



(6)




where:



F = hair methylmercury concentration (in ug/g)



I = average mercury daily intake (μg/kg bw/day)



P = proportion of urban, indigenous, and riverside populations in the municipality affected by gold mining. Therefore, a balance between these factors is necessary.



Cm = average fish consumption per day (g/day) for population type



Cont = average contamination in fish (µg/g fish) (depends on fish absorption of methylmercury presented in Section 2.1.2)



W = individual weight (kg) for type of population





2.1.3. Mercury Dispersion Summary Formula


All of the logical links described above can be summarized as follows. It is possible to relate mercury use by gold mining and its respective loss in the environment until it reaches the human body and affects the population:


  Pop =    X     (  A ,    B  ,    C  ,    D   )     Z     (  Cm ,    Cont  ,    P  ,    W  ,    I  ,    T   )     



(7)




where:



Pop = population affected by mercury contamination from gold mining



X = mercury used by mining, is released into aquatic environments and undergoes methylation (depends on the proportion of mercury used for extraction of each kg of gold, and the proportion of mercury released in the water; the methylation rate



Z = average mercury intake per person in 50 years (g/50 years per person) (depends on the absorption of methylated mercury (100%).



A = gold amount extracted by mining (kilos)



B = proportion of mercury used for extraction of each kilogram of gold (%)



C = proportion of mercury released in the water (%)



D = methylation rate (%)



I = average mercury daily intake (μg/kg bw/day)



P = proportion of urban, indigenous, and riverside populations in the municipality affected by gold mining. Therefore, a balance between these factors is necessary.



Cm = average fish consumption per day (g/day) for population type



Cont = average contamination in fish (µg/g fish) (depends on fish absorption of methylmercury presented in Section 2.1.2)



W = individual weight (kg) for type of population



T = time variable (MeHg in the environment) = 50 years (multiplied by mercury intake per person).





2.2. Quantifying Impacts on Human Health from Mercury Ingestion


The health economics literature quantifies the impact on health using the disability adjusted life years (DALY) index to compare the impact of different health problems. The DALY index weighs health measures of mortality and morbidity in one equivalent measurement unit: time (years), considering the severity, magnitude, and duration of the problem [137]. Different knowledge areas are considered to quantify the gold mining mercury impact in terms of increases in the probability of developing: (i) mild mental retardation in children, (ii) myocardial infarction, and (iii) hypertension.



To calculate the DALY, it is necessary to know the following variables: discount rate, age, weight, disability weight, disease duration, and incidence rate which can be seen in the next sections.



2.2.1. Mild Mental Retardation Impact Caused by IQ Loss in Children


The next section relates mercury release in gold mining to IQ loss in children and mild mental retardation due to maternal ingestion of contaminated fish, a health outcome that leads to loss of productivity and income from the birth of the infected child to death [11]. Axelrad et al. [69] demonstrated a linear relationship between loss of points on the IQ scale and increases in mercury concentration in maternal hair, in which 1.0 μg/g of mercury (MeHg) in the mother’s hair corresponds to a loss of 0.18 IQ points in the child. Considering that IQ values in the general population have a normal distribution (Gaussian curve) and 95% of individuals have IQ values between 70 and 130, the IQ loss caused by mercury exposure during the prenatal period may cause mild mental retardation in individuals who would be born with IQ values close to 70.



Given the total affected population, as described in Section 2.1.3, we use the number of live births of 19 live births per thousand inhabitants in the North of Brazil. That is, out of a population of 1000 affected people within a radius of 100 km, around 19 babies will be born alive. It is possible to estimate the number of live births impacted by mercury release in the mine.



To calculate the DALY related to IQ loss in children, we highlighted the variables based on a literature review on the subject. One of these parameters is a discount rate which can be defined with the objective of assigning less importance relative to years lost in the future than to years of life lost in the present, given that a human being, in general, has short-term rather than long-term preferences [138,139].



We chose to use the 3% discount rate as it is applied in health economics studies [140], in environmental projects [59], in the calculation of the social cost of carbon [141] and in for social projects in Latin American countries [142]. Another variable is the age weight that is the age weight that corresponds to society’s preferences, since less value is given to healthy years of life lost during childhood and old age, due to the low productivity common to these stages of life. The weight of age varies in a range from zero (without weight) to one (100% of weight), being relevant as a weighting factor so that greater weights are not attributed to cases of death in young individuals. The third parameter is the incidence rate (number of cases per thousand people) which is calculated by the Mercury Spreadsheet [11] from the knowledge of the mean concentration of mercury in the hair and the standard deviation associated with the knowledge of the number of affected people). The fourth variable for calculating the DALY is the disability weight which is the result of some studies that create scenarios for individuals to declare their preferences and, therefore, the different outcomes are compared by patients or specialists, creating a ranking [143]. The disability weight can range from 0 to 1, where 0 is a healthy situation and 1 corresponds to death. In the specific case of mild mental retardation in children due to mercury ingestion, according to the WHO [143], the weight was 0.361. The fifth parameter is the year onset of disability and duration that are fundamental in weighing the impacts, since years lived with disability or premature death are counted. In the specific case of IQ loss, the outcome starts in the first year of the child’s life and remains throughout life. As in the North region of Brazil, there is a life expectancy of 72 years, thus meaning a disease duration of 72 years.



The monetary measurement of DALY has been widely discussed in several studies, such as Kenkel [82] and Hammit and Robinson [144], who proposed that 1 DALY corresponds to the annualized value of statistical life. This means that the monetary measurement of DALY can reach values above 200,000 USD per DALY [145]. We use the recommendation of the World Health Organization [146], which suggests that one year of healthy life lost (DALY unit) corresponds to 3 GDP per capita, that is, 20,600 USD in Brazil in 2020 [147]. Thus, the mild mental retardation in children due to the extraction of 10 kg of gold corresponds to 10,000 USD in Brazil if all of the average values described throughout the paper are observed.




2.2.2. Cardiovascular Diseases


The association between contaminated fish consumption and cardiovascular diseases considers that mercury in fish muscle, when absorbed by the human gastrointestinal tract, interferes with lipid peroxidation and can cause atherosclerosis. This condition can lead to increased blood pressure [47] and acute myocardial infarction [9]. On the other hand, some studies have not found a relationship between mercury and cardiovascular disease, although they suggest the need for studies on such a relationship [148,149,150,151,152].



This section presents the parameters used to describe the relationship between mercury concentration in hair due to the use of mercury in gold mining and two cardiovascular diseases: acute myocardial infarction and arterial hypertension.



Acute Myocardial Infarction Attributable to Mercury Exposure


For acute myocardial infarction, Salonen et al. [8] found that an individual with a hair mercury concentration of ≥2.0 μg/g has a 69% higher risk of acute myocardial infarction than individuals with a concentration of less than 2.0 μg/g. This relative risk presented by Salonen et al. [8] was adjusted for confounding factors, such as alcohol consumption, smoking, and lifestyle factors, and refers to the probability of incidence of acute myocardial infarction, fatal or non-fatal, in Finnish men over 40 years.



	
Calculating Acute Myocardial Infarction Burden Disease Attributable to Mercury Ingestion from Gold Mining






The disease burden methodology in the gold mining context in the Amazon was adapted from a study by Salonen et al. [8]. We first calculated the attributable fraction based on the relative risk estimated by the study of Salonen et al. [8] in Finland. Studies such as Rockhill et al. [153], Fewtrell et al. [149], and Porta [154] presented formulas to estimate the attributable fraction from the relative risk, calculated at 1.69, in Salonen et al. [8] for an exposure to mercury above 2 µg/g. Based on this, we estimated that the risk of myocardial infarction occurrence [9] is 0.4, that is, 40% of myocardial infarction cases can be attributed exclusively to mercury exposure ≥2.0 µg/g. This paper assumes as a hypothesis, based on evidence from field measurements [10,49,50], that, due to the high mercury intake, the entire affected population will be at risk of an average mercury concentration above 2.0 µg/g.



To estimate the “Number of Infarction Cases Attributable to Mercury Exposure (≥2.0 µg/g Hg)” it is necessary to multiply the total number of infarcts in the sample and the attributable fraction.


  Ip =   Afi   Ti    



(8)




where:



Ip = people infarcted due to mercury levels > 2.0 µg/g



Afi = attributable fraction (infarction



Ti = total number of infraction cases



The same gender and age cut out made by Salonen et al. [8] was used: men over 40 years, which represents 12% of the population of the Brazilian Amazon [155]. Therefore, if data from Datasus [156] are observed, in 2015–2020, approximately 0.16% of this population would be at risk of hospitalization due to infarction in the North region.



As the present study uses the study by Salonen et al. [8] as a basis, we opted for the conservative premise that the year onset of disability is equal to the youngest age of the sample in Salonen et al. [8] (that is, 40 years old). It should be noted that data from Datasus [156] are probably underestimated since the Brazilian health system cannot compute information from isolated areas in the northern region of Brazil.



To adapt to the Amazon context the regional life expectancy was set as 67 years for men. As we consider that the average age of the infarction is 40 years, this means that individuals will live with a disability from 40 years of age to 67 years of age (that is, they will have lived with such disability for 27 years).



Figure 2 demonstrates the logical chain built above:



Values for the probability of risk accumulated over the years are based on Zaletel-Kragelj and Bozikov [157], who estimated the cumulative risk of mercury-associated myocardial infarction at 1.61%.



The estimation of the number of infarction cases associated with mercury over the years for the male population over 40 years old and the accumulated infarction risk associated with mercury over time is multiplied.


  Hm =  Cri ∗ Mp   



(9)




where:



Cri = cumulative risk of mercury-associated myocardial infarction = 1.61%



Hm = male population over 40 in the region who will be hospitalized in 27 years for mercury ingestion



Mp = male population over 40 years in region



	2.

	
Variables for Calculating the DALY and Monetary Impact of Mercury-Associated Acute Myocardial Infarction from Gold Mines







The DALY for mercury-associated acute myocardial infarction was based on the following parameters: 3% discount rate, 100% weight for age, disability weight for acute myocardial infarction of 0.439 [143], disability onset at age 40, disability duration of 27 years (assuming life expectancy of 67 years), and an incidence rate of 1.9 cases of infarction for every 1000 people.



The resulting value is given in years lived with disability for the extraction of gold per kg. For example, 10 kg of gold can generate, on average, the impact of 8.5 years lived with disability or 174,000 USD at 20,600 USD for each DALY [147].




Arterial Hypertension Disease Attributable to Mercury Exposure


High blood pressure has long been recognized as a major risk factor for cardiovascular diseases. A recent analysis suggests that the burden of high blood pressure has increased over the past three decades [158,159]. In addition to traditional risk factors for hypertension, such as high salt intake and overweight/obesity, environmental exposure to heavy metals can also play an important role [160,161,162]. Although the mechanisms by which mercury induces hypertension are not fully understood, plausible explanations include oxidative stress and inflammation, which promote endothelial and renal dysfunction and binding of selenium-related enzymes. Hu et al. [47] included a systematic review, building a meta-analysis both with general studies and with the occupational population exposed.



	
Methodology for Calculating the Hypertension Burden Disease Attributable to Mercury Ingestion from Gold Mining






The hypertension disease burden methodology in the context of gold mining in the Amazon fundamentally involves adaptation to the study by Hu et al. [47], with the definition of all applied premises being relevant. The first adaptation to the study by Hu et al. [47] consists of the estimate of the attributable fraction from the odds ratio (OR) of 1.35, given by the meta-analysis for mercury exposure. Since the OR is analogous to the relative risk, it is assumed that they are similar, as shown in studies such as Bonita et al. [163].



Although Hu et al. [47] presented studies for the Amazon context, such as Fillion et al. [9], with an OR of 3.8, indicating a high concentration of mercury in the Brazilian Amazon population), we adopted, conservatively, the OR of the meta-analysis, that is, 1.35, since this is a comprehensive study review on the relationship between hypertension and mercury intake. Therefore, it is possible to quantify the attributable fraction using the following equation:


  FAP =    (  OR − 1  )    OR    



(10)







Based on this understanding, we estimated the risk of arterial hypertension occurrence [47] to be 0.26, that is, 26% of cases of arterial hypertension would be due exclusively to mercury exposure ≥ 2.0 µg/g.



To estimate the “Number of Hypertension Cases Attributable to Mercury Exposure (≥2.0 µg/g Hg)” we multiplied the total number of hypertension cases in the sample by the attributable fraction.


  Hp =  Afh ∗ Th   



(11)




where:



Hp = number of hypertension cases attributable to mercury exposure (≥2.0 µg/g Hg)



Afh = attributable fraction (hypertension)



Th = total number of hypertension cases



Unlike the myocardial infarction outcome, the literature does not indicate a greater or lesser hypertension risk depending on gender (male or female); that is, the population over 20 years should only be evaluated as that is the year in which hypertension begins to be observed [47]. Figure 3 summarizes the logical lines built above.



To attribute the fraction of this outcome to fish intake, it is necessary to use the attributable fraction calculated as 26% of the risk associated with mercury. Using the methodology of Zaletel-Kragelj and Bozikov [157], the cumulative hypertension risk associated with mercury was estimated to be 1.21%.



Based on the knowledge of the temporality of the outcome, it is feasible to estimate the number of cases of hypertension associated with mercury over the years. For this, the population over 20 years in the region that will be hospitalized over 52 years of exposure and the accumulated risk of hypertension associated with mercury over time is multiplied.


  Hp =  Crh ∗ Pp   



(12)




where:



Crh = cumulative risk of mercury-associated hypertension



Hp = population over 20 years in the region who will be hospitalized in 52 years for mercury ingestion



Pp = population over 20 years in region



	2.

	
Variables for Calculating DALY and Monetary Impact of High Blood Pressure Associated with Mercury from Gold Mining







To calculate the DALY related to arterial hypertension, we considered the following parameters: discount rate of 3%; 100% weight for age; disability weight of 0.246 [143]; year onset of disability at the age of 20 years, with a duration of 52 years to meet the 72 years of life expectancy in the northern region of Brazil.







3. Results


3.1. Results Presented from Methodology


The methodology presented above consists of the first estimate of the relationship between the use of mercury by gold mining and the negative effects on human health. Defining the amount of mercury used per kilogram of gold mined (Section 2.1.1), the proportion of mercury loss to the environment (Section 2.1.1), and the methylation rate (Section 2.1.1) means that, on average, between 0.22% and 4.5% of the total mercury used by gold mining turns into methylmercury, entering the trophic chain and therefore affecting human health. Such an amount may seem small, but the effects on human health are varied and extremely harmful. The result is the first estimation that quantifies the release of mercury into the water, which contributes to combat arguments such as that deforestation, is the main cause of the release of natural mercury into the environment.



Given the knowledge of the amount of mercury released by gold mining, the present study demonstrated that the population context is essential to define the impacts on human health. Therefore, it is assumed that the daily mercury intake depends on social group affected in the region (e.g., riverside, indigenous, and urban population) As an example of a population with indigenous and riverine population, an average daily intake of 1.2 μg/kg bw/day corresponds to an average concentration in hair of 12 µg/g, which corroborates other studies. Bastos et al. [18], identified an average mercury concentration of 9.81 µg/g in 45 riverine communities. Vasconcellos et al. [49] detected mercury levels above 6.0 µg/g in hair samples in Munduruku indigenous communities in the Pará state. However, in urban populations, a daily mercury intake of 0.4 μg/kg bw/day corresponds to an average concentration of mercury in hair of 4.0 µg/g; greater than the 1.0 μg/g recommended level by the North American Environmental Protection Agency [59] and 2.3 μg/g by the United Nations Food and Agriculture Organization [60].



Likewise, the study demonstrated that the context of the affected population is not restricted to these population characteristics, it is also important to consider population density and the distance of the population to the gold mining. This is explained due to the fact that areas with low population density and far from gold mining will have a limited effect on the health of the population, while regions with high population density and close to a radius of less than 100 km has a higher probability of consumption the methylmercury released by the ASGM.



The Table 1 below seeks to summarize the ranges between the variables used in the model:



By defining the characteristics that influence the level of contamination and the number of people affected, the study made use of existing studies that addressed the relationship between exposure to mercury and impacts on human health [9,10,47]. In the outcome of mild mental retardation in children, there is already wide acceptance about the relationship between level of contamination and lost IQ points [69]. Therefore, the study applied the methodology already developed by Poulin and Gibb [11] that uses the DALY indicator to quantify the loss of well-being.



Meanwhile, for cardiovascular outcomes (arterial hypertension [47] and myocardial infarction [9]), adaptations were necessary since there is no direct relationship between the level of contamination and the impact on human health. Therefore, deepening the theme of epidemiology was necessary, being one of the contributions of the article.



As a result, in a population of 100,000 impacted people, around 193 men over 40 years of age will have a myocardial infarction associated with mercury ingestion. The incidence rate of this outcome is given by the number of cases in every 1000 affected people. That is, 1.9 hospitalization cases for infarction associated with mercury in every 1000 affected people. Similarly, the results in an affected population of 100,000 people will average about 700 people with high blood pressure in the population over 20 years of age.




3.2. Human Health Impact in the Indigenous Territory Due to Illegal Gold Mining


The methodology was applied to evaluate the negative impacts of illegal miners occupying the Yanomami Indigenous Land (YIL), an area located mainly in the Brazilian Amazon in the states of Roraima and Amazonas. YIL is the largest indigenous land in Brazil, with an area of 96,000 km2 and a total population of 26,780 indigenous people. Although the Brazilian constitution prohibits economic activity on indigenous lands, the main potential threat faced by YIL is invasion by illegal miners. It is estimated that more than 25,000 miners live and work illegally in the territory.



The variables used to present the results are described in the following Table 2.



Despite the variability of each parameter shown in Table 1, we considered conservative parameters in the literature in Table 2, showing that the risk to human health can potentially be greater than what is being presented with this estimate. A more pessimistic scenario, following the precautionary principle, with higher parameters, demonstrates a potential for greater harm to the population’s health.



In 2020, 5 km2 were degraded by illegal ASGM [165], which, considering average productivity of 1.7 kg of gold per hectare in Brazilian Amazon [166], would use around 2.2 tons of mercury for 863 kg of gold production. As a result, we estimated that approximately 32 kg of mercury was released into local rivers, which could affect 44,000 people. Using our methodology, we estimated that 307 people would develop hypertension problems, 85 acute myocardial infarction, and 4 mild mental retardation. The economic value of these human health damages would total 69 million USD, divided into: (a) 1 million USD due to IQ loss; (b) 15 million USD due to acute myocardial infarction; and (c) 52 million USD due to increases in hypertension problems. This estimated value may be used by local authorities to set compensation for Yanomami people.





4. Discussion


The methodology developed in this paper is the first of its kind to assess the impact on human health caused by mercury used in gold mining. To achieve this methodology, it was necessary to understand the complexity of the mercury cycle and the ASGM processes. First, using this methodology, we presented evidence against the argument that the source of the impacting mercury is deforestation, which releases natural mercury present in the forest [23,24,25,26]. The mobilization of natural mercury by deforestation and forest fires represents a relevant impact [30,31,32,33,34,35,36,37,38,39,40,41,42,43], but the use of mercury by ASGM represents the greatest participation in the release of mercury [44]. In addition, it is important to remember that the artisanal mining activity also causes the mobilization of natural mercury due to the process of excavating the soil and sediment from the rivers [91]. Thus, we can conclude this deforestation contributes to the increase in mercury circulation in the Amazon. However, our focus on this paper is related to impact of mercury released directly by gold mining.



Given that we consider only the additional mercury released from ASGM, another complexity arises from the difficulty in attributing responsibility to specific mines. Such complexity can be explained by the ability of mercury to remain bioavailable for long periods [116], bringing cumulative impacts from ASGM exploration [45,46,72,73,74,75,76,77,78]. Thus, the understanding that there is an increase in methylmercury concentration in the hair of a population [49,50,69,70,71,72,73,123] is not enough information to make a specific gold mine responsible, since this increase in concentration can be explained by the history of exploration of other mines that released mercury into the environment. Therefore, the judicialization process of a specific illegal gold mine becomes more challenging as there are several illegal ASGMs in the Amazon [167].



Given the whole context of mercury and the ASGM, this article proposes an innovative methodology that proposes a linear relationship based on the amount of mercury used by ASGM and its adverse effects on human health. For this, an extensive literature review was performed that tracks the average mercury use of ASGM [17,72,74,87,88], mercury disposal in the environment [17,18,19,20], fish consumption [18,49,50,108,110,111,112,113], and the level of potential contamination harmful to human health [52,53,54,55,56,57,58]. The study is also innovative compared to other studies [10,47,48,49] observed due to the fact that the impacts on human health vary according to the context analysed, such as fish intake in the population and demographic density. This means that a replicable methodology was developed which was adaptable to the different contexts observed within the Amazon



After the study related the use of mercury in gold mining and the average increase in mercury concentration in the population, we explored the literature relating gold extracted and negative effects on human health [72,73,74]. Kahhat et al. [74] used Usetox software, which characterizes chemical impacts on human health and freshwater ecotoxicity and scales an impact of 2 non-cancerous cases and 0.0192 cancerous cases for each kilogram of gold extracted. Similarly, Gulley [72] and Spadaro and Rabl [73] assessed the IQ loss impact for each kilogram of gold from the calibrated benefit transfer approach employed in environmental valuation literature estimates of the impact of mercury on global earnings to twelve gold mining sites around the world. Gulley [72] used studies [37,39,40] that map quantities of mercury emissions into lost earnings due to fetal IQ loss to produce monetary estimates of the impact of mercury emissions. According to Gulley [72], the weighted average estimates an impact of US$ 7300 per kilogram of mercury released into the environment, and this value may increase to the upper limit of US$ 22,300 depending on the assumptions adopted. However, such methodologies are different from the proposal presented in this article, which links mercury use at the beginning of the chain, from the mercury loss in the aquatic environment, to assess the impact on human health. The methodology presented measures the loss of well-being caused using mercury by gold mining. However, other studies [168,169,170,171] value the impact of mercury by the cost of remediation of mercury in vegetation.



We must reinforce that before the development of this methodology, the Brazilian institutions responsible for setting fines for illegal ASGM did not measure the impact on human health from the use of mercury in the mines. This methodological gap is filled with the tool developed in this article, and based on this, institutions such as the Federal Police and Federal Public Prosecution in Brazil have instruments to prosecute illegal gold mining damages in order to stop the advance of this activity in the Amazon.



Nevertheless, this article recognizes the limitations of the relationship between mercury use in gold mining and its impacts on human health. Given the lack of studies that assess the factors that influence the response time between changes in deposition and changes in methylmercury concentrations in fish, in this study we needed to assume the temporal effect of mercury release and fish bioaccumulation over 50 years. In addition, the Amazon region is complex and diverse. The model presented is simplified and does not consider local differences, such as river color and water flow, that could impact the local mercury cycle. Such characteristics need to be further studied.



We did not find any study in Brazil that relates mercury concentration to myocardial infarction. The study by Salonen et al. [8], carried out in Finland, was the only related study found in the literature. Even though both regions have a high intake of fish contaminated by mercury, the physical differences between the populations in the Amazon and in Finland should be further studied for further adaptations.



The limitations presented throughout the article can be overcome with new studies of biophysical mercury dispersion until it reaches humans and possible impacts to human health from increased mercury intake by humans. Long-term monitoring studies that collect mercury concentrations in water, sediments, and fish are needed, particularly in the Amazon. These efforts can lead to long-term data records that can be compared to predictions. Likewise, additional studies should be carried out to assess fish consumption rates in pregnant women, women of childbearing age, and men.



Finally, the methodology presented in this article does not address all impacts on human health since only the outcomes related to the release of mercury in the aquatic environment are measured, not considering the impacts of air exposure due to the inhalation of mercury in the atmosphere (especially in miners) [78,172,173]. The mercury cycle is very complex and, for this reason, the article does not measure the effects caused by the mercury emission into the atmosphere, which can travel long distances. In addition, the article focused on three negative health effects observed in the literature. However, it is possible that there are other health problems associated with exposure to mercury via ingestion of contaminated fish. In this sense, it can be said that the impacts presented are underestimated.




5. Conclusions


This article is the first scientific work whose objective was to propose a methodology to quantify the average economic health impact of the extraction of gold by ASGM in Brazil (using the DALY indicator) and convert them into monetary losses (using the VSL indicator).



The application of this methodology to estimate the impacts of mining in Yanomami territory revealed that the 5 km2 illegally deforested for ASGM in 2020 would result in severe damages to human health. Based on this, we estimate that around 32 kg of mercury were spilled into rivers, affecting up to 44,000 people. We estimated that 307 people will develop hypertension problems from this activity, 85 people will develop acute myocardial infarction, and 4 children would have born with mild mental retardation. These effects are related only to the presence of small-scale gold mining in 2020, which demonstrates the significant and growing impact with the expansion of this activity in Brazil in recent years. The economic health impact of these health outcomes could reach up to 69 million USD for the 2020 spills alone.



The standardization of mercury impacts assessment is essential for supporting the containment of illegal gold mining activities in the Brazilian Amazon. The developed methodology contributes to the work of control agencies such as the Brazilian Public Prosecutors Office and the Federal Police, who are already using this methodology to estimate fines in the estimation of compensation, showing reliability on the part of these institutions in the scientific results presented. In addition, it contributes to the speed of judicialization in the fight against this illegal activity, and it may support policymakers to plan investments in command-and-control that can prevent the expansion of illegal ASGM.







Author Contributions


Conceptualization, L.B.d.B., P.G.; methodology, L.B.d.B. and P.G.; software, L.B.d.B.; validation, A.C.S.d.V. and J.M.d.Q.; formal analysis, L.B.d.B.; investigation, L.B.d.B.; data curation, L.B.d.B.; writing—original draft preparation, L.B.d.B.; writing—review and editing, A.C.S.d.V. and P.G.; visualization, A.C.S.d.V.; supervision, P.G.; project administration, P.G.; funding acquisition, Porticus Foundation. All authors have read and agreed to the published version of the manuscript.




Funding


This research was funded by PORTICUS FOUNDATION, grant number “GR-070717”.




Institutional Review Board Statement


Ethical review and approval were waived for this study because we did not do any fieldwork with a sample of people. In other words, although we are evaluating the results in humans, we didn’t contact any specific population to reach the results. We have mapped several studies in the literature and the results are based solely on what these studies present.




Informed Consent Statement


Patient consent was waived because we did not do any fieldwork with a sample of people. In other words, although we are evaluating the results in humans, we didn’t contact any specific population to reach the results. We have mapped several studies in the literature and the results are based solely on what these studies present.




Data Availability Statement


Data Availability in http://calculadora.conservation-strategy.org/#/ (accessed on 4 November 2021).




Acknowledgments


Conservation Strategy Fund (CSF-Brasil) thanks the Federal Public Prosecution and the Department of Expertise, Research, and Analysis of the Attorney General’s Office for their partnership in carrying out this work, especially the Federal Attorney and Coordinator of the Amazon Task Force, Ana Carolina Haliuc Bragança, and the Supervisor of Expertise in Economics at the Federal Public Prosecution, José Jorge Júnior. We would like to thank Gustavo Geisel, Federal Police expert, for the technical support. To Suzane Girondi Culau Merlo for the legal support on environmental pain and suffering. To WWF-Brasil, for providing a database on mercury contamination studies in the Amazon. To the more than 30 experts consulted during the research and to the speakers at the methodological discussion seminars. To the Porticus Foundation, for the financial support that allowed this work to be carried out.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



UN Environment. Minamata Convention on Mercury: Text and Annexes. 2019. Available online: https://www.mercuryconvention.org/Portals/11/documents/Booklets/COP3-version/Minamata-Convention-booklet-Sep2019-EN.pdf (accessed on 30 July 2020).

	



Sebastián-Rubiano, G. The Amazon Biome in the Face of Mercury Contamination: An Overview of Mercury Trade, Science, and Policy in the Amazonian Countries; Surkin, J., Carrizosa, J., Guío, C., Pon, J., Eds.; WWF: Gland, Switzerland, 2018; p. 165. [Google Scholar]

	



Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]

	



Sakamoto, M.; Nakamura, M.; Murata, K. Mercury as a global pollutant and mercury exposure assessment and health effects. Nihon Eiseigaku Zasshi Jpn. J. Hyg. 2018, 73, 258–264. [Google Scholar] [CrossRef] [PubMed]

	



Selin, N.E. Global biogeochemical cycling of mercury: A review. Annu. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef]

	



Dos Santos, A.A.; Hort, M.A.; Culbreth, M.; López-Granero, C.; Farina, M.; Rocha, J.B.; Aschner, M. Methylmercury and brain development: A review of recent literature. J. Trace Elem. Med. Biol. 2016, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]

	



Lacerda, E.M.D.C.B.; Souza, G.D.S.; Cortes, M.I.T.; Rodrigues, A.R.; Pinheiro, M.C.N.; Silveira, L.C.D.L.; Ventura, D.F. Comparison of visual functions of two Amazonian populations: Possible consequences of different mercury exposure. Front. Neurosci. 2020, 13, 1428. [Google Scholar] [CrossRef]

	



Salonen, J.T.; Seppänen, K.; Nyyssönen, K.; Korpela, H.; Kauhanen, J.; Kantola, M.; Tuomilehto, J.; Esterbauer, H.; Tatzber, F.; Salonen, R. Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 1995, 91, 645–655. [Google Scholar] [CrossRef] [PubMed]

	



Fillion, M.; Mergler, D.; Passos, C.J.S.; Larribe, F.; Lemire, M.; Guimarães, J.R.D. A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon. Environ. Health 2006, 5, 1–9. [Google Scholar] [CrossRef]

	



Vasconcellos, A.C.S.; Barrocas, P.R.G.; Ruiz, C.M.V.; Mourão, D.D.S.; Hacon, S.D.S. Burden of Mild Mental Retardation attributed to prenatal methylmercury exposure in Amazon: Local and regional estimates. Cienc. Saude Coletiva 2018, 23, 3535–3545. [Google Scholar] [CrossRef]

	



Poulin, J.; Gibb, H.; Prüss-Üstün, A.; World Health Organization. Mercury: Assessing the Environmental Burden of Disease at National and Local Levels; World Health Organization: Geneva, Switzerland, 2008. Int. J. Environ. Res. Public Health 2021, 18, 7940. [Google Scholar]

	



Bose-O’Reilly, S.; McCarty, K.M.; Steckling, N.; Lettmeier, B. Mercury exposure and children’s health. Curr. Probl. Pediatric Adolesc. Health Care 2010, 40, 186–215. [Google Scholar] [CrossRef]

	



Siqueira-Gay, J.; Soares-Filho, B.; Sanchez, L.E.; Oviedo, A.; Sonter, L.J. Proposed legislation to mine Brazil’s indigenous lands will threaten Amazon forests and their valuable ecosystem services. One Earth 2020, 3, 356–362. [Google Scholar] [CrossRef] [PubMed]

	



Ferrante, L.; Andrade, M.B.T.; Leite, L.; Silva-Junior, C.A.; Lima, M.; Coelho-Junior, M.G.; Da Silva Neto, E.C.; Campolina, D.; Carolino, K.; Diele-Viegas, L.M.; et al. Brazils Highway BR-319: The road to the collapse of the Amazon and the violation of indigenous rights. DIE ERDE J. Geogr. Soc. Berl. 2021, 152, 65–70. [Google Scholar]

	



Ferrante, L.; Fearnside, P.M. Brazil’s new president and “ruralists” threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 2019, 46, 261–263. [Google Scholar] [CrossRef]

	



Lacerda, L.D. Contaminação por mercúrio no Brasil: Fontes industriais vs garimpo de ouro. Química Nova 1997, 20, 196–199. [Google Scholar] [CrossRef]

	



Castilhos, Z.C.; Domingos, L.M. Inventário Nacional de Emissões e Liberações de Mercúrio no âmbito da Mineração Artesanal e de Pequena Escala no Brasil. Ministério Do Meio Ambiente 2018, 1, 56. [Google Scholar]

	



Bastos, W.R.; Gomes, J.P.O.; Oliveira, R.C.; Almeida, R.; Nascimento, E.L.; Bernardi, J.V.E.; de Lacerda, L.D.; da Silveira, E.G.; Pfeiffer, W.C. Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Sci. Total Environ. 2006, 368, 344–351. [Google Scholar] [CrossRef]

	



Goix, S.; Maurice, L.; Laffont, L.; Rinaldo, R.; Lagane, C.; Chmeleff, J.; Menges, J.; Heimbürger, L.-E.; Maury-Brachet, R.; Sonke, J.E. Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. Chemosphere 2019, 219, 684–694. [Google Scholar] [CrossRef]

	



López, V.; Colón, P. Mercury in Artisanal and Small Scale Gold Mining: Identifying Strategies to Reduce Environmental Contamination in Southern Ecuador. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canadá, 2010. [Google Scholar]

	



Ministério do Meio Ambiente. Inventário Mapeia Mercúrio nos Garimpos do Brasil. Available online: https://www.gov.br/mma/pt-br/noticias/noticia-acom-2018-06-3041 (accessed on 4 November 2021).

	



Wasserman, J.; Hacon, S.; Wasserman, M. O ciclo do mercúrio no ambiente amazônico. Mundo Vida 2001, 2, 46–53. [Google Scholar]

	



Yang, J.; Zhu, W.; Qu, W.; Yang, J.; Wang, J.; Zhang, M.; Li, H. Selenium Functionalized Metal–Organic Framework MIL-101 for Efficient and Permanent Sequestration of Mercury. Environ. Sci. Technol. 2019, 53, 2260–2268. [Google Scholar] [CrossRef]

	



Fostier, A.H.; Melendez-Perez, J.J.; Richter, L. Litter mercury deposition in the Amazonian rainforest. Environ. Pollut. 2015, 206, 605–610. [Google Scholar] [CrossRef]

	



Silva, G.; Bisinoti, C.; Fadini, P.; Magarelli, G.; Jardim, W.; Fostier, H. Major Aspects of the Mercury Cycle in the Negro River Basin, Amazon. J. Braz. Chem. Soc. 2009, 20, 1127–1134. [Google Scholar] [CrossRef]

	



Wang, X.; Yuan, W.; Lin, C.J.; Zhang, L.; Zhang, H.; Feng, X. Climate and vegetation as primary drivers for global mercury storage in surface soil. Environ. Sci. Technol. 2019, 53, 10665–10675. [Google Scholar] [CrossRef] [PubMed]

	



Melendez-Perez, J.; Fostier, A.; Carvalho, J.; Windmoller, C.; Santos, J.; Carpi, A. Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest. Atmos. Environ. 2014, 96, 415–422. [Google Scholar] [CrossRef]

	



Veiga, M.M.; Meech, J.A.; Oñates, N. Mercury Pollution from Deforestation. Nature 1994, 368, 816–817. [Google Scholar] [CrossRef]

	



Lacerda, L. Amazon mercury emissions. Nature 1995, 374, 20–21. [Google Scholar] [CrossRef]

	



Roulet, M.; Lucotte, M.; Farella, N.; Serique, G.; Coelho, H.; Passos, C.J.S.; da Silva, E.D.; De Andrade, P.S.; Mergler, D.; Guimaraes, J.R.D.; et al. Effects of recente human colonization on the presence of Mercury in Amazoioan ecosystem. Wait. Air Soil Pollut. 1999, 112, 297–313. [Google Scholar] [CrossRef]

	



Friedli, H.R.; Arellano, A.F.; Cinnirella, S.; Pirrone, N. Initial Estimates of Mercury Emissions to the Atmosphere from Global Biomass Burning. Environ. Sci. Technol. 2009, 43, 3507–3513. [Google Scholar] [CrossRef]

	



Michelazzo, P. Emissões de mercúrio originárias das queimadas da floresta amazônica e de canaviais. 2007. 121p: il. Tese (doutorado)-Universidade Estadual de Campinas, Instituto de Quimica, Campinas, SP. Available online: http://www.repositorio.unicamp.br/handle/REPOSIP/249440 (accessed on 12 July 2021).

	



Fostier, A.H.; Forti, M.C.; Jardim, W.F.; Junior, C.; de Andrade, J. Impacts of Deforestation on Mercury Cycle in the Brazilian Amazonian Region. In Proceedings of the 10th International Conference on Mercury as a Global, Halifax, NS, Canada, 24–29 July 2021; Volume 1, pp. 1–3. [Google Scholar]

	



Fostier, A.; Forti, M.; Guimaraes, J.R.; Melfi, A.; Boulet, R.; Espírito Santo, C.; Krug, F. Mercury fluxes in a natural forested Amazonian catchment Serra do Navio, Amapa State, Brazil. Sci. Total Environ. 2000, 26, 201–211. [Google Scholar] [CrossRef]

	



Guimaraes, J.R.D. Mercury in the Amazon: Problem or opportunity? A commentary on 30 years of research on the subject. Elem. Sci. Anth 2020, 8, 032. [Google Scholar] [CrossRef]

	



Roulet, M.; Lucotte, M.; Canuel, R.; Rheault, I.; Tran, S.; Gog, Y.D.F.; Farella, N.; Vale, R.S.D.; Passos, C.J.S.; Silva, E.D.J.D.; et al. Distribution and partition of total mercury in waters of the Tapajós River Basin, Brazilian Amazon. Sci. Total Environ. 1998, 213, 203–211. [Google Scholar] [CrossRef]

	



Roulet, M.; Lucotte, M.; Canuel, R.; Farella, N.; Courcelles, M.; Guimaraes, J.R.D.; Mergler, D.; Amorim, M. Increase in mercury contamination recorded in lacustrine sediments following deforestation in the central Amazon. Chem. Geol. 2000, 165, 243–266. [Google Scholar] [CrossRef]

	



Farella, N.; Lucotte, M.; Louchouarn, P.; Roulet, M. Deforestation modifying terrestrial organic transport in the Rio Tapajos, Brazilian Amazon. Org. Geochem. 2001, 32, 1443–1458. [Google Scholar] [CrossRef]

	



Farella, N.; Davidson, R.; Lucotte, M.; Daigle, S. Nutrient and mercury variations in soils from family farms of the Tapajos region (Brazilian Amazon): Recommendations for better farming. Ecosyst. Environ. 2007, 120, 449–462. [Google Scholar] [CrossRef]

	



Patry, C.; Davidson, R.; Lucotte, M.; Béliveau, A. Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon. Sci. Total Environ. 2013, 458, 228–237. [Google Scholar] [CrossRef] [PubMed]

	



Béliveau, A.; Lucotte, M.; Davidson, R.; Paquet, S.; Mertens, F.; Passos, C.J.; Romana, C.A. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon. J. Environ. Manag. 2017, 203, 522–532. [Google Scholar] [CrossRef] [PubMed]

	



Lacerda, L.D.; de Souza, M.; Ribeiro, M.G. The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environ. Pollut. 2004, 129, 247–255. [Google Scholar] [CrossRef] [PubMed]

	



Almeida, M.D.; Lacerda, L.D.; Bastos, W.R.; Herrmann, J.C. Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil. Environ. Pollut. 2005, 137, 179–186. [Google Scholar] [CrossRef]

	



United Nations Environment Programme-UNEP (2013). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport; UNEP Chemicals Branch: Geneva, Switzerland, 2013. [Google Scholar]

	



Bishop, K.; Shanley, J.B.; Riscassi, A.; de Wit, H.A.; Eklöf, K.; Meng, B.; Mitchell, C.; Osterwalder, S.; Schuster, P.F.; Webster, J.; et al. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Sci. Total Environ. 2020, 721, 137647. [Google Scholar] [CrossRef]

	



Streets, D.; Horowitz, H.; Lu, Z.; Levin, L.; Thackray, C.; Sunderland, E. Five hundred years of anthropogenic mercury: Spatial and temporal release profiles. Environ. Res. Lett. 2019, 14, 84004. [Google Scholar] [CrossRef]

	



Hu, X.F.; Singh, K.; Chan, H.M. Mercury Exposure, Blood Pressure, and Hypertension: A Systematic Review and Dose–response Meta-analysis. Environ. Health Perspect. 2018, 126, 076002. [Google Scholar] [CrossRef]

	



Rice, G.E.; Hammitt, J.K.; Evans, J.S. A Probabilistic Characterization of the Health Benefits of Reducing Methyl Mercury Intake in the United States. Environ. Sci. Technol. 2010, 44, 5216–5224. [Google Scholar] [CrossRef] [PubMed]

	



Vasconcellos, A.C.S.; Hallwass, G.; Bezerra, J.G.; Aciole, A.N.S.; Meneses, H.N.M.; Lima, M.O.; Jesus, I.M.; Hacon, S.S.; Basta, P.C. Health Risk Assessment of Mercury Exposure from Fish Consumption in Munduruku Indigenous Communities in the Brazilian Amazon. Int. J. Environ. Res. Public Health 2021, 18, 7940. [Google Scholar] [CrossRef] [PubMed]

	



Hacon, S.D.S.; Oliveira-Da-Costa, M.; Gama, C.D.S.; Ferreira, R.; Basta, P.C.; Schramm, A.; Yokota, D. Mercury Exposure through Fish Consumption in Traditional Communities in the Brazilian Northern Amazon. Int. J. Environ. Res. Public Health 2020, 17, 5269. [Google Scholar] [CrossRef] [PubMed]

	



Oliveira Santos, E.C.; de Jesus, I.M.; da Silva Brabo, E.; Loureiro, E.C.B.; da Silva Mascarenhas, A.F.; Weirich, J.; Cleary, D. Mercury exposures in riverside Amazon communities in Para, Brazil. Environ. Res. 2000, 84, 100–107. [Google Scholar] [CrossRef]

	



Hacon, S.; Barrocas, P.R.; Vasconcellos, A.C.S.D.; Barcellos, C.; Wasserman, J.C.; Campos, R.C.; Azevedo-Carloni, F.B. An overview of mercury contamination research in the Amazon basin with an emphasis on Brazil. Cad. Saúde Pública 2008, 24, 1479–1492. [Google Scholar] [CrossRef]

	



Faial, K.; Deus, R.; Deus, S.; Neves, R.; Jesus, I.; Santos, E.; Brasil, D. Mercury levels assessment in hair of riverside inhabitants of the Tapajós River, Pará State, Amazon, Brazil: Fish consumption as a possible route of exposure. J. Trace Elem. Med. Biol. 2015, 30, 66–76. [Google Scholar] [CrossRef]

	



Freitas, J.S.; Lacerda, E.; Maria, C.; Rodrigues, D., Jr.; Corvelo, T.C.O.; Silveira, L.C.L.; Souza, G.S. Mercury exposure of children living in Amazonian villages: Influence of geographical location where they lived during prenatal and postnatal development. An. Acad. Bras. Ciências 2019, 91 (Suppl. 1). Available online: https://www.scielo.br/j/aabc/a/LR7bb3VDGJVvxxjr9pNqYxM/?format=pdf&lang=en (accessed on 21 March 2021). [CrossRef]

	



Dórea, J.G.; Barbosa, A.C.; Ferrari, Í.; De Souza, J.R. Fish consumption (Hair Mercury) and nutritional status of Amazonian Amer-Indian Children. Am. J. Hum. Biol. Off. J. Hum. Biol. Assoc. 2005, 17, 507–514. [Google Scholar] [CrossRef]

	



Dórea, J.G.; Marques, R.C. Mercury levels and human health in the Amazon Basin. Ann. Hum. Biol. 2016, 43, 349–359. [Google Scholar] [CrossRef]

	



Dorea, J.G.; Barbosa, A.C.; Ferrari, I.; Souza, J.R. Mercury in hair and in fish consumed by riparian women of the Rio Negro, Amazon, Brazil. Int. J. Env. Health Res. 2003, 13, 239–248. [Google Scholar] [CrossRef]

	



Vega, C.; Orellana, J.; Oliveira, M.; Hacon, S.; Basta, P. Human Mercury Exposure in Yanomami Indigenous Villages from the Brazilian Amazon. Int. J. Environ. Res. Public Health 2018, 15, 1051. [Google Scholar] [CrossRef] [PubMed]

	



USEPA. Mercury Update: Impact on Fish Advisories; EPA-823-F01-011; Office of Water: Washington, DC, USA, 2001.

	



The Food and Agriculture Organization of the United Nations (FAO). Summary and Conclusions of the Sixty-First Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization: Rome, Italy, 2003; pp. 18–22. Available online: https://apps.who.int/iris/bitstream/handle/10665/42849/WHO_TRS_922.pdf?sequence=1&isAllowed=y (accessed on 2 May 2021).

	



Weihe, P.; Grandjean, P.; Jørgensen, P.J. Application of hair-mercury analysis to determine the impact of a seafood advisory. Environ. Res. 2005, 97, 201–208. [Google Scholar] [CrossRef] [PubMed]

	



Crump, K.S.; Kjellström, T.; Shipp, A.M.; Silvers, A.; Stewart, A. Influence of prenatal mercury exposure upon scholastic and psychological test performance: Benchmark analysis of a New Zealand cohort. Risk Anal. 1998, 18, 701–713. [Google Scholar] [CrossRef]

	



Santos Serrão de Castro, N.; de Oliveira Lima, M. Hair as a biomarker of long-term mercury exposure in Brazilian Amazon: A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 500. [Google Scholar] [CrossRef]

	



Reuben, A.; Frischtak, H.; Berky, A.; Ortiz, E.J.; Morales, A.M.; Hsu-Kim, H.; Pendergast, L.L.; Pan, W.K. Elevated hair mercury levels are associated with neurodevelopmental deficits in children living near artisanal and small-scale gold mining in Peru. Geo. Health 2020, 4, e2019GH000222. [Google Scholar] [CrossRef] [PubMed]

	



Costa Junior, J.M.F.; Lima, A.A.D.S.; Rodrigues Junior, D.; Khoury, E.D.T.; Souza, G.D.S.; Silveira, L.C.D.L.; Pinheiro, M.D.C.N. Emotional and motor symptoms in riverside dwellers exposed to mercury in the Amazon. Rev. Bras. De Epidemiol. 2017, 20, 212–224. [Google Scholar] [CrossRef] [PubMed]

	



Marques, R.C.; Bernardi, J.V.; Abreu, L.; Dórea, J.G. Neurodevelopment outcomes in children exposed to organic mercury from multiple sources in a tin-ore mine environment in Brazil. Arch. Environ. Contam. Toxicol. 2015, 68, 432–441. [Google Scholar] [CrossRef]

	



Marques, R.C.; Bernardi, J.V.; Cunha, M.P.; Dórea, J.G. Impact of organic mercury exposure and home delivery on neurodevelopment of Amazonian children. Int. J. Hygen Environ. Health 2016, 219, 498–502. [Google Scholar] [CrossRef] [PubMed]

	



Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopes-Araújo, A.; Santos-Sacramento, L.; Yuki Takeda, P.; Macchi, B.M.; Do Nascimento, J.L.M.; Maia, C.S.F.; Lima, R.R.; Arrifano, G.P. Mercury: What can we learn from the Amazon? Environ. Int. 2021, 146, 106223. [Google Scholar] [CrossRef]

	



Axelrad, D.A.; Bellinger, D.C.; Ryan, L.M.; Woodruff, T. Dose–Response Relationship of Prenatal Mercury Exposure and IQ: An Integrative Analysis of Epidemiologic Data. Environ. Health Perspect. 2007, 115, 609–615. [Google Scholar] [CrossRef]

	



Dórea, J.G.; de Souza, J.R.; Rodrigues, P.; Ferrari, Í.; Barbosa, A.C. Hair mercury (signature of fish consumption) and cardiovascular risk in Munduruku and Kayabi Indians of Amazonia. Environ. Res. 2005, 97, 209–219. [Google Scholar] [CrossRef]

	



Bélangera, M.; Miraul, M.; Dewailly, E.; Plante, M.; Berthiaume, L.; Noël, M.; Julien, P. Seasonal mercury exposure and oxidant-antioxidant status of James Bay sport fishermen. Metab. J. 2008, 57, 630–636. [Google Scholar] [CrossRef] [PubMed]

	



Gulley, A.L. Valuing environmental impacts of mercury emissions from gold mining: Dollar per troy ounce estimates for twelve open-pit, small-scale, and artisanal mining sites. Resour. Policy 2017, 52, 266–272. [Google Scholar] [CrossRef]

	



Spadaro, J.V.; Rabl, A. Global Health Impacts and Costs Due to Mercury Emissions. Risk Anal. 2008, 28, 603–613. [Google Scholar] [CrossRef] [PubMed]

	



Kahhat, R.; Parodi, E.; Larrea-Gallegos, G.; Mesta, C.; Vázquez-Rowe, I. Environmental impacts of the life cycle of alluvial gold mining in the Peruvian Amazon rainforest. Sci. Total Environ. 2019, 662, 940–951. [Google Scholar] [CrossRef]

	



Rice, G.; Hammit, J.K. Economic Valuation of Human Health Benefits of Controlling Mercury Emissions from U.S. Coal-Fired Power Plants. NESCAUM—Northeast States for Coordinated Air Use Management. 2005. Available online: https://www.nescaum.org/documents/rpt050315mercuryhealth.pdf (accessed on 10 August 2020).

	



Transande, L.; DiGangi, J.; Evers, D.; Petrlik, J.; Buck, D.; Samánek, J.; Beeler, B.; Turnquist, M.; Regan, K. Economic implications of mercury exposure in the context of th global mercury treaty: Hair mercury levels and estimated lost economic productivity in selected developing countries. J. Environ. Manag. 2016, 183, 229–235. [Google Scholar] [CrossRef] [PubMed]

	



Fox-Rushby, J. Disability adjusted life years (DALYs) for decision-making? An overview of the literature. In Health Economics Research Group (HERG) Dept of Life Sciences Research Papers; Office of Health Economics: London, UK, 2002. [Google Scholar]

	



Steckling, N.; Bose-O’Reilly, S.; Pinheiro, P.; Plass, D.; Shoko, D.; Drasch, G.; Bernaudat, L.; Siebert, U.; Hornberg, C. The burden of chronic mercury intoxication in artisanal small-scale gold mining in Zimbabwe: Data availability and preliminary estimates. Environ. Health 2014, 13, 111. [Google Scholar] [CrossRef] [PubMed]

	



Swain, E.; Jakus, P.; Rice, G.; Lupi, F.; Maxson, P.; Pacyna, J.; Penn, A.; Spiegel, S.; Veiga, M. Socioeconomic Consequences of Mercury Use and Pollution. Royal Swedish Academy of Sciences. Ambio 2007, 36, 45–61. [Google Scholar] [CrossRef]

	



Viscusi, W.K.; Aldy, J.E. The value of a statistical life: A critical review of market estimates throughout the world. J. Risk Uncertainty 2003, 27, 5–76. [Google Scholar] [CrossRef]

	



Cameron, T.; Deshazo, J.R.; Johnson, E. Willingness to Pay for Health Risk Reductions: Differences by Type of Illness; Working Paper; Department of Economics, University of Oregon: Eugene, OR, USA, 2011. [Google Scholar]

	



Kenkel, D. WTP- and QALY-Based Approaches to Valuing Health for Policy: Common Ground and Disputed Territory. Environ. Resour. Econ. 2006, 34, 419–437. [Google Scholar] [CrossRef]

	



Neumann, P.J.; Sanders, G.D.; Russell, L.B.; Siegel, J.E.; Ganiats, T.G. Cost-Effectiveness in Health and Medicine, 2nd ed.; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]

	



Fan, C.-Y.; Fann, J.C.-Y.; Yang, M.-C.; Lin, T.-Y.; Chen, H.-H.; Liu, J.-T.; Yang, K.-C. Estimating global burden of COVID-19 with disability-adjusted life years and value of statistical life metrics. J. Formos. Med. Assoc. 2021, 120, S106–S117. [Google Scholar] [CrossRef] [PubMed]

	



Grandjean, P.; Bellanger, M. Calculation of the disease burden associated with environmental chemical exposures: Application of toxicological information in health economic estimation. Environ. Health 2017, 16, 123. [Google Scholar] [CrossRef] [PubMed]

	



Mapbiomas. Small-Scale Gold Mining in Brazil. 2021. Available online: https://plataforma.brasil.mapbiomas.org/ (accessed on 15 October 2021).

	



Swenson, J.J.; Carter, C.E.; Domec, J.C.; Delgado, C.I. Gold mining in the Peruvian Amazon: Global prices, deforestation, and mercury imports. PLoS ONE 2011, 6, e18875. [Google Scholar] [CrossRef]

	



Kutter, Vinicius Tavares; Castilhos, Zuleica Carmen. Inventário do uso e Emissões de Mercúrio em Mineração Artesanal de pequena escala de ouro no Brasil [resultados preliminares]. VI Jornada do Programa de Capacitação Institucional–PCI/CETEM–21 de setembro de. 2017. Available online: https://www.wwf.org.br/?65922/estudo-estima-emissoes-mercurio-garimpos-ouro-brasil (accessed on 4 November 2021).

	



Beckvar, N.; Field, J.; Salazar, S.; Hoff, R. Contaminants in aquatic habitats at hazardous waste sites: Mercury. NOAA Tech. Memo. NOS ORCA 1996, 100, 74. [Google Scholar]

	



Ikingura, J.; Akagi, H.; Mujumba, J.; Messo, C. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania. J. Environ. Manag. 2006, 81, 167–173. [Google Scholar] [CrossRef] [PubMed]

	



Lino, A.S.; Kasper, D.; Guida, Y.S.; Thomaz, J.R.; Malm, O. Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajós River basin in the Brazilian Amazon. Chemosphere 2019, 235, 690–700. [Google Scholar] [CrossRef] [PubMed]

	



Vieira, M.; Bernardi, J.V.; Dórea, J.G.; Rocha, B.C.; Ribeiro, R.; Zara, L.F. Distribution and availability of mercury and methylmercury in different waters from the Rio Madeira Basin, Amazon. Environ. Pollut. 2018, 235, 771–779. [Google Scholar] [CrossRef] [PubMed]

	



Jardim, W.F.; Bisinoti, M.C.; Fadini, P.S.; da Silva, G.S. Mercury Redox Chemistry in the Negro River Basin, Amazon: The Role of Organic Matter and Solar Light. Aquat. Geochem. 2010, 16, 267–278. [Google Scholar] [CrossRef]

	



Richter, L. Especiação Química e Composição Lsotópica de Elementos Traço No Ambiente: Arsênio No Pantanal e Mercúrio na Floresta Amazônica. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2020. [Google Scholar]

	



Lázaro, W.; Díez, S.; Bravo, A.; Silva, C.; Ignácio, A.; Guimarães, J. Cyanobacteria as regulators of methylmercury production in periphyton. Sci. Total Environ. 2019, 668, 723–729. [Google Scholar] [CrossRef]

	



Guimaraes, J.; Malm, O.; Pfeiffer, W. A simplified radiochemical technique for measurements of net mercury methylation rates in aquatic systems near gold mining areas, Amazon, Brazil. Sci. Total Environ. 1995, 175, 151–162. [Google Scholar] [CrossRef]

	



Brito, B.C.; Forsberg, B.R.; Kasper, D.; Amaral, J.H.; de Vasconcelos, M.R.; de Sousa, O.P.; Cunha, F.A.; Bastos, W.R. The influence of inundation and lake morphometry on the dynamics of mercury in the water and plankton in an Amazon floodplain lake. Hydrobiologia 2017, 790, 35–48. [Google Scholar] [CrossRef]

	



Wu, P.; Kainz, M.; Bravo, A.; Akerblom, F.; Sonesten, L.; Bishop, K. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Sci. Total Environ. 2019, 646, 357–367. [Google Scholar] [CrossRef] [PubMed]

	



Kelly, D.J.; Budd, K.; Lefebvre, D.D. Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae. Arch. Microbiol. 2007, 187, 45–53. [Google Scholar] [CrossRef] [PubMed]

	



Peterson, L.R.; Trivett, V.; Baker, A.J.; Aguiar, C.; Pollard, A.J. Spread of metals through an invertebrate food chain as influenced by a plant that hyperaccumulates nickel. Chemoecology 2003, 13, 103–108. [Google Scholar] [CrossRef]

	



Passos, C.J.S.; Mergler, D.; Fillion, M.; Lemire, M.; Mertens, F.; Guimarães, J.R.D.; Philibert, A. Epidemiologic confirmation that fruit consumption influences mercury exposure in riparian communities in the Brazilian Amazon. Environ. Res. 2007, 105, 183–193. [Google Scholar] [CrossRef]

	



International Programme on Chemical Safety (IPCS): Environmental Health Criteria 101, Methylmercury. World Health Organization, Geneva. 1990. Available online: http://www.inchem.org/documents/ehc/ehc/ehc101 (accessed on 10 January 2020).

	



Ulrich, S.; Tanton, T.; Abdrashitova, S. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Critical Reviews in Environmental Science and Technology. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]

	



Nevado, J.B.; Martín-Doimeadios, R.R.; Bernardo, F.G.; Moreno, M.J.; Herculano, A.M.; Do Nascimento, J.L.M.; Crespo-López, M.E. Mercury in the Tapajós River basin, Brazilian Amazon: A review. Environ. Int. 2010, 36, 593–608. [Google Scholar] [CrossRef]

	



Bastos, W.; Dórea, J.; Bernardi, J.; Lauthartte, L.; Mussy, M.; Lacerda, L.; Malm, O. Mercury in fish of the Madeira river (temporal and spatial assessment); Brazilian Amazon. Environ. Res. 2015, 140, 191–197. [Google Scholar] [CrossRef]

	



Barbosa, A.C.; De Souza, J.; Dórea, J.G.; Jardim, W.F.; Fadini, P.S. Mercury Biomagnification in a Tropical Black Water, Rio Negro, Brazil. Arch. Environ. Contam. Toxicol. 2003, 45, 235–246. [Google Scholar] [CrossRef]

	



Malm, O.; Castro, M.B.; Bastos, W.R.; Branches, F.J.; Guimarães, J.R.; Zuffo, C.E.; Pfeiffer, W.C. An assessment of Hg pollution in different goldmining areas, Amazon Brazil. Sci. Total Environ. 1995, 175, 127–140. [Google Scholar] [CrossRef]

	



Brabo, E.D.S.; Santos, E.D.O.; Jesus, I.M.D.; Mascarenhas, A.F.; Faial, K.F. Mercury levels in fish consumed by the Sai Cinza indigenous community, Munduruku Reservation, Jacareacanga County, State of Para, Brazil. Cad. Saúde Pública 1999, 15, 325–332. [Google Scholar] [CrossRef] [PubMed]

	



Passos, C.J.S.; Da Silva, D.S.; Lemire, M.; Fillion, M.; Guimaraes, J.R.D.; Lucotte, M.; Mergler, D. Daily mercury intake in fish-eating populations in the Brazilian Amazon. J. Exp. Sci. Environ. Epidemiol. 2008, 18, 76–87. [Google Scholar] [CrossRef] [PubMed]

	



Organização das Nações Unidas para Agricultura e Alimentação (FAO). Codex Genereal Standard for Contaminants and Toxins in Food and Feed; FAO: Rome, Italy, 1995; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 25 April 2021).

	



Isaac, V.J.; Almeida, M.C. El Consumo de Pescado en la Amazonía Brasileña; FAO: Rome, Italy, 2011; ISBN 978-92-5-307029-9. [Google Scholar]

	



Cerdeira, R.G.P.; Ruffino, M.I.; Isaac, V.J. Consumo de pescado e outros alimentos pela população ribeirinha do lago grande de Monte Alegre, PA-Brasil. Acta Amaz. 1997, 27, 213–227. [Google Scholar] [CrossRef]

	



Batista, V.D.; Isaac, V.J.; Viana, J.P. Exploração e Manejo Dos Recursos Pesqueiros da Amazônia. A Pesca e os Recursos Pesqueiros na Amazônia Brasileira; Ibama/ProVárzea: Manaus, Brazil, 2004; pp. 63–151. [Google Scholar]

	



Mangas, F.P.; Rebello, F.K.; dos Santos, M.A.S.; Martins, C.M. Caracterização do perfil dos consumidores de peixe no município de Belém, estado do Pará, Brasil. Rev. Em Agronegócio E Meio Ambiente 2016, 9, 839–857. [Google Scholar] [CrossRef]

	



Instituto Brasileiro de Geografia e Estatística-IBGE. Pesquisa de Orçamentos Familiares. Estimativas Populacionais das Medianas de Altura e Peso de Crianças, Adolescentes e Adultos, Por Sexo, Situação do Domicílio e Idade—Brasil e Grandes Regiões—Região Norte. 2008. Available online: https://www.ibge.gov.br/estatisticas/sociais/saude/24786-pesquisa-de-orcamentos-familiares-2.html?=&t=microdados (accessed on 13 June 2021).

	



Bisinoti, M.C.; Jardim, W.F. O comportamento do metilmercúrio (metilHg) no ambiente. Química Nova 2004, 27, 593–600. [Google Scholar] [CrossRef]

	



World Health Organization—WHO. Guidance for identifying populations at risk from mercury exposure. In UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases; WHO: Geneva, Switzerland, 2008; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/11786/IdentifyingPopnatRiskExposuretoMercury_2008Web.pdf?sequence=1&isAllowed=y (accessed on 10 October 2020).

	



Kocman, D.; Horvat, M. 2011.Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. J. Environ. Manag. 2011, 92, 2038–2046. [Google Scholar] [CrossRef]

	



Olivero-Verbel, J.; Caballero-Gallardo, K.; Turizo-Tapia, A. Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ. Sci. Pollut. Res. 2015, 22, 5895–5907. [Google Scholar] [CrossRef]

	



Chen, X.; Ji, H.; Yang, W.; Zhu, B.; Ding, H. Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir, Beijing, China. J. Geochem. Explor. 2016, 163, 1–9. [Google Scholar] [CrossRef]

	



Langeland, A.L.; Hardin, R.D.; Neitzel, R.L. Mercury levels in human hair and farmed fish near artisanal and small-scale gold mining communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health 2017, 14, 302. [Google Scholar] [CrossRef]

	



Olivero-Verbel, J.; Caballero-Gallardo, K.; Negrete-Marrugo, J. Relationship Between Localization of Gold Mining Areas and Hair Mercury Levels in People from Bolivar, North of Colombia. Biol. Trace Element Res. 2011, 144, 118–132. [Google Scholar] [CrossRef]

	



Barbieri, F.L.; Gardon, J. Hair mercury levels in Amazonian populations: Spatial distribution and trends. Int. J. Health Geogr. 2009, 8, 71. [Google Scholar] [CrossRef] [PubMed]

	



Appleton, J.; Williams, T.; Breward, N.; Apostol, A.; Miguel, J.; Miranda, C. Mercury contamination associated with artisanal gold mining on the island of Mindanao, the Philippines. Sci. Total Environ. 1999, 228, 95–109. [Google Scholar] [CrossRef]

	



van Straaten, P. Human exposure to mercury due to small scale gold mining in northern Tanzania. Sci. Total Environ. 2000, 259, 45–53. [Google Scholar] [CrossRef]

	



Telmer, K.H.; Daneshfar, B.; Sanborn, M.S.; Kliza-Petelle, D.; Rancourt, D.G. The role of smelter emissions and element remobilization in the sediment chemistry of 99 lakes around the Horne smelter, Quebec. Geochem. Explor. Environ. Anal. 2006, 6, 187–202. [Google Scholar] [CrossRef]

	



Green, C.S.; Lewis, P.J.; Wozniak, J.R.; Drevnick, P.E.; Thies, M.L. A comparison of factors affecting the small-scale distribution of mercury from artisanal small-scale gold mining in a Zimbabwean stream system. Sci. Total Environ. 2019, 647, 400–410. [Google Scholar] [CrossRef] [PubMed]

	



Tomiyasu, T.; Kono, Y.; Kodamatani, H.; Hidayati, N.; Rahajoe, J.S. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ. Res. 2013, 125, 12–19. [Google Scholar] [CrossRef]

	



Scarlat, A. Mercury Contamination in the Amazon Basin. Unpublished. 2014. [Google Scholar]

	



Diringer, S.E.; Feingold, B.J.; Ortiz, E.J.; Gallis, J.A.; Araújo-Flores, J.M.; Berky, A.; Pan, W.K.Y.; Hsu-Kim, H. River transport of mercury from artisanal and small-scale gold mining and risks for dietary mercury exposure in Madre de Dios, Peru. Environ. Sci. Process. Impacts 2015, 17, 478–487. [Google Scholar] [CrossRef] [PubMed]

	



Sousa, R.G.C.; Humston, R.; Freitas, C.E.C. Movement patterns of adult peacock bass Cichla temensis between tributaries of the middle Negro River basin (Amazonas–Brazil): An otolith geochemical analysis. Fish. Manag. Ecol. 2016, 23, 76–87. [Google Scholar] [CrossRef]

	



Pfeiffer, W.; Malm, O.; Souza, C.; Lacerda, L.; Silveira, E.; Bastos, W. Mercury in the Madeira River ecosystem, Rondônia, Brazil. For. Ecol. Manag. 1991, 38, 239–245. [Google Scholar] [CrossRef]

	



Resende, E.K.; Catella, A.C.; Nascimento, F.L.; Palmeira, S.D.S.; Pereira, R.A.C.; Lima, M.D.S.; de Almeida, V.L.L. Biologia do Curimbatá (Prochilodus Lineatus), pintado (Pseudoplatystoma Corruscans) e Cachara (Pseudoplatystoma fasciatum) na Bacia Hidrográfica do rio Miranda, Pantanal do Mato Grosso do Sul, Brasil; EMBRAPA-CPAP: Corumbá, MS, USA, 1996; 75p. [Google Scholar]

	



Barthem, R.B.; de Brito Ribeiro, M.C.L.; Petrere, M., Jr. Life strategies of some long-distance migratory catfish in relation to hydroelectric dams in the Amazon Basin. Biol. Conserv. 1991, 55, 339–345. [Google Scholar] [CrossRef]

	



Nunes, M.U.S.; Hallwass, G.; Silvano, R.A.M. Fishers’ local ecological knowledge indicate migration patterns of tropical freshwater fish in an Amazonian river. Hydrobiologia 2019, 833, 197–215. [Google Scholar] [CrossRef]

	



Oliveira, R.C.; Dórea, J.G.; Bernardi, J.V.E.; Bastos, W.R.; Almeida, R.; Manzatto, G. Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): Impact on hair mercury. Ann. Hum. Biol. 2010, 37, 629–642. [Google Scholar] [CrossRef] [PubMed]

	



Brazilian Ministry of Health. Glossário Temático de Economia da Saúde. 3ª Edição. 2013. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/glossario_tematico_economia_saude.pdf (accessed on 19 February 2021).

	



Murray, C.J. Quantifying the burden of disease: The technical basis for disability-adjusted life years. Bull. World Health Organ. 1994, 72, 429–445. [Google Scholar] [PubMed]

	



Murray, C.J.; Lopez, A.D. Measuring the Global Burden of Disease. N. Engl. J. Med. 2013, 369, 448–457. [Google Scholar] [CrossRef]

	



Haacker, M.; Hallett, T.; Atun, R. On discount rates for economic evaluations in global health. Health Policy Plan. 2019, 35, 107–114. [Google Scholar] [CrossRef]

	



Nordhaus, W. Estimates of the social cost of carbon: Background and results from the RICE-2013 model and alternative approaches. J. Assoc. Environ. Resour. Econ. 2014, 1, 273–312. [Google Scholar]

	



Moore, M.A.; Boardman, A.E.; Vining, A.R. Social Discount Rates for Seventeen Latin American Countries: Theory and Parameter Estimation. Public Finance Rev. 2019, 48, 43–71. [Google Scholar] [CrossRef]

	



The World Health Organization—WHO. Global Burden of Disease 2004 Update: Disability Weights for Diseases and Conditions. Available online: https://www.who.int/healthinfo/global_burden_disease/GBD2004_DisabilityWeights.pdf?ua=1 (accessed on 29 June 2020).

	



Hammitt, J.K.; Robinson, L.A. The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations. J. Benefit-Cost Anal. 2011, 2, 1–29. [Google Scholar] [CrossRef]

	



Bosworth, R.; Hunter, A.; Kibria, A. The Value of a Statistical Life: Economics and Politics; STRATA: Logan, UT, USA, 2017. [Google Scholar]

	



The World Health Organization—WHO. Macroeconomics and health: Investing in health for economic development. In Report of the Comission on Macroeconomics and Health; WHO: Geneva, Switzerland, 2001. [Google Scholar]

	



Instituto Brasileiro de Geografia e Estatística—IBGE. GDP per Capital Brazil. 2020. Available online: https://www.ibge.gov.br/explica/pib.php (accessed on 10 January 2021).

	



Roman, H.A.; Walsh, T.L.; Coull, B.A.; Dewailly, E.; Guallar, E.; Hattis, D.; Mariën, K.; Schwartz, J.; Stern, A.H.; Virtanen, J.K.; et al. Evaluation of the Cardiovascular Effects of Methylmercury Exposures: Current Evidence Supports Development of a Dose–Response Function for Regulatory Benefits Analysis. Environ. Health Perspect 2011, 119, 607–614. [Google Scholar] [CrossRef]

	



Fewtrell, L.J.; Pruss-Ustun, A.; Landrigan, P.; Ayuso-Mateos, J.L. Estimating the global burden of disease of mild mental retardation and cardiovascular diseases from environmental lead exposure. Environ. Res. 2004, 94, 120–133. [Google Scholar] [CrossRef]

	



Oliveira, G.M.; Brant, L.C.; Polanczyk, C.A.; Biolo, A.; Nascimento, B.R.; Malta, D.C.; Souza, M.D.; Soares, G.P.; Xavier, G.F.; Machline-Carrion, M.J. Estatística Cardiovascular—Brasil 2020. Arq. Bras. Cardiol. 2020, 115, 308–439. [Google Scholar] [CrossRef] [PubMed]

	



Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.M.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the Human Health Effects of Low-Level Methylmercury Exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed]

	



Mozaffarian, D.; Shi, P.; Morris, J.S.; Spiegelman, D.; Grandjean, P.; Siscovick, D.S.; Willett, W.C.; Rimm, E.B. Mercury exposure and risk of cardiovascular disease in two US cohorts. N. Engl. J. Med. 2011, 364, 1116–1125. [Google Scholar] [CrossRef] [PubMed]

	



Rockhill, B.; Newman, B.; Weinberg, C. Use and misuse of population attributable fractions. Am. J. Public Health 1998, 88, 15–19. [Google Scholar] [CrossRef]

	



Porta, M. International Epidemiological Association. In A Dictionary of Epidemiology, 5 th ed.; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]

	



Instituto Brasileiro de Geografia e Estatística—IBGE. Population Density and Proportion of Urban and Rural Population. 2010. Available online: https://censo2010.ibge.gov.br/sinopse/index.php?dados=8 (accessed on 26 June 2021).

	



Datasus. Morbidade de Hipertensão Arterial E Infarto Do Miocárdio Agudo NA Região Norte Do Brasil. 2021. Available online: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/niuf.def (accessed on 11 March 2021).

	



Zaletel-Kragelj, L.; Bozikov, J. Methods and tools in public health: A Handbook for Teachers, Researchers and Health Professionals. In Proceedings of the Forum for Public Health in South Eastern Europe, North Macedonia. 2010. Available online: https://www.researchgate.net/publication/256011831_METHODS_AND_TOOLS_IN_PUBLIC_HEALTH_A_Handbook_for_Teachers_Researchers_and_Health_Professionals_Title_Address_for_correspondence (accessed on 4 November 2021).

	



Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef]

	



Abhyankar, L.N.; Jones, M.R.; Guallar, E.; Navas-Acien, A. Arsenic Exposure and Hypertension: A Systematic Review. Environ. Health Perspect. 2012, 120, 494–500. [Google Scholar] [CrossRef] [PubMed]

	



Eum, K.-D.; Lee, M.-S.; Paek, D. Cadmium in blood and hypertension. Sci. Total Environ. 2008, 407, 147–153. [Google Scholar] [CrossRef]

	



Houston, M.C. Role of Mercury Toxicity in Hypertension, Cardiovascular Disease, and Stroke. J. Clin. Hypertens. 2011, 13, 621–627. [Google Scholar] [CrossRef]

	



Navas-Acien, A.; Guallar, E.; Silbergeld, E.K.; Rothenberg, S.J. Lead Exposure and Cardiovascular Disease—A Systematic Review. Environ. Health Perspect. 2007, 115, 472–482. [Google Scholar] [CrossRef]

	



Bonita, R.; Beaglehole, R.; Kjestrom, T. Epidemiologia Básica. 2nd Edition. 2010. Available online: https://apps.who.int/iris/bitstream/handle/10665/43541/9788572888394_por.pdf?sequence=5 (accessed on 28 May 2021).

	



Instituto Socioambiental. Cicatrizes na Floresta: Evolução do Garimpo Illegal na TI Yanomami em 2020. Hutukara Associação Yanomami Associação Wanasseduume Ye’kwana. Roraima, Brazil. 2021. Available online: https://acervo.socioambiental.org/acervo/documentos/cicatrizes-na-floresta-evolucao-do-garimpo-ilegal-na-ti-yanomami-em-2020 (accessed on 1 April 2021).

	



RAISG—Amazon Network of Georeferenced Socioenvironmental Information. Available online: https://www.amazoniasocioambiental.org/pt-br/mapas/ (accessed on 10 February 2021).

	



Gasparinetti, P.; De Bakker, L.; Queiroz, J.; Vilela, T. Economic valuation of artisanal small-scale gold mining impacts: A framework for value transfer application. Resour. Policy J. 2021, in press. [Google Scholar]

	



World Wide Fund for Nature—WWF. Mercury Observatory. Available online: https://panda.maps.arcgis.com/apps/Cascade/index.html?appid=e74f4fc219b3428b8e4bce4d7295f210 (accessed on 21 July 2021).

	



CID PUCESE-PRAS. Informe de Valoración de Pasivos Socios Ambientales Vinculados a la Actividad Minera Aurífera Ilegal en El Norte de Esmeraldas; Technical report; Pontifical Catholic University of Ecuador Sede Esmeraldas: Esmmeraldas City, Ecuador, 2011. [Google Scholar]

	



Miranda, J. Estimativa da Quantidade de Mercúrio Usada em Uma Mina de Ouro Abandonada e Avaliação das Técnicas de Remediação da Área Contaminada, em Descoberto—MG. Ph.D. Thesis, Federal University of Ouro Preto, Ouro Preto, Brazil, 2019. [Google Scholar]

	



Wan, X.; Lei, M.; Chen, T. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 2016, 563–564, 796–802. [Google Scholar] [CrossRef] [PubMed]

	



Román-Danobeytia, F.; Huayllani, M.; Michi, A.; Ibarra, F.; Loayza-Muro, R.; Vásquez, T.; Rodríguez, L.; Carcía, M. Reforestation with four native tree species after abandoned goldmining in the Peruvian Amazon. Ecol. Eng. 2015, 85, 39–46. [Google Scholar] [CrossRef]

	



Steckling, N.; Devleesschauwer, B.; Winkelnkemper, J.; Fischer, F.; Ericson, B.; Krämer, A.; Hornberg, C.; Fuller, R.; Plass, D.; Bose-O’Reilly, S. Disability Weights for Chronic Mercury Intoxication Resulting from Gold Mining Activities: Results from an Online Pairwise Comparisons Survey. Int. J. Environ. Res. Public Health 2017, 14, 57. [Google Scholar] [CrossRef] [PubMed]

	



Steckling, N.; Tobollik, M.; Plass, D.; Hornberg, C.; Ericson, B.; Fuller, R.; Bose-O’Reilly, S. Global Burden of Disease of Mercury Used in Artisanal Small-Scale Gold Mining. Ann. Glob. Health 2017, 83, 234–247. [Google Scholar] [CrossRef] [PubMed]








[image: Ijerph 18 11869 g001 550] 





Figure 1. Logical line for relating the existence of gold mining to human health outcomes. 






Figure 1. Logical line for relating the existence of gold mining to human health outcomes.



[image: Ijerph 18 11869 g001]







[image: Ijerph 18 11869 g002 550] 





Figure 2. Outcome of myocardial infarction associated with mercury ingestion. 
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Figure 3. Hypertension scenario in Northern Brazil. 






Figure 3. Hypertension scenario in Northern Brazil.



[image: Ijerph 18 11869 g003]







[image: Table] 





Table 1. Summary of variables, unit of measurement, range values, and source used in this article.
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	Variables
	Unit of Measurement
	Range
	Source





	Distance of mercury dispersion in rivers
	kilometers
	4–100 km (Dispersal of mercury can be carried out by fish that travel long distances up to 5000 km [131,132,133,134,135,136]. Conservatively, the dispersion of mercury by fish is not considered).
	[30,124,125,126,127,128,129,130]



	Proportion of mercury used for each kilo of gold extracted
	Mercury: Gold
	1.6:1–5:1
	[17,72,74,87]



	Proportion of mercury released into water
	Percentage
	7%–21%
	[17,18,19,20]



	Methylation rate in water
	Percentage
	2%–22%
	[91,92,93,94,95,96,97]



	Average mercury contamination of fish
	Microgram of mercury per gram of fish
	0.13–3 (μg Hg/g of fish)
	[49,52,53,54,55,56,57,58,104,105,106,107,108,109,110]
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Table 2. Summary of variables, unit of measurement, range values, and source used in Yanomami case study.
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	Variables
	Unit of Measurement
	Value
	Source





	Area impacted by gold mining in 2020
	km2
	5 km2
	[164]



	Average individual weight of the indigenous population
	Kilogram
	53.2 kg
	[49]



	Average daily consumption of fish per rural individual
	Grams of fish per person per day
	100 g/person/day (Average between indigenous (100 g/person/day) [49] and Riverside (189 g/person/day) [50])
	[49]



	Average population density
	Inhabitants by km2
	2 inhab/km2
	[156]



	Urban population (state of Roraima as a whole)
	Percentage
	76%
	[156]



	Rural population (state of Roraima as a whole)
	Percentage
	24%
	[156]



	Distance of mercury dispersion in rivers
	kilometers
	100 km
	[116]



	Proportion of mercury used for each kilo of gold extracted
	Mercury: Gold
	2.6:1
	[17]



	Proportion of mercury released into water
	Percentage
	13%
	[20]



	Methylation rate in water
	Percentage
	2%
	[91]



	Average mercury contamination of fish
	Microgram of mercury per gram of fish
	0.5 (μg Hg/g of fish)
	[110]
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