Cigarette Smoking as a Predictor of Male DUI Recidivism
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Medico-Legal Repercussions and Preventive Measures
4.2. Limits of the Study and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SafetyNet. Alcohol. European Commission, Directorate General for Transport. September 2015. Available online: https://ec.europa.eu/transport/road_safety/specialist/knowledge/alcohol_en (accessed on 2 April 2021).
- U.S. Department of Transportation. National Highway Traffic Safety Administration. In Traffic Safety Facts Research Note, 2018 Fatal Motor Vehicle Crashes: Overview; National Center for Statistics and Analysis: Washington, DC, USA, 2019; DOT HS 812 826. [Google Scholar]
- Schumann, J.; Perkins, M.; Dietze, P.; Nambiar, D.; Mitra, B.; Gerostamoulos, D.; Drummer, O.H.; Cameron, P.; Smith, K.; Beck, B. The prevalence of alcohol and other drugs in fatal road crashes in Victoria, Australia. Accid Anal. Prev. 2021, 153, 105905. [Google Scholar] [CrossRef] [PubMed]
- Pasnin, L.T.; Gjerde, H. Alcohol and drug use among road users involved in fatal crashes in Norway. Traffic Inj. Prev. 2021, 22, 267–271. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Transportation. National Highway Traffic Safety Administration. In Traffic Safety Facts 2018 Data, Alcohol-Impaired Driving; National Center for Statistics and Analysis: Washington, DC, USA, 2019; DOT HS 812 864. [Google Scholar]
- European Transport Safety Council. Progress in Reducing Drink-Driving and Other Alcohol-Related Road Deaths in Europe. 11 December 2019. Available online: https://etsc.eu/progress-in-reducing-drink-driving-in-europe-2019/ (accessed on 30 September 2021).
- Istituto Italiano di statistica—Italian National Institute of Statistics. Incidenti Stradali in Italia. Anno 2020. Available online: https://www.istat.it/it/archivio/259825 (accessed on 30 September 2021).
- Terranova, C.; Tagliabue, M.; Cona, G.; Gianfranchi, E.; Di Pietra, L.; Vidotto, G.; Montisci, M. Neurocognitive and behavioral markers in DUI recidivists. Traffic. Inj. Prev. 2019, 20 (Suppl. 2), S185–S189. [Google Scholar] [CrossRef]
- Snenghi, R.; Forza, G.; Favretto, D.; Sartore, D.; Rodinis, S.; Terranova, C.; Nalesso, A.; Montisci, M.; Ferrara, S.D. Underlying Substance Abuse Problems in Drunk Drivers. Traffic. Inj. Prev. 2015, 16, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Hargutt, V.; Kruger, H.-P.; Knoche, A. Driving under the Influence of Alcohol, Illicit Drugs and Medicines. Risk Estimations from Different Methodological Approaches. Available online: https://www.bast.de/Druid/EN/deliverales-list/downloads/Deliverable_1_3_1.html (accessed on 1 October 2021).
- Nochajski, T.H.; Stasiewicz, P.R. Relapse to driving under the influence (DUI): A review. Clin. Psychol. Rev. 2006, 26, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.G.; Curtis, A.; Sønderlund, A.; Day, A.; Droste, N. Effectiveness of interventions for convicted DUI offenders in reducing recidivism: A systematic review of the peer-reviewed scientific literature. Am. J. Drug Alcohol Abuse 2015, 41, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Vingilis, E.R. A new look at deterrence. In Drinking and Driving: Advances in Research and Prevention; Wilson, R.J., Mann, R.E., Eds.; Guilford Publications: New York, NY, USA, 1990; p. 7. [Google Scholar]
- Connors, G.J.; Donovan, D.M.; DiClemente, C.C. Substance Abuse Treatment and the Stages of Change, 2nd ed.; Guilford Press: New York, NY, USA, 2001; p. 7. [Google Scholar]
- Elder, R.W.; Voas, R.; Beirness, D.; Shults, R.A.; Sleet, D.A.; Nichols, J.L.; Compton, R.; Task Force on Community Preventive Services. Effectiveness of ignition interlocks for preventing alcohol-impaired driving and alcohol-related crashes: A Community Guide systematic review. Am. J. Prev. Med. 2011, 40, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Schell, T.L.; Chan, K.S.; Morral, A.R. Predicting DUI recidivism: Personality, attitudinal, and behavioral risk factors. Drug Alcohol Depend. 2006, 82, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Martí-Belda, A.; Pastor, J.C.; Montoro, L.; Bosó, P.; Roca, J. Persistent traffic offenders: Alcohol consumption and personality as predictors of driving disqualification. Eur. J. Psychol. Appl. Leg Context 2019, 11, 81–92. [Google Scholar] [CrossRef][Green Version]
- Beirness, D.J.; Marques, P.R. Alcohol ignition interlock programs. Traffic Inj. Prev. 2004, 5, 299–308. [Google Scholar] [CrossRef] [PubMed]
- C’de Baca, J.; Miller, W.R.; Lapham, S. A multiple risk factor approach for predicting DWI recidivism. J. Subst. Abuse Treat. 2002, 21, 207–215. [Google Scholar] [CrossRef]
- Robertson, A.A.; Zhou, Q.M.; Tatch, A.; Walsh, M. Gender-Specific Predictors of Recidivism Among DUI Offenders. J. Stud. Alcohol Drugs 2019, 80, 641–650. [Google Scholar] [CrossRef]
- Cavaiola, A.A.; Strohmetz, D.B.; Wolf, J.M.; Lavender, N.J. Comparison of DWI offenders with non-DWI individuals on the MMPI-2 and the Michigan Alcoholism Screening Test. Addict. Behav. 2003, 28, 971–977. [Google Scholar] [CrossRef]
- Christophersen, A.S.; Skurtveit, S.; Grung, M.; Mørland, J. Rearrest rates among Norwegian drugged drivers compared with drunken drivers. Drug Alcohol Depend. 2002, 66, 85–92. [Google Scholar] [CrossRef]
- Hunter, S.B.; Wong, E.; Beighley, C.M.; Morral, A.R. Acculturation and driving under the influence: A study of repeat offenders. J. Stud. Alcohol 2006, 67, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Møller, M.; Haustein, S.; Prato, C.G. Profiling drunk driving recidivists in Denmark. Accid. Anal. Prev. 2015, 83, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.; Gardner, S.; Walker, C.S.; Tatch, A. DUI recidivism by intervention adherence: A multiple risk factor approach. Am. J. Drug Alcohol Abuse 2016, 42, 597–605. [Google Scholar] [CrossRef]
- Bender, A.K.; Bucholz, K.K.; Heath, A.C.; McCutcheon, V.V. Comparison of Characteristics of Female Drivers with Single and Multiple DUI Convictions. Alcohol Clin. Exp. Res. 2018, 42, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Bishop, N.J. Predicting rapid DUI recidivism using the Driver Risk Inventory on a state-wide sample of Floridian DUI offenders. Drug Alcohol Depend. 2011, 118, 423–429. [Google Scholar] [CrossRef]
- Smart, R.; Osilla, K.C.; Jonsson, L.; Paddock, S.M. Differences in alcohol cognitions, consumption, and consequences among first-time DUI offenders who co-use alcohol and marijuana. Drug Alcohol Depend. 2018, 191, 187–194. [Google Scholar] [CrossRef]
- Roberts, W.; Fillmore, M.T. Curbing the DUI offender’s self-efficacy to drink and drive: A laboratory study. Drug Alcohol Depend. 2017, 172, 73–79. [Google Scholar] [CrossRef][Green Version]
- Sabel, J.C.; Bensley, L.S.; Van Eenwyk, J. Associations between adolescent drinking and driving involvement and self-reported risk and protective factors in students in public schools in Washington State. J. Stud. Alcohol 2004, 65, 213–216. [Google Scholar] [CrossRef]
- Everett, S.A.; Lowry, R.; Cohen, L.R.; Dellinger, A.M. Unsafe motor vehicle practices among substance-using college students. Accid. Anal. Prev. 1999, 31, 667–673. [Google Scholar] [CrossRef]
- Shepherd, J.; Farrington, D.; Potts, J. Impact of antisocial lifestyle on health. J. Public Health 2004, 26, 347–352. [Google Scholar] [CrossRef][Green Version]
- Couture, S.; Brown, T.G.; Ouimet, M.C.; Gianoulakis, C.; Tremblay, J.; Carbonneau, R. Hypothalamic-pituitary-adrenal axis response to stress in male DUI recidivists. Accid. Anal. Prev. 2008, 40, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Lapham, S.C.; Skipper, B.J.; Simpson, G.L. A prospective study of the utility of standardized instruments in predicting recidivism among first DWI offenders. J. Stud. Alcohol 1997, 58, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Marowitz, L.A. Predicting DUI recidivism: Blood alcohol concentration and driver record factors. Accid. Anal. Prev. 1998, 30, 545–554. [Google Scholar] [CrossRef]
- Roma, P.; Mazza, C.; Ferracuti, G.; Cinti, M.E.; Ferracuti, S.; Burla, F. Drinking and driving relapse: Data from BAC and MMPI-2. PLoS ONE 2019, 14, e0209116. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Williford, W.R. Drunk-driving recidivism: Predicting factors from arrest context and case disposition. J. Stud. Alcohol 1995, 56, 60–66. [Google Scholar] [CrossRef]
- Beerman, K.A.; Smith, M.M.; Hall, R.L. Predictors of recidivism in DUIIs. J. Stud. Alcohol 1988, 49, 443–449. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar]
- Christensen, R. Log-Linear Models and Logistic Regression, 2nd ed.; Springer: New York, NY, USA, 1997. [Google Scholar]
- Neumann, T.; Rasmussen, M.; Heitmann, B.L.; Tønnesen, H. Gold standard program for heavy smokers in a real-life setting. Int. J. Environ. Res. Public Health 2013, 10, 4186–4199. [Google Scholar] [CrossRef][Green Version]
- Verplaetse, T.L.; McKee, S.A. An overview of alcohol and tobacco/nicotine interactions in the human laboratory. Am. J. Drug Alcohol Abuse 2017, 43, 186–196. [Google Scholar] [CrossRef][Green Version]
- Chen, S.; Yang, P.; Chen, T.; Su, H.; Jiang, H.; Zhao, M. Risky decision-making in individuals with substance use disorder: A meta-analysis and meta-regression review. Psychopharmacology 2020, 237, 1893–1908. [Google Scholar] [CrossRef] [PubMed]
- Kip Viscusi, W. The Value of Life. Discussion Paper No 517 06/2005, Harvard Law School, Cambridge, MA 02138. Available online: http://www.law.harvard.edu/programs/olin_center/papers/pdf/Viscusi_517.pdf (accessed on 28 September 2021).
- Viscusi, W.K.; Hersch, J. Cigarette smokers as job risk takers. Rev. Econ. Stat. 2001, 83, 269–280. [Google Scholar] [CrossRef]
- Martínez-Sánchez, J.M.; Gallus, S.; Lugo, A.; Fernández, E.; Invernizzi, G.; Colombo, P.; Pacifici, R.; La Vecchia, C. Smoking while driving and public support for car smoking bans in Italy. Tob. Control 2014, 23, 238–243. [Google Scholar] [CrossRef]
- Tzortzi, A.; Kapetanstrataki, M.; Evangelopoulou, V.; Behrakis, P. Driving Behavior That Limits Concentration: A Nationwide Survey in Greece. Int. J. Environ. Res. Public Health 2021, 18, 4104. [Google Scholar] [CrossRef] [PubMed]
- Gallus, S.; Borroni, E.; Odone, A.; van den Brandt, P.A.; Gorini, G.; Spizzichino, L.; Pacifici, R.; Lugo, A. The Role of Novel (Tobacco) Products on Tobacco Control in Italy. Int. J. Environ. Res. Public Health 2021, 18, 1895. [Google Scholar] [CrossRef]
- Nasui, B.A.; Popa, M.; Buzoianu, A.D.; Pop, A.L.; Varlas, V.N.; Armean, S.M.; Popescu, C.A. Alcohol Consumption and Behavioral Consequences in Romanian Medical University Students. Int. J. Environ. Res. Public Health 2021, 18, 7531. [Google Scholar] [CrossRef] [PubMed]
- Riala, K.; Isohanni, I.; Jokelainen, J.; Taanila, A.; Isohanni, M.; Räsänen, P. Low educational performance is associated with drunk driving: A 31-year follow-up of the northern finland 1966 birth cohort. Alcohol Alcohol. 2003, 38, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Terranova, C.; Tucci, M.; Sartore, D.; Cavarzeran, F.; Di Pietra, L.; Barzon, L.; Palù, G.; Ferrara, S.D. GABA receptors, alcohol dependence and criminal behavior. J. Forensic Sci. 2013, 58, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
Variable | |
---|---|
Personal Data | |
Age at DUI | |
Gender | Female |
Male | |
Driving license category | Type 1 * |
Type 2 * | |
Tobacco use | No use |
Less than 20 cigarettes per day | |
More than 20 cigarettes per day | |
Socioeconomic Factors | |
Education | 5 years |
8 years | |
13 years–high school degree | |
Bachelor’s degree | |
Employment situation | Employed |
Freelance | |
Insecure employment | |
Unemployed | |
Student | |
Marital status | Single |
Married | |
Divorced | |
Widower/widow | |
Driving under the Influence Variables | |
DUI | Alcohol only |
Alcohol plus psychoactive substances | |
BAC at DUI | 0.5–0.8 g/L |
0.8–1.5 g/L | |
1.5–2.5 g/L | |
>2.5 g/L | |
Refusal of alcohol determination | |
Road accident at DUI? | Yes |
No |
Variable | Total N = 1678 (100%) | Cases N = 196 (100%) | Comparison Subjects N = 1482 (100%) | p-Value * | |
---|---|---|---|---|---|
Personal Data | |||||
Age at DUI, years, mean (Standard deviation) | 32.58 (9.667) | 30.56 (8.96) | 32.85 (9.72) | 0.001 | |
Gender | Female, n (%) | 193 (11.5) | 10 (5.10) | 183 (12.34) | 0.003 |
Male, n (%) | 1485 (88.5) | 186 (94.89) | 1299 (87.65) | ||
Driving licence category type 1 ** | 1519 (90.52) | 168 (85.71) | 1351 (91.16) | 0.034 | |
Driving licence category type 2 | 155 (9.23) | 26 (13.26) | 129 (8.70) | ||
Tobacco use ** | |||||
No use | 527 (31.40) | 58 (29.59) | 469 (31.64) | 0.002 | |
Less than 20 cigarettes | 922 (54.94) | 96 (49.97) | 826 (55.73) | ||
More than 20 cigarettes | 226 (13.46) | 42 (21.42) | 184 (12.41) | ||
Socio-Economic Factors | |||||
Education ** | |||||
5 years | 35 (2.08) | 3 (1.53) | 32 (2.15) | 0.003 | |
8 years | 558 (33.25) | 87 (44.38) | 471 (31.78) | ||
13 years | 879 (52.38) | 91 (46.42) | 788 (53.17) | ||
Degree | 202 (12.03) | 15 (7.65) | 187 (12.61) | ||
Employment Situation ** | |||||
Employed | 1095 (65.25) | 127 (64.79) | 968 (65.31) | 0.106 | |
Freelance | 337 (20.08) | 47 (24.97) | 290 (19.56) | ||
Insecure employment | 14 (0.83) | 0 (0) | 14 (0.94) | ||
Unemployed | 144 (8.58) | 18 (9.18) | 126 (8.50) | ||
Student | 85 (5.06) | 4 (2.04) | 81 (5.46) | ||
Marital status ** | |||||
Single | 1027 (61.20) | 127 (64.79) | 900 (60.72) | 0.667 | |
Married | 505 (30.09) | 55 (28.06) | 450 (30.36) | ||
Divorced | 133 (7.92) | 13 (6.63) | 120 (8.09) | ||
Widower/widow | 5 (0.29) | 1 (0.51) | 4 (0.26) | ||
Driving under the Influence Variables | |||||
DUI–Alcohol | 1585 (94.45) | 189 (96.42) | 1396 (94.19) | 0.199 | |
DUI Alcol plus psychoactive substances | 93 (5.54) | 7 (3.57) | 86 (5.80) | ||
BAC at DUI | |||||
0.5–0.8 g/L | 387 (23.06) | 40 (20.40) | 347 (23.41) | 0.475 | |
0.8–1.5 g/L | 650 (38.73) | 83 (42.34) | 567 (38.25) | ||
1.5–2.5 g/L | 356 (21.21) | 46 (23.46) | 310 (20.91) | ||
>2.5 g/L | 53 (3.15) | 6 (3.06) | 47 (3.17) | ||
Refusal of alcohol determination | 232 (13.82) | 21 (10.71) | 211 (14.23) | ||
Road accident at DUI ** | 371 (22.10) | 45 (22.95) | 326 (21.99) | 0.705 | |
No road accident | 1305 (77.77) | 149 (76.02) | 1156 (78.0) |
Variable | Total N = 1485 (100%) | Cases N = 186 (100%) | Comparison Subjects N = 1299 (100%) | p-Value * |
---|---|---|---|---|
Personal Data | ||||
Age at DUI, years, mean (Standard deviation) | 32.90 (9.75) | 30.81 (8.98) | 33.20 (9.82) | 0.02 |
Driving licence category type 1 ** | 1328 (89.42) | 160 (86.02) | 1168 (89.91) | 0.093 |
Driving licence category type 2 | 155 (10.43) | 26 (13.97) | 129 (9.93) | |
Tobacco use ** | ||||
No use | 472 (31.78) | 54 (29.03) | 418 (32.17) | 0.005 |
Less than 20 cigarettes | 801 (53.93) | 91 (48.92) | 710 (54.65) | |
More than 20 cigarettes | 211 (14.20) | 41 (22.04) | 170 (13.08) | |
Socio-Economic Factors | ||||
Education (5 years) ** | 34 (2.28) | 3 (1.61) | 31 (2.38) | 0.007 |
Education—(8 years) | 524 (35.28) | 86 (46.23) | 438 (33.71) | |
Education—(13 years) | 765 (51.51) | 84 (45.16) | 681 (52.42) | |
Education—(degree) | 160 (10.77) | 13 (6.98) | 147 (11.31) | |
Employment Situation—Employed ** | 977 (65.79) | 122 (65.59) | 855 (65.81) | 0.129 |
Freelance | 315 (21.21 | 47 (25.26) | 268 (20.63) | |
Insecure employment | 14 (0.94) | 0 (0) | 14 (1.07) | |
Unemployed | 115 (7.74) | 14 (7.52) | 101 (7.77) | |
Student | 63 (4.24) | 3 (1.61) | 60 (4.61) | |
Marital status Single ** | 895 (60.26) | 119 (63.97) | 776 (59.73) | 0.617 |
Married | 457 (30.77) | 53 (28.49) | 404 (31.10) | |
Divorced | 122 (8.21) | 13 (6.98) | 109 (8.39) | |
Widower/widow | 4 (0.26) | 1 (0.53) | 3 (0.23) | |
Driving under the Influence Variables | ||||
DUI–Alcohol | 1397 (94.07) | 180 (96.77) | 1217 (93.68) | 0.095 |
DUI Alcol plus psychoactive substances | 88 (5.92) | 6 (3.22) | 82 (6.32) | |
BAC at DUI | 0.406 | |||
0.5–0.8 g/L | 326 (21.95) | 38 (20.43) | 288 (21.17) | |
0.8–1.5 g/L | 568 (38.24) | 80 (43.01) | 488 (37.56) | |
1.5–2.5 g/L | 326 (21.95) | 43 (23.11) | 283 (21.78) | |
>2.5 g/L | 47 (3.16) | 5 (2.68) | 42 (3.23) | |
Refusal of alcohol determination | 218 (14.68) | 20 (10.75) | 198 (15.24) | |
Road accident at DUI ** | 322 (21.68) | 39 (20.96) | 283 (21.78) | 0.856 |
No accident | 1161 (78.18) | 145 (77.95) | 1016 (78.21) |
Variable | p-Value | OR * | 95% CI ** |
---|---|---|---|
Education *** | <0.001 | ||
Education—(8 years) | 0.421 | 0.794 | 0.452–1.393 |
Education—(13 years) | 0.002 | 0.451 | 0.271–0.753 |
Education—(degree) | 0.006 | 0.355 | 0.169–0.744 |
Tobacco **** | 0.007 | ||
Less than 20 cigarettes | 0.388 | 0.857 | 0.603–1.218 |
More than 20 cigarettes | 0.025 | 1.676 | 1.066–2.635 |
Age at DUI | <0.001 | 0.958 | 0.944–0.972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terranova, C.; Forza, G.; Beccegato, E.; Ruggeri, A.; Viel, G.; Viero, A.; Montisci, M. Cigarette Smoking as a Predictor of Male DUI Recidivism. Int. J. Environ. Res. Public Health 2021, 18, 10761. https://doi.org/10.3390/ijerph182010761
Terranova C, Forza G, Beccegato E, Ruggeri A, Viel G, Viero A, Montisci M. Cigarette Smoking as a Predictor of Male DUI Recidivism. International Journal of Environmental Research and Public Health. 2021; 18(20):10761. https://doi.org/10.3390/ijerph182010761
Chicago/Turabian StyleTerranova, Claudio, Giovanni Forza, Elena Beccegato, Angelo Ruggeri, Guido Viel, Alessia Viero, and Massimo Montisci. 2021. "Cigarette Smoking as a Predictor of Male DUI Recidivism" International Journal of Environmental Research and Public Health 18, no. 20: 10761. https://doi.org/10.3390/ijerph182010761