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Abstract: This study evaluates several feature ranking techniques together with some classifiers
based on machine learning to identify relevant factors regarding the probability of contracting
breast cancer and improve the performance of risk prediction models for breast cancer in a healthy
population. The dataset with 919 cases and 946 controls comes from the MCC-Spain study and
includes only environmental and genetic features. Breast cancer is a major public health problem.
Our aim is to analyze which factors in the cancer risk prediction model are the most important for
breast cancer prediction. Likewise, quantifying the stability of feature selection methods becomes
essential before trying to gain insight into the data. This paper assesses several feature selection
algorithms in terms of performance for a set of predictive models. Furthermore, their robustness
is quantified to analyze both the similarity between the feature selection rankings and their own
stability. The ranking provided by the SVM-RFE approach leads to the best performance in terms of
the area under the ROC curve (AUC) metric. Top-47 ranked features obtained with this approach fed
to the Logistic Regression classifier achieve an AUC = 0.616. This means an improvement of 5.8% in
comparison with the full feature set. Furthermore, the SVM-RFE ranking technique turned out to
be highly stable (as well as Random Forest), whereas relief and the wrapper approaches are quite
unstable. This study demonstrates that the stability and performance of the model should be studied
together as Random Forest and SVM-RFE turned out to be the most stable algorithms, but in terms
of model performance SVM-RFE outperforms Random Forest.

Keywords: breast cancer; risk prediction model; feature selection; stability

1. Introduction

Nowadays, the occurrence of cancer is steadily increasing [1]. Breast cancer (BC) is
the second highest prevalent cancer globally after lung cancer, with 2.09 million cases
during 2018 [2]. There are many factors causing this increase; for example, the growth and
aging of the population and some other risk factors such as smoking, overweight, physical
inactivity, oral contraceptives, economic development, etc. [3–5]. Lung cancer is the first
cause of cancer death all over the world, but BC remains the leading cause of cancer death
among females in less developed countries [6].

The problem of BC has also been addressed in the machine learning filed from the
perspective of diagnosis. Thus, there are many studies that focus on extracting meaningful
features from different types of data (digital mammography, ultrasound, biopsy) in order

Int. J. Environ. Res. Public Health 2021, 18, 10670. https://doi.org/10.3390/ijerph182010670 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-3796-3949
https://orcid.org/0000-0002-3118-3570
https://orcid.org/0000-0001-9427-2581
https://orcid.org/0000-0003-4164-5887
https://doi.org/10.3390/ijerph182010670
https://doi.org/10.3390/ijerph182010670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182010670
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182010670?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 10670 2 of 28

to determine whether or not a person has BC. For example, Rajaguru et al. [7] developed a
non-invasive method to detect the BC at an early stage using a Gaussian Mixture Model
(GMM), obtaining an accuracy of 89.60%, and Radial Basis Function (RBF), obtaining results
up to 92.75% of accuracy. In [8], different machine learning algorithms were used: Support
Vector Machine (SVM), Decision Tree (C4.5), Naive Bayes (NB) and k-Nearest Neighbors
(k-NN) on the Wisconsin Breast Cancer (original) dataset, being the SVM that offers the
best results (97.13%). This dataset, the Wisconsin Breast Cancer dataset [9], is composed of
features computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.
Characteristics of the cell nuclei present in the image such as radius, texture, perimeter,
area, etc., are described, and it is used to determine if a tumor is benign or malignant. This
analysis implies that the tumor has to be previously detected to determine whether it is
malignant or benign, and furthermore, data collection is an invasive technique, as you
need to remove a tissue sample. In our work, we try to detect breast cancer risk before the
tumor appears.

A similar procedure has been followed in [10], where a Bayesian network (BN) model-
ing approach has been implemented. The results are promising, but we found the same
problem, the method to obtain the data set is an invasive method.

To overcome the problems found by feature-based methods, convolutional neural net-
works have been lately used for the purpose of diagnosis or evolution. For example, in [11],
Wang et al. proposed the use of convolutional neural networks achieving remarkable
performance in classification accuracy with results up to 98%. In the same way, Khan et al.
proposed a framework for the detection and classification of malignant cells in breast
cytology images [12].

More recently, in [13], a deep convolutional neural network is proposed to classify
a mammogram as normal or abnormal. Deep learning is also used in [14]. In this case,
the authors propose a method capable of detecting breast cancers at a very early stage using
computer vision, image processing, medical diagnosis and neural language processing.
In [15], the authors aimed to evaluate the performance of a deep learning algorithm to
detect breast cancers on chest computed tomography and to validate the results in the
internal and external datasets. Bai et al. [16] brings to light a review collecting the ways in
which deep learning can be best integrated into breast cancer screening workflows using
digital breast tomosynthesis (DBT). The gap in this case is that almost all the methods that
exist evaluate samples obtained from different techniques, but always in an intrusive way.
Conversely, they evaluate mammogram results after they are done. In our case, we seek to
predict the risk of developing breast cancer from easily known variables of each person,
which is why it is a non-intrusive technique and is also very important, since we could be
detecting a tumor in early stages when the chances of curing it are still great.

In the case of predicting the evolution of the disease, convolutional Neural Networks
are also used in axillary lymph node status, which is an important factor for breast cancer
staging and treatment planning [17].

Every year, more than million women are diagnosed with BC, and more than half of
them will die because of inaccuracies and delays in diagnosis of the disease [18]. That is
why risk prediction is so important. The objective of many investigations has been to find
factors that affect the development of BC, that is, risk factors.

Morch et al. [19] carried out an experiment in which 1.8 million women were followed
on average for 10.9 years. Their results demonstrated that the relative risk of BC among
all current users of hormonal contraception was 1.20. This risk increased from 1.09 with
less than 1 year of use to 1.38 with more than 10 years of use. After stopping the taking
of hormonal contraceptives, the risk of BC still remains higher in women who had used
hormonal contraceptives for 5 years or more than in women who had not used hormonal
contraceptives. In [20], it is also shown that current use of oral contraceptives carries
an excess risk of BC. On the other hand, Graafland et al. [21] found that although there
appears to be some risk to develop BC, the absolute risk is small because recent research
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demonstrates that contraceptives may protect against ovarian, endometrial, and colorectal
cancer [22].

Another studied factor is BMI (Body Mass Index) [23]. In postmenopausal women
with normal body mass index, relatively high body fat levels were associated with an
elevated risk of invasive BC [24]. Regarding this factor, Mohanty et al. [2] demonstrated
that premature menopause and premenopausal obesity decrease the risk, whereas post-
menopausal obesity amplifies the risk.

In [25], García-Esquinas et al. studied the association of diabetes and diabetes treat-
ment with risk of postmenopausal BC. Results showed that diabetes was not associated
with the overall risk of BC, and it was only linked to the risk of developing triple nega-
tive tumors.

In [26], Pastor-Barriuso et al. combined estrogenic effects of mixtures of xenoestrogens
in serum and their relationship to BC risk. Results shown a strong positive association
between serum total xenoestrogen burden and BC risk, highlighting the importance of
evaluating xenoestrogen mixtures, rather than single compounds, when studying hormone-
related cancers.

The relation between alcohol consumption and BC has been shown in several
works [27–29]. However, the mechanism of alcohol-induced carcinogenesis is not fully
understood yet.

Many other factors have been studied to determine its association with BC, like
environmental factors, pregnancy, sex, physical activity, economic level, multitude of
genetic information, etc. [30–33].

In the problem we are dealing with, which is predicting the risk of breast cancer, it is
not only performance that matters. It is also important to extract the most relevant features
in order to better understand the data and the entire underlying process.

The digital world of data is expanding, with an annual growth rate of 40%, and health
care is among the fastest growing sectors of the digital world, with an annual growth rate
of 48% [34].

Small changes in the data give rise to differences in the results of the classification
algorithms, and for this reason, in recent years there have been studies that perform feature
selection with respect to classification performance [35–38]. For this reason, the study of
the stability of features selection techniques has gained more and more importance [39,40].

In this work, the problem of calibrating a BC risk prediction model is addressed.
Moreover, our focus is to extract the the most relevant factors applying feature ranking
techniques on a real BC dasaset from the MCC-Spain study [41]. Both the risk prediction
model performance and its stability are assessed jointly for this purpose.

In particular, we evaluate several feature ranking techniques in the context of breast
cancer prediction. From the complete data set, it is proposed to extract different subsamples
of data. A classification technique is applied to each of these subsamples, and this leads
us to different rankings of features. Finally, the feature selection method is evaluated
in relation to the performance of the classifier and in relation to its stability. The main
contributions of this work are:

• An evaluation of multiple ranking feature methods has been carried out to extract the
most relevant factors of breast cancer.

• All the feature selection methods have been evaluated, taking into account not only
the performance, but also their stability.

• A deeper evaluation of the risk of breast cancer in menopausal status has been done
by calibrating the risk prediction for pre- and post-menopausal women.

• Our automatically selected features have been compared with expert selected features
in order to validate the algorithm results.

• Our method based on environmental or genetic characteristics helps to improve the
quality of life of people suffering from the disease, thanks to an early diagnosis due to
not having to wait for the clinical characteristics to appear.
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The rest of the paper is organized as follows: Section 2 introduces the methodology
used in this study. Results on a representative breast cancer dataset are presented in
Section 3. A deeper analysis of the data, taking into account the menopausal status of the
women, is discussed in Section 4. Section 6 lists the conclusions of this work and presents
future works in this field.

2. Methods

Feature selection methods assess the relevance of a feature or a set of features according
to a given measure. These techniques may provide many benefits, the most important ones
being [42]: (a) to prevent overfitting and improve model performance, (b) to gain a deeper
insight into the problem, and (c) to provide faster and more cost-effective predictive models.

Consider each sample xi, defined in a p-dimensional vector xi = (xi1, xi2, . . . xip)
where each component xij represents the value of a given feature f j, for that example i, that
is, f j(xi) = xij.

Consider also the training dataset D = {(xi, di), i = 1, . . . , M} with M examples and a
class label d associated with each sample.

From a functional point of view, the output of a feature selection algorithm may be
a ranking (weighting-score) on the features or a feature set. Obviously, representation
changes are possible and, thus, a feature subset can be extracted from a full ranked list by
selecting the most relevant features.

Consider now a feature ranking algorithm that provides a ranking vector r with
components defined in (1)

r = (r1, r2, r3, . . . , rp) (1)

where 1 ≤ ri ≤ p. Note that 1 is considered the highest rank. Consider also a feature subset
(as denoted in (2)) with k elements as the outcome of a feature selection technique

s = (s1, s2, s3, . . . , sp), si ∈ {0, 1} (2)

where 1 indicates the presence of a feature and 0 the absence and ∑
p
i=1 si = k for a top-k list.

From a structural point of view, feature selection methods can be categorized into
three groups: filter, wrapper and embedded approaches [36,43,44]. The filter techniques rely
on general characteristics of the training data to rank the features according to a metric
being independent of the classifier. The wrapper approaches select candidate subsets of
features and assess their fitness based on the classification model performance. Finally,
in the embedded techniques, the feature search mechanism is incorporated into the classifier
objective function and are, therefore, specific to a given inductive learning algorithm.
The ranking methods assessed in this work are briefly described next.

2.1. Feature Selection with Filters

Relief and Pearson algorithms have been considered. Relief is a well-known technique
sensitive to feature interactions, and Pearson is a parameter-free approach that has proven
to be very effective, although it does not eliminate redundancy [45].

2.1.1. Relief

The main idea of the Relief algorithm is to calculate a feature score for each feature
that can then be applied to rank and select the highest scoring features for feature selection.
Alternatively, these scores can be applied as feature weights to guide subsequent modeling.
The relief feature scoring is based on identifying the feature value differences between the
pairs of nearest neighbor instances. If a characteristic value difference is observed in a pair
of neighboring instances with the same class, the feature score decreases. Alternatively, if a
characteristic value difference is observed in a pair of neighboring instances with different
class values, the characteristic score increases [46].
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2.1.2. Pearson Correlation Coefficient

Pearson’s correlation coefficient is a test that measures the statistical relationship
between two continuous variables. In this case, between each feature and the classes
labels. If the association between the elements is not linear, then the coefficient is not
adequately represented.

The correlation coefficient can take a range of values from +1 to −1. A value of 0
indicates that there is no association between the two variables. A value greater than 0
indicates a positive association. That is, as the value of one variable increases, so does the
value of the other. If a feature is highly correlated with a class label, then this feature is
relevant for our classification [46].

2.2. Feature Selection with Wrapper Approaches

Wrapper techniques rely on the performance of a learning algorithm to assess the
importance of a feature set. They work by iteratively removing the least relevant features
or by adding the most relevant features according to model performance [43]. Their main
advantage is that they can select high-quality feature subsets for a particular classifier.
Wrapper approaches are the methods with most computationally cost, though.

In this work, we evaluate two wrapper approaches that quantify the importance of a
feature set based on the performance of a Support Vector Machine an a Logistic Regression
classifier. In both cases, model performance is estimated by the area under the ROC
(Receiver Operating Characteristic) curve (AUC), where the ROC curve plots the true
positive rate against the false positive rate.

2.3. Feature Selection with Embedded Approaches

Two embedded approaches have been evaluated in this work: Random Forests and
Support Vector Machines. These techniques based on embedded approaches have the
advantage that they are better in terms of computational cost and also they have proven to
be effective in terms of classification performance.

2.3.1. SVM with Recursive Feature Elimination (SVM-RFE)

SVM-RFE [43] is based on SMV algorithm. This approach is capable of determining
which are the most representative features to the model predictive power while it is
being created.

2.3.2. Random Forests (RF)

Random Forests is a combination of predictor trees such that each tree depends on
the values of a random vector tested independently and with the same distribution for
each of these. It is a substantial modification of bagging that builds a long collection
of uncorrelated trees and then averages them. Each node of the multiple decision trees
represents a condition over a single feature. Using this information, a ranked feature list
can be extracted [43].

2.4. Stability of Feature Ranked Lists

Feature selection methods are used to measure the importance of a particular feature or
group of features taking into account the value of a particular function. The field of cancer
risk prediction certainly benefits from the identification of the most important variables
(features) in order to better understand the data and the underlying process. A problem
that appears in many practical problems, in particular when the available dataset is small
and the feature dimensionality is high, is that small variations in the data lead to different
outcomes of the feature selection algorithm.
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In feature selection methods, it is important to take stability into account since, if the
result of the technique varies under small changes in the data, then the conclusions to be
drawn from it are not reliable [47–49].

If a feature ranking algorithm is ran K times, the Results can be represented in a matrix
A with elements rij with i = 1, . . . , p and j = 1, . . . , K that indicate the rank assigned in the
run-j for feature-i. The same applies to a feature selector (Equation (3)).

A =
[
r1 r2 ... rj rK

]
=



r11 r12 ... r1j r1K
r21 r22 ... r2j r2K
r31 r32 ... r3j r3K
ri1 ri2 ... rij riK
... ... ... ... ...

rp1 rp2 ... rpj rpK


p×K

(3)

In recent years, numerous investigations have appeared focused on evaluating the
stability of the characteristics selection methods, especially when one wants to obtain
information from the data taking into account the most relevant features [39,40,50–55].

Stability is typically quantified by calculating the pairwise similarity of a set of classi-
fications and then downgrading them to a single metric. These metrics can be projected
in one-dimensional space. In this article, we propose the use of graphical methods to also
evaluate the stability of the classifiers making projections in two dimensions.

Finally, a conventional analysis and also a graphical analysis will be carried out to
quantify the robustness of the feature selection method.

2.4.1. Conventional Stability Analysis

Assuming that the algorithm is launched K times on slightly different datasets ex-
tracted from the training dataset. Then, a set of outputs from a feature ranking algorithm
represented as A = {r1, r2, . . . rK} is obtained. A single scalar value can be obtained by
evaluating the stability of the set by calculating the pairwise similarities and then averaging
the results.

S(A) = 2
K(K− 1)

K−1

∑
i=1

K

∑
j=i+1

SM(ri, rj) (4)

where SM may be any distance metric such as the Spearman rank correlation coefficient,
Jaccard stability index [50,56] or Kuncheva’s stability index [57].

Other alternatives compute the stability directly from the whole set of lists without
carrying out pairwise comparisons [48].

In this paper, several metrics are proposed to study the stability of the feature ranking
or selection techniques.

Similarity Metrics for Feature Rankings

Consider r and r′ the output of a feature ranking technique applied to two subsamples
of D. The Spearman’s rank correlation coefficient (SR) is the most popular metric to
compare the similarity between two rankings [56]. The SR between two ranked lists r and
r′ is defined by

SR(r, r′) = 1− 6
p

∑
i=1

(ri − r′i)
2

p(p2 − 1)
(5)

where ri is the rank of feature-i. SR values range from −1 to 1. It takes the value of one
when the rankings are identical, and the value zero when there is no correlation.
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Similarity Metrics for Feature Selectors

When we attempt to measure the distance between two top-k lists s and s′ with the
most relevant k features, several metrics have been presented (for details see [56]). In this
work, we use the Jaccard stability index (JI) that can be defined as

J I(s, s′) ==
s ∧ s′

s ∨ s′
=

r
l

(6)

where s and s′ are the two feature subsets, r is the number of features that are common in
both lists and l the number of features that appear only in one of the two lists. The JI lies in
the range (0, 1).

2.4.2. Stability Graphical Analysis

When we talk about a classification algorithm, the result is interpreted as a point
within a high-dimensional space. In these cases, the stability of the method is measured
as the distance between different results of the same range averaging the results. In this
way, projecting the data to a single dimension, it becomes a single number and can now be
compared with a scalar metric. The only limitation is that in this case, it is only possible to
compare the feature selector with respect to a reference: The random classification and the
completely stable classification.

If we carry out a projection in two dimensions, we can compare with respect to the
random selector, but we can also compare each selector of characteristics with the others,
therefore, it is a better option.

Evaluating different rendering techniques, histograms and scatter plots, which are
very simple visualization methods, have some limitations when increasing dimensionality.
For this reason, we think it is a better idea to use MultiDimensional Scaling (MDS) [58], as it
preserves most of the original data structure. This technique allows multidimensional data
to be projected in a two- or three-dimensional space and also preserves the distances of the
original multidimensional space. The first time this technique was used was to compare
classifiers against multiple metrics, in the field of machine learning [59].

3. Experimental Results: Breast Cancer Dataset

In this paper, a model for predicting the risk of suffering from breast cancer is proposed
by evaluating different algorithms for feature selection. To evaluate all these algorithms
we have relied on both the performance of the classifiers and the robustness of the rank-
ing algorithms.

3.1. Breast Cancer Dataset

Experimental results were carried out using a BC dataset obtained from the MCC-
Spain study [41]. MCC-Spain is a multicentric case–control study with population controls
aiming to evaluate the influence of environmental exposures and their interaction with
genetic factors in common tumors in Spain (prostate, breast, colorectal, gastroesophageal
and chronic lymphocytic leukemia). All participants signed an informed consent. Approval
for the study was obtained from the ethical review boards of all recruiting centers [60].

For each individual, 124 features are considered:

• Fifty environmental factors including red meat, vegetable consumption, BMI, physical
activity, alcohol consumption, etc.;

• 64 genetic variables (Single Nucleotide Polymorphisms -SNPs);
• Other variables (10) such as family history of BC, age or education level.

A preprocessing of the data has been carried out by eliminating those that had missing
values, and after this process, we have a data set of 1865 instances. Of those, 946 are
controls and 919 are cases. The variables that have been taken into account in this research
are the following:
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• Environmental factors: phenols, oil, oral contraceptives, NSAIDs (nonsteroidal anti-
inflammatory drugs), BMI, red meat, cereals, flavonoids, fruits, smoker, dairy, legumes,
lignans, ethyl alcohol, fish, stilbenes, calcium, carotenoids, cholesterol, edible, total
energy, total fats, dietary fiber, folic acid, total carbohydrates, iron, magnesium, phos-
phorus, polysaccharides, potassium, animal proteins, vegetal proteins, total proteins,
retinoids, sodium, digestible sugars, zinc, A-group vitamins, vitamin B1, vitamin B12,
vitamin B2, vitamin B3 (niacin), vitamin B6, vitamin C, D-group vitamins, E-group
vitamins, HRT (Hormone Replacement Therapy), vegetables, Mets (metabolic equivalent of
task) in 10 years and QPA (Quality of Physical Activity).

• SNP: rs-1042522, rs-11085147, rs-137902538, rs-138607522, rs-139554429, rs-139697494,
rs-141143854, rs-141363120, rs-141420305, rs-142068825, rs-143582231, rs-144811392,
rs-145519500, rs-145760222, rs-146208471, rs-146505192, rs-146848959, rs-146875699,
rs-1470383, rs-147307965, rs-148214998, rs-148728256, rs-149210226, rs-149633775, rs-
150378600, rs-17187428, rs-17880282, rs-190372148, rs-199803800, rs-200147790, rs-
200239262, rs-200431478, rs-201029843, rs-201100551, rs-201340741, rs-201498076, rs-
201652303, rs-201664019, rs-201686188, rs-202004587, rs-202041676, rs-2230461, rs-
2279744, rs-2287498, rs-2287499, rs-2758331, rs-2855116, rs-34154613, rs-34402166,
rs-35804229, rs-36084391, rs-3730581, rs-3824120, rs-4516970, rs-4645956, rs-4645959,
rs-4645961, rs-4726020, rs-4880, rs-5746096, rs-5746105, rs-71310379, rs-78419579 and
rs-937283.

• Other factors: family history of BC, age, education level, offspring, menopausal,
nulliparous, abdominal obesity, age of menarche, lactation months and socioeco-
nomic level.

3.2. Predictive Power Assessment

In order to predict the BC risk, many different models have been evaluated: Logistic
Regression, k-Nearest Neighbors, Neural Networks with a Multilayer Perceptron architec-
ture, Support Vector Machines and Boosted Trees. We have decided to include all of these
methods because they have been successful in a wide variety of fields of study, as shown
in the state of the art evaluation. The best hyperparameters were chosen experimentally
using a Grid Search methodology, and the configuration is detailed below.

Logistic Regression (LR). Logistic regression classifier was trained using liblinear
solver, regularization factor C = 1 and 1000 iterations.

k-Nearest Neighbors (k-NN). Nearest neighbors with k = 21 are extracted using the
Minkowski distance, which is a generalization of Euclidean and Manhattan distances.
Features are normalized with mean equals to zero mean and standard deviation equals
to one.

Support Vector Machines (SVM). SVM with a radial basis function kernel has been
used. The training step was performed using the Sequential Minimal Optimization routine.

Boosted Trees (BT). The AdaBoost-SAMME ensemble aggregation method was used.
For these experiment, we selected a learn rate of 1. The maximal number of estimators was
set to 500.

Multilayer Perceptron (MLP). We evaluate a three layer neural network with 200
neurons in the hidden layer and a logistic sigmoid activation for all the layers. The network
has been trained using the adam optimizer with a maximum number of 5000 iterations.

The classification performance (AUC) is estimated using 7-fold cross validation.
To obtain a reference value, Table 1 shows the AUC of the classifiers used on the entire

feature set, without performing any feature selection process.

Table 1. AUC for different classifiers with the original dataset (without performing feature selection).

LR SVM MLP k-NN BT

0.582 0.580 0.578 0.545 0.544
(±0.039) (±0.040) (±0.041) (±0.044) (±0.021)
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Feature selection has been carried out in order to train the models with the most
relevant features. Six feature rankers have been used: Two of them based on a filter approach
(ReliefF and the Pearson correlation coefficient), another two follow a wrapper approach
(SVM and Logistic Regression guided by the AUC classifier performance with 7-fold cross
validation) and two are embedded approaches (SVM-RFE and RF).

Data are normalized to zero mean and unit standard deviation. The ranking algo-
rithm is run several times with 70 % of data, randomly extracted from the entire dataset.
Seven runs of this process resulted in a total of seven different rankings for each feature
selection technique. The ranking that has been used for this purpose is the average of the
seven rankings that were obtained by executing the algorithm seven times. All method
programming has been done using Python as the programming language.

In Figures 1–5, we can see the AUC of five different classifiers (AdaBoost, k-NN,
Logistic regression, MLP and SVM) trained with a number of features ranging from 1 to
124. These features were selected taking into account the relevance of the six classification
algorithms that are evaluated in this article. Classifier performance can also be observed
using the full feature set without performing feature reduction techniques. k-NN and
AdaBoost classifier seem to be more unstable, but in the rest of the models, it can be
seen that performance increases as we increase the number of features used as predictors.
However, as new features are added, you can see how SVM, MLP and LR perform worse.
This is because those new features that are added are the most irrelevant or even redundant.

Figure 1. Area under the curve using the complete data set without reducing features and different
cardinality of the subset of features for different classifiers: AdaBoost.
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Figure 2. Area under the curve using the complete data set without reducing features and different
cardinality of the subset of features for different classifiers: k-NN.

Figure 3. Area under the curve using the complete data set without reducing features and different
cardinality of the subset of features for different classifiers: Logistic Regression.
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Figure 4. Area under the curve using the complete data set without reducing features and different
cardinality of the subset of features for different classifiers: Multilayer Perceptron.

Figure 5. Area under the curve using the complete data set without reducing features and different
cardinality of the subset of features for different classifiers: SVM.
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As can be seen, the highest AUC for MLP is 0.615 selecting the 46 most important
characteristics using the SVM-RFE ranker. If we use 124 characteristics, the AUC is reduced
to 0.579 (see Figure 2). For LR and also using the SVM-RFE ranker, it can be observed that
the AUC increases from 0.578 if all the features are used, to a value of 0.616 if the most
relevant 46-49 ones are used (Figure 3).

As the analysis is very complicated, we can observe Tables 2–6 where the best feature
selection strategy has been included, for each classifier, using as a metric area under the
curve (AUC). This is carried out for the top-30, top-60 and top-90 features. Thus, Tables 2–6
collect the three best feature sets up to a cardinality of 90 features that lead to the best
performance for each one of the classifiers and feature selection techniques.

In these tables, we can see that if we consider the 90 most relevant features, the LR
technique works better with: top-46 SVM-RFE, top-47 SVM-RFE and top-49 SVM-RFE. It
seems clear that the ranker that offers the best results in most cases is SVM-RFE.

Best feature selection techniques for Top-30, Top-60 and Top-90 lists are shown in
Tables 2–6.

Table 2. SVM classifier. In gray background the number of features with the best result.

#Features Ranking AUC

Top-30

24 SVM-RFE
0.596

(±0.040)

25 SVM-RFE
0.597

(±0.039)

26 SVM-RFE
0.596

(±0.038)

Top-60

44 SVM-RFE
0.611

(±0.048)

46 SVM-RFE
0.611

(±0.040)

47 SVM-RFE
0.611

(±0.039)

Top-90

44 SVM-RFE
0.611

(±0.048)

46 SVM-RFE
0.611

(±0.040)

47 SVM-RFE
0.611

(±0.039)

Table 3. Boosted Trees classifier. In gray background the number of features with the best result.

#Features Ranking AUC

Top-30

1 SVM-RFE
0.565

(±0.034)

13 RF
0.559

(±0.030)

15 RF
0.561

(±0.032)

Top-60

1 SVM-RFE
0.565

(±0.034)

13 RF
0.559

(±0.030)

15 RF
0.561

(±0.031)

Top-90

1 SVM-RFE
0.565

(±0.034)

13 RF
0.559

(±0.030)

15 RF
0.561

(±0.031)
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Table 4. k-NN classifier. In gray background the number of features with the best result.

#Features Ranking AUC

Top-30

15 SVM-RFE 0.575
(±0.035)

17 SVM-RFE 0.572
(±0.038)

18 SVM-RFE 0.577
(±0.038)

Top-60

40 SVM-RFE 0.585
(±0.047)

46 SVM-RFE 0.586
(±0.040)

47 SVM-RFE 0.585
(±0.041)

Top-90

40 SVM-RFE 0.585
(±0.047)

46 SVM-RFE 0.586
(±0.040)

47 SVM-RFE 0.585
(±0.041)

Table 5. Logistic Regression classifier. In gray background the number of features with the best result.
In blue background the best result over all the experiments.

#Features Ranking AUC

Top-30

25 SVM-RFE 0.599
(±0.037)

29 SVM-RFE 0.598
(±0.034)

30 SVM-RFE 0.598
(±0.035)

Top-60

46 SVM-RFE 0.616
(±0.044)

47 SVM-RFE 0.616
(±0.043)

49 SVM-RFE 0.616
(±0.043)

Top-90

46 SVM-RFE 0.616
(±0.044)

47 SVM-RFE 0.616
(±0.043)

49 SVM-RFE 0.616
(±0.043)
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Table 6. Multi-Layer Perceptron classifier. In gray background the number of features with the
best result.

#Features Ranking AUC

Top-30

25 SVM-RFE 0.599
(±0.042)

28 SVM-RFE 0.599
(±0.038)

29 SVM-RFE 0.599
(±0.037)

Top-60

42 SVM-RFE 0.614
(±0.044)

46 SVM-RFE 0.615
(±0.042)

48 SVM-RFE 0.614
(±0.043)

Top-90

42 SVM-RFE 0.614
(±0.044)

46 SVM-RFE 0.615
(±0.041)

48 SVM-RFE 0.614
(±0.043)

3.3. Ranking Stability Analysis

Seven runs of each feature raking algorithm have been carried out. This results in
seven different classifications. Feature raking algorithms have been released with 70 % of
the total set data randomly drawn.

3.3.1. Traditional Stability Analysis

There are metrics such as the Spearman’s rank correlation coefficient ( rho), with which
we can evaluate the stability of the feature ranking algorithms. The 7(7−1)

2 pairwise simi-
larities for each algorithm have been computed to end up averaging these computations
according to Equation (4). The ρ value is shown in Table 7 where it can be seen that
SVM-RFE is the most stable (0.474) ranking algorithm, and LR-Wrapper is quite unstable
(0.030).

Table 7. Stability of a set with seven full rankings assessed by averaging pairwise similarities with
the Spearman’s rank correlation coefficient (ρ). In gray background the best result.

Pearson ReliefF SVM-RFE Random
Forest

SVM-
Wrapper

LR-
Wrapper

ρ 0.0179 0.052 0.474 0.411 0.066 0.030

Another technique we have used is the Jaccard index, with which the stability of a
subset of features that contains the top- k feature lists can be studied. In Table 8, the Jaccard
index for the selection of feature subsets with cardinality that varies from 10 to 124 and
the average in the last row is shown. In view of these results, we can say that the wrapper
approaches are not very stable, and that the embedded approaches are. If we look at both
the performance and the stability of the classifier, it can be seen that RF is the most stable
technique, but the performance is not as good as other classifiers. On the other hand,
SVM-RFE has a moderate robustness, but it is the best classification technique in view of
the results.
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Table 8. Stability of a set with 7 top-k lists assessed through average pairwise similarities with the
Jaccard index for different values of k. In gray background the best result.

k Pearson ReliefF SVM-RFE Random
Forest

SVM-
Wrapper

LR-
Wrapper

10 0.256 0.188 0.179 0.329 0.192 0.192
20 0.202 0.247 0.280 0.555 0.214 0.214
30 0.227 0.247 0.350 0.440 0.226 0.226
40 0.328 0.272 0.397 0.443 0.272 0.272

47 0.374 0.316 0.441 0.466 0.320 0.320

50 0.397 0.344 0.460 0.479 0.343 0.343
60 0.466 0.428 0.511 0.596 0.401 0.401
70 0.577 0.495 0.584 0.790 0.482 0.482
80 0.702 0.565 0.638 0.814 0.541 0.541
90 0.767 0.635 0.692 0.945 0.622 0.622

100 0.812 0.711 0.800 0.861 0.724 0.724
110 0.850 0.812 0.887 0.875 0.822 0.822
120 0.942 0.939 0.957 0.943 0.945 0.945

124 1 1 1 1 1 1
Average

for k from 0.545 0.474 0.541 0.654 0.471 0.480
1 to 124

If the analysis is based on a single metric, we have no way of telling how similar the
rankings provided by the different algorithms are. The questions we should be able to
answer are, firstly, which classifiers provide similar classifications and secondly, which
classifier is more stable for a certain range of k values. Results shown in Table 8 are not
easy to interpret.

3.3.2. Graphical Stability Analysis

In Figure 6a it can be seen that the relative stability changes as a function of the value
of k. In general, it appears that the RF and Pearson algorithms show the most stable results,
and the stability of SVM-RFE is very low at low k values. It is not possible to extract the most
relevant features if the algorithm is run only once. To obtain a more representative ranking,
a good option is to add the rankings. Likewise, wrapper approaches are very unstable.

To view and compare the feature selectors, we use MDS [58].
The experiments that have been carried out can be represented as a set of 46 points

since we have used six algorithms and each algorithm has been launched seven times.
In this way, a 124-dimensional space is defined. Using the MDS, these points are projected
in two dimensions. The distance between points is calculated with the Spearman’s rank
coefficient, and the stress criterion is normalized with the sum of squares of the dissimilarities.
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Figure 6. Feature selector stability: (a) Jaccard index for feature subsets with different cardinality;
(b) MDS plot of the feature ranking algorithms.

After making this representation in two dimensions, each result of the algorithm is
represented by two coordinates (x, y). In Figure 6b, the similarities between the feature
selector can be seen. In terms of stability, it can be seen that the Pearson, ReliefF and
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LR-wrapper points are scattered while those of SVM-RFE, SVM-wrapper and Random
Forest are more clustered.

In addition to studying the stability of the methods, the ability to predict the correct
class also has to be studied together. This is important, as experts need information on
the most relevant risk factors and protective factors, and not just information on which
methods are more stable. In terms of predictive power (see Figure 1 in previous sections),
MLP and LR shows the best behavior when they are fed with SVM-RFE ranking. This is
also confirmed with the analysis conducted in Section 3.2 (Tables 5 and 6).

3.4. Comparison with the State-of-the-Art Knowledge

Several recent works address the problem of BC prediction [2,21,31,61–63]. In this
section, the performance of a model will be evaluated using a data set consisting of 19
features that have been selected by experts in this field.. These features (see Table 9) are:
7 SNP (Rs-146875699, rs-2279744, rs-190372148, rs-71310379, rs-137902538, rs-202004587
and rs-149633775), 7 environmental features (NSAIDs, contraceptives, BMI, smoker, total
energy, Mets and alcohol) and 5 other variables (Family history of BC, age, offspring,
socioeconomic level and age of menarche).

Table 9. Relevant features according to state-of-the-art knowledge. Features highlighted in bold are
those that have also been found relevant in our study.

Relevant features
rs146875699
rs2279744
rs190372148
rs71310379
rs137902538
rs202004587
rs149633775
Age
NSAIDs
Offspring
Contraceptives
Socioeconomic level
BMI
Smoker
Total energy
Family history of BC
Total Met in 10 years
Ethyl alcohol
Age of menarche

In addition, three (“Top-47 SVM-RFE”, “Experts’ set ∪ Top-47 SVM-RFE” and “Experts’
set ∩ Top-47 SVM-RFE”) more feature sets have been created through our experimental
work (see Section 3.2 for further information about how the lists of features were experi-
mentally built. Section 2 describes the different feature selection techniques applied), based
on different combinations of the features listed in Table 9 (experts’ features) and Table 10
(experimentally most relevant features).

Then, these four feature subsets, jointly with the full feature set, was assessed in
terms of AUC by every classifier considered in this study. Table 11 shows the performance
provided by the classifiers for each feature set.
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Table 10. Top-47 SVM-RFE features and top expert selected features. Features highlighted are those
that have also been found relevant in our study.

# Top-47 SVM-RFE SVM-RFE-Sorted Experts’

Feature Median Rank
Position Feature Median Rank

Position
1 Age 6 Total energy 3
2 Legumes 6 Age 4
3 RS-201340741 8 RS-71310379 4
4 RS-141143854 9 NSAIDs 5
5 Family history of BC 10 Family history of BC 5
6 RS-201100551 10 RS-149633775 7
7 RS-148728256 12 RS-202004587 8
8 RS-146208471 13 Oral contraceptives 9
9 RS-148214998 13 Smoker (ever) 9
10 Iron 15 Ethyl alcohol 9
11 RS-71310379 16 RS-146875699 9
12 RS-143582231 17 Offspring 12
13 RS-34154613 18 Socioeconomic level 12
14 RS-4645959 18 RS-137902538 12
15 Digestible sugars 19 RS-190372148 13
16 Folic acid 21 BMI 14
17 RS-78419579 24 Age of menarche 15
18 RS-144811392 25 METS in 10 years 16
19 RS-5746105 26 RS-2279744 16
20 Dairy 27
21 Potassium 28
22 RS-146848959 29
23 Fish 31
24 RS-2758331 31
25 Vitamin C 31
26 Vegetables 33
27 RS-2287498 34
28 Total energy 34
29 Carotenoids 37
30 Edible 38
31 Fruits 39
32 RS-202004587 39
33 Flavonoids 40
34 NSAIDs 41
35 RS-138607522 42
36 Abdominal obesity 43
37 Ethyl alcohol 43
38 RS-145519500 44
39 Stilbenes 44
40 RS-2279744 46
41 Animal protein 46
42 Oral contraceptives 47
43 RS-141363120 50
44 Magnesium 50
45 Smoker (ever) 51
46 Lignans 52
47 Retinoids 54
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Table 11. AUC for different classifiers with different feature sets. In gray background the best result
is shown.

Feature Set Cardinality LR SVM MLP k-NN BT

Full feature set 124 0.582
(±0.039)

0.580
(±0.040)

0.578
(±0.041)

0.545
(±0.044)

0.544
(±0.021)

Experts’ set
∪

Top-47 SVM-RFE
57 0.612

(±0.046)
0.602

(±0.044)
0.609

(±0.045)
0.559

(±0.034)
0.523

(±0.038)

Top-47 SVM-RFE 47 0.616
(±0.043)

0.611
(±0.039)

0.614
(±0.044)

0.585
(±0.041)

0.517
(±0.039)

Experts’ set 19 0.585
(±0.044)

0.571
(±0.039)

0.582
(±0.040)

0.527
(±0.031)

0.545
(±0.041)

Experts’ set
∩

Top-47 SVM-RFE
10 0.587

(±0.040)
0.572

(±0.028)
0.585

(±0.037)
0.560

(±0.040)
0.544

(±0.051)

When the number of features is lowered from 19 (experts’) to 10 (Experts’ set ∩ Top-47
SVM-RFE), the performance measurement (AUC) just slightly increases for most of the
classifiers, which results in almost doubling the importance of each feature.

If the features that our method does not consider relevant are eliminated, it can be
seen in Table 11 that the AUC increases or is maintained. Thus, AUC for the LR classifier
increases from 0.582 to 0.616 (about +5.89%) and from 0.580 to 0.611 (about +5.38%) for
the SVM approach comparing the full feature set with the experimentally 47 most relevant
features (about −62% of features).

With this analysis we can conclude that some of the features categorized by the experts
as important are actually irrelevant, since performance is not affected by disregarding
them. This is also confirmed by the fact that some of these features do not occupy the first
positions in the ranking lists obtained in our experimental environment. This is the case of
“offspring”, “socioeconomic level”, “BMI”, “age of menarche”, “METS” and some SNPs.

It is also important to note that if the AUC obtained using the features provided by
the experts is compared with the complete set, a slight increase is seen for some classifiers.
This indicates that some features not included in the list are more relevant.

4. A Deeper Data Analysis

Analyzing the risk of BC considering the menopausal status becomes an interesting
issue. We calibrate a risk prediction model for women with pre- and post-menopausal
status in Sections 4.1 and 4.2, respectively.

4.1. Pre-Menopausal

Pre-menopausal data partition consists of 1233 samples (from which 569 are cases
and 664 are controls) and each sample is composed of 123 features. Before performing
any feature selection, the five classification techniques achieve the performance shown
in Table 12. As we can see, the best results are achieved using SVM classifier with a
0.575± 0.032 followed by LR with a 0.572± 0.024.

Table 12. AUC for different classifiers with the pre-menopausal data partition (without performing
feature selection).

LR SVM MLP k-NN BT
0.572 0.575 0.564 0.511 0.515

(±0.024) (±0.032) (±0.026) (±0.060) (±0.036)

Once the feature selection rankings are calculated and iterative performance is mea-
sured for each number of features, the best performance (0.588± 0.037) occurs with top-52
features of SVM-RFE ranking and LR classifier (see all performances in Figure 7). Fea-
ture selection using SVM-RFE method in pre-menopausal breast cancer data classification
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shows a better performance with all the classifiers. As we can see, with LR, MLP and SVM,
the best AUC is obtained with reductions greater than 50% of the raw data, whereas BT
and KNN show unstable results along the cardinality of the feature subset.

(a) (b)

(c) (d)

(e)

Figure 7. Performance for pre-menopausal data partition (by classifier): (a) BT, (b) k-NN, (c) LR,
(d) MLP, (e) SVM.
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Top-30 SVM-RFE features can be shown in Table 13. To create the ranking, median
has been taken into account to avoid the influence of the extreme values. As we can see,
features like Phenols, Nulliparous, Legumes, METS in 10 years and QPA seems to be the
most relevant ones for this subset experimentation.

Table 13. Top-30 features of SVM-RFE ranking for pre-menopausal data partition.

#
Top-30 SVM-RFE

(Pre-menopausal Partition)
Feature Median Rank Position

1 Phenols 10
2 Nulliparous 12
3 Legumes 13
4 METS in 10 years 13
5 QPA 15
6 Magnesium 17
7 Vitamin B1 19
8 Family history of BC 21
9 Fish 21
10 Oil 22
11 Age of menarche 22
12 Contraceptives 24
13 BMI 26
14 Flavonoids 26
15 Total proteins 27
16 Retinoids 27
17 NSAIDs 28
18 RS-141143854 30
19 RS-34402166 34
20 RS-201340741 36
21 RS-71310379 38
22 Phosphorus 38
23 RS-137902538 39
24 RS-141363120 39
25 RS-141420305 39
26 RS-3730581 40
27 RS-200147790 43
28 RS-201652303 43
29 RS-142068825 44
30 RS-145760222 44

4.2. Postmenopausal

The postmenopausal subset of data is made of 632 samples (from which 350 are cases
and 282 are controls) and each sample is characterized by 123 features. Before performing
any feature selection, the five classification techniques achieve the performance shown in
Table 14. In this case, kNN method outperforms all the other models with a 0.632± 0.068
AUC followed by SVM with a 0.594± 0.069.

Table 14. AUC for different classifiers with the postmenopausal data partition (without performing
feature selection).

LR SVM MLP k-NN BT
0.575 0.594 0.563 0.632 0.570

(±0.065) (±0.069) (±0.077) (±0.068) (±0.059)



Int. J. Environ. Res. Public Health 2021, 18, 10670 22 of 28

Once the feature selection rankings are calculated and iterative performance is mea-
sured for each number of features, the best performance (0.632± 0.068) occurs with top-122
features of RFE ranking and k-NN classifier (see all performances in Figure 8). As we can
see, with postmenopausal data, the feature reduction does not affect positively in the AUC
performance in any of the classifiers using SVM-RFE ranking.

(a) (b)

(c) (d)

(e)

Figure 8. Performance for postmenopausal data partition (by classifier): (a) BT, (b) k-NN, (c) LR,
(d) MLP, (e) SVM.
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Although the reduction in characteristics does not increase the AUC, the ranking con-
tinues to provide relevant information, the features are sorted according to their importance
in the classification of BC. Top-30 SVM-RFE features for postmenopausal data partition can
be shown in Table 15. To create the ranking, median has been taken into account to avoid
the influence of the extreme values. In this case, Phenols, BMI, QPA, Cereals and different
vitamins (B2, C, B1, E, B12, A and D) shows to be relevant in this experiment.

Table 15. Top-30 features of SVM-RFE ranking for postmenopausal data partition.

#
Top-30 SVM-RFE

(Postmenopausal Partition)
Feature Median Rank Position

1 Phenols 2
2 BMI 12
3 QPA 14
4 Vitamin B2 15
5 Cereals 17
6 Family history of BC 18
7 Vitamin C 18
8 Vegetables 18
9 Vitamin B1 19
10 Vitamin E 19
11 Oil 20
12 HRT 22
13 Lignans 23
14 Lactation months 24
15 Socioeconomic level 24
16 Vitamin B12 24
17 Vitamin A 25
18 Zinc 25
19 Vitamin D 27
20 Age of menarche 28
21 RS-139697494 28
22 Cholesterol 31
23 Animal protein 31
24 RS-2287499 33
25 Total energy 36
26 RS-5746105 38
27 Stilbenes 39
28 RS-148728256 40
29 RS-201686188 41
30 RS-201498076 42

5. Clinical Practice Points

• Machine learning models can be calibrated to predict which people are at higher risk
of developing breast cancer what facilitates earlier identification and intervention.

• This helps to improve the quality of life of people suffering from the disease, thanks
to an early diagnosis.

• This study based on intelligent systems identifies some relevant factors already related
to breast cancer. Other factors (SNPs and environmental factors such as legumes intake
and blood iron level) also turned out to be relevant. Further study is, however, needed
before they are included as suspected risk factors for breast cancer.

6. Conclusions and Future Work

The aim of this work is to identify the most relevant features regarding BC prediction.
At the same time, this helps to improve the BC prediction model performance. Experimental
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results showed that the best performances are achieved with a LR classifier (AUC = 0.616)
using the top-47 features selected by the SVM-RFE approach and a MLP neural network
(AUC = 0.615) using the top-46 features selected also by SVM-RFE. With this, it can be
concluded that there is an improvement over the use of the full dataset of 5.84% and 7.71%
for the LR and MLP classifier, respectively. A major advantage of SVM-RFE is that it can
select high-quality feature subsets for this particular classification task. Despite the fact
that it does not take into account any correlation the features might, it outperforms other
feature ranking approaches.

Table 10 shows the top-47 variables extracted with SVM-RFE feature selection algo-
rithm in comparison with the selection made by the experts. It can be seen that some
features are common in both lists. They have been highlighted in gray. Thus, 10 out of 19
features selected according to the state of the art knowledge also appear in the automatic
selection carried out by the SVM-RFE approach. One of the most important features is age,
which is the most relevant selected by SVM-RFE.

In contrast, only 2 of the 10 most important features extracted by SVM-RFE are
included in the experts’ selection (Age and Family history of BC). We would like to
highlight the relevance of the other 8 features based on the improvements achieved in the
classification step (5.30% using LR and a 5.49% with MLP classifier) and consider these
factors deserve further research.

Stability is also assessed in this work with a scalar metric and also with a graphical
approach. This graphical approach based on a MDS projection allows us to see easily that:
(a) the most stable algorithms are SVM-RFE and Random Forest and (b) Pearson, Relief,
SVM-wrapper and LR-wrapped are very unstable.

The main strength of our proposal is that the stability and predictive power of the
models are analyzed at the same time. In addition, it is possible to identify the features that
most influence breast cancer. In this study, it is concluded that SVM-RFE is one of the best
techniques considering performance and robustness. This stability reinforces the reliability
of the feature ranking derived with SVM-RFE.

A comprehensive evaluation with more data on BC and more variables is proposed as
feature work so that we can re-confirm our findings and also reach more generalization.
It would also be interesting to include the study of ensemble strategies to increase the
stability of feature selection techniques. Because classification methods tend to be com-
putationally expensive when dealing with large amounts of data, we aim to use hybrid
classification methods based on two steps. First, the use of filters to quickly remove irrele-
vant features and second, wrapper or embedded ranking algorithms focused on the subset
of features selected in the first step. It would be also interesting to use some reduction
techniques such as PCA [64] or LDA [65] before ML training.

Furthermore, an evaluation of the explicability of all the proposed methods would be
very interesting for the selection of characteristics in order to improve the acceptability of
the study.
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