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Abstract: The precise simulation of urban space evolution and grasping of the leading factors are
the most important basis for urban space planning. However, the simulation ability of current
models is lacking when it comes to complicated/unpredictable urban space changes, resulting in
flawed government decision-making and wasting of urban resources. In this study, a macro–micro
joint decision model was proposed to improve the ability of urban space evolution simulation. The
simulation objects were unified into production, living and ecological space to realize “multiple
planning in one”. For validation of the proposed model and method, remote sensing images,
geographic information and socio-economic data of Xuzhou, China from 2000 to 2020 were collected
and tested. The results showed that the simulation precision of the cellular automata (CA) model
was about 87% (Kappa coefficient), which improved to 89% if using a CA and multi-agent system
(MAS) joint model. The simulation precision could be better than 92% using the prosed model.
The result of factor weight determination indicated that the micro factors affected the evolution of
production and living space more than the macro factors, while the macro factors had more influence
on the evolution of ecological space than the micro factors. Therefore, active policies should be
formulated to strengthen the ideological guidance towards micro individuals (e.g., a resident, farmer,
or entrepreneur), and avoid disordered development of living and production space. In addition,
ecological space planning should closely link with the local environment and natural conditions, to
improve urban ecological carrying capacity and realize urban sustainable development.

Keywords: urban space evolution simulation; cellular automata; multi-agent system; leading factors
analysis; urban sustainable development

1. Introduction

Land use/cover change (LUCC) has been generally considered a main driving force
of global ecosystem and climate change [1]. Urbanization is the most typical form of LUCC,
and has a significant impact on biological diversity and ecosystem services [2]. Nowadays,
about 55% of the world’s population lives in cities with this rate expected to reach 68% by
2050 [3]. Therefore, the study of urban LUCC is of great importance to understand and
grasp global LUCC. The process of urbanization influences the flow of material, energy,
and information, and affects the structure and function of ecosystems [4]. Therefore, on
the one hand, the socio-economic level may be significantly improved; on the other hand,
it leads to loss of farmland, fragmentation of habitats, and increases in the heat island
effect [5–7]. However, these problems can be alleviated through reasonable urban space
planning and efficient utilization of urban resources [8]. Therefore, urban space planning is
considered an effective tool/means to improve urban sustainable development.

The precise simulation of urban space evolution and analysis of the leading factors are
the most important bases and essential prerequisites for urban space planning. Therefore,
many studies of urban space evolution simulation and leading factors analysis have been
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carried out, and some typical simulation models have been constructed, such as the
econometric statistics model (ES) [9], the system dynamics model (SD) [10], the cellular
automata model (CA) [11], the multi-agent system model (MAS) [12], etc. Each of these
models has its own advantages and disadvantages. In ES models, mathematical statistics
methods are used to simulate the variations in scale of urban space, such as the logistic
regression model [13], Kuznets curve model [14], and panel econometric model [15]. These
ES models are easy to construct and use, but they cannot simulate the dynamic process and
variation in urban spatial distribution. In SD models, the process of urban space evolution
is expressed by simulating the interactions of urban elements, e.g., MEPLAN model [16],
Dortmund model [17] and LILT model [18]. However, these SD models also cannot
describe variation in urban spatial distribution. The ES and SD models are considered
“top-down” models.

To improve the ability to simulate urban spatial variation, the CA model was first
introduced by Chapin and Weiss in 1968 [19]. From the late 1990s to the early 21st century,
the CA model entered a high-speed development period, and saw widespread use in
urban space planning [20,21]. However, it cannot well represent macro-scale political,
economic and cultural driving forces that influence urban spatial variations [22]. Therefore,
some improved methods have been proposed, for example taking the macro factors as
constraint conditions in the CA model [23]. With the development of artificial intelligence
(AI) technology, the study and application of the MAS model became popular over the past
two decades. MAS defines a set of agents living in a common environment, with all agents
coming to a joint decision on urban space use type within this system. The MAS model can
provide a more powerful tool for simulating the multi-level decision-making processing in
urban space evolution than the other existing methods [24,25]. However, the MAS model
has to be used in conjunction with CA for considering the effects of neighborhood space
use type on urban space evolution [26]. Both CA and MAS are considered “bottom-up”
models. Table 1 shows the comparison of the characteristics of the four kinds of models.

Table 1. Performance comparison of current models for urban spatial evolution simulation.

Performance ES (a) SD (b) CA (c) MAS (d)

Scale changes simulation Strong Strong Strong Strong
Spatial distribution simulation Weak Weak Strong Strong

Time varying simulation Weak Normal Strong Strong
Macro factors simulation Strong Strong Weak Strong
Micro factors simulation Weak Weak Normal Strong

Model operation mechanism Top-down Bottom-up
(a) econometric statistics model; (b) system dynamics model; (c) the cellular automata model; (d) the multi-agent
system model.

From Table 1, it is apparent that the simulation ability of the MAS model is stronger
than that of other models. However, there are still some defects in the current MAS model.
For example, the interaction between macro and micro factors is rarely considered, despite
having a significant effect on the simulation precision of the model. Macro factors (e.g., the
natural condition, government policy) often restrict the decision-making behaviors of micro
factors (a resident, farmer, entrepreneur or environmentalist), particularly in developing
countries [27]. The choice preferences of micro factors may also have an important influence
on the decision-making behaviors of macro factors [28]. If the interaction and mutual
influence between macro and micro factors are neglected, the simulation precision of the
model will inevitably decrease. Moreover, the simulation objects are usually unit plots
of different types of land use (e.g., urban construction land, cultivated land, woodland,
grassland, water bodies, etc.) in current models. If the types of land use are different from
the categories of urban planning (e.g., traffic planning, garden planning, land planning) for
the same unit plot at the same time, it will lead to land use conflicts.
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To solve these problems, a macro–micro joint decision model is proposed in this study
for improving the simulation ability of urban space evolution. In this model, all simulation
objects are unified into production, living and ecological space for realizing “multiple
planning in one”. Compared with current models, the proposed model has two main
characteristics. One is that the interaction and mutual influence between the macro and
micro factors are fully considered; the other is that “Production–Living–Ecological” (PLE)
space is taken as the simulation object, replacing exclusive types of land use. For validation
of the proposed model, remote sensing images, geographic information and socio-economic
data from Xuzhou, China between 2000–2020 were collected and tested. The results
show that the simulation precision of CA model was 87.14% (Kappa coefficient), with an
increase to 89.63% when using CA + MAS model. An additional 2.68% improvement of
simulation precision was achieved by using the CA + MAS + Correlation model. Moreover,
the result of factor weight determination indicated that the micro factors affected the
evolution of production and living space more than the macro factors. However, the
macro factors had more influence on the evolution of ecological space evolution than the
micro factors. Therefore, we should pay more attention to the micro factors to realize
the orderly development of living and production spaces. For example, some active
policies should be formulated to strengthen the ideological guidance for micro individuals
(e.g., residents, farmers, entrepreneurs), helping them establish scientific views of urban
space utilization. Meanwhile, macro factors should be paid more attention to ensure the
sustainable development of ecological space. For example, ecological space planning
should closely link with the local environment and natural conditions to improve the urban
ecological carrying capacity.

2. Study Area and Data Sources
2.1. Study Area

To analyze the leading factors and construct a precise simulation model of urban
space evolution, Xuzhou, an eastern city of China, was selected as the study area. It
is located in the northwest of Jiangsu Province, China (between 33◦43′–34◦58′ N and
116◦22′–118◦40′ E). It includes five districts, three counties and two county-level cities,
with a total area of 11,765 km2. Figure 1 shows the geographic location and administrative
divisions of Xuzhou. The majority of the Xuzhou region consists of plains, which account
for 90% of the total area. This area has a temperate continental monsoon climate and
receives 44–54% possible sunshine. The annual average temperature is 14 ◦C, and the
annual average rainfall is 900 mm. In addition, Xuzhou is rich in mineral resources
and well placed for easy access to the other Chinese cities. Therefore, it is an important
coal production base and a transportation hub in China [29]. In the past two decades
(2000–2019), the population of Xuzhou increased from 8,964,400 to 10,417,300, and the
Gross National Product (GDP) improved from 61.630 billion CNY to 715.135 billion CNY;
the per capita green area increased from 10.5 m2 to 15.4 m2, and the urbanization rate
increased from 25.8% to 66.7% [30].
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From the above statistics, it is evident that the socio-economic level and living stan-
dards of Xuzhou have improved significantly in the past two decades. The types of land
use/coverage have changed significantly in Xuzhou, which can provide a good basic
dataset to investigate the process of urban space evolution and leading factors. However,
it should be noted that the level of economic development is still low and the cost of
economic development is high in Xuzhou compared with other cities in Jiangsu Province.
In 2018, the per capita GDP of Xuzhou was 76,915 CNY, which was 66.88% of the average
level of Jiangsu Province, but the comprehensive energy consumption of Xuzhou was
0.37 tons (consumed standard coal for obtaining 10,000 CNY of industrial output), which
was 3.12 times the average level of Jiangsu Province [31]. Therefore, more energy needs to
be consumed in order to realize the same amount of economic growth in Xuzhou as in other
cities. Therefore, it is important and urgent to strengthen the urban space planning and
optimize the industrial structure as soon as possible, to realize the sustainable development
of social economy and the ecological environment in Xuzhou.
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2.2. Data Sources

In this study, three kinds of data were collected and used: the first was remote sensing
(RS) images of Xuzhou from 2000 to 2020, which provided the basic data for Production-
Living-Ecological (PLE) space recognition; the second was geographic information system
(GIS) data, which provided vector files of the administrative divisions, traffic networks
and distribution of public facilities in Xuzhou, such as schools, hospitals, and shopping
malls, as downloaded from a geographic national conditions monitoring cloud platform;
the third was socio-economic statistical data from the literature and statistical yearbooks
from 2000 to 2020, including population, industrial economy, natural resources, etc. Details
on the three types of data are listed in Table 2.

Table 2. Study data sources and contents.

Data Type Content Time Source

RS image data GF (a)-2 1 m × 1 m RS (b) image 2000–2020 Natural Resources Satellite RS
Cloud Service Platform

Urban GIS (c) data
Vector files of administrative division

Road 2018 Geographical Information
Monitoring Cloud

Socioeconomic statistics Population, industrial economy,
natural resources 2000–2020 Literature, statistical yearbooks

(a) GaoFen-2 remote sensing images; (b) Remote sensing; (c) Geographic information system.

It should be noted that the RS images needed to be chosen and processed carefully
in order to obtain the precise urban space evolution information. Therefore, RS image
data was collected during summer (from mid-July to mid-August), because identifying RS
images of vegetation in the growth season peak is easier than during other seasons [31].
Environment for Visualizing Images (ENVI) software (Research System Comp., Boulder,
CO, USA) was used for data processing. The main procedures included radiative correc-
tion, atmospheric correction, geometric correction, contrast stretching, graphics clipping,
etc. Finally, the land was classified into urban construction land, rural residential land,
cultivated land, woodland, grassland, water area, industrial land, and mining land by
the supervised classification and visual interpreted method. To improve the accuracy of
land use classification, convolutional neural network (CNN) technology was adopted [32].
Through land function evaluation, the above eight types of land use could be amalgamated
into production, living and ecological space [33]. The recognition precision of PLE space
was better than 96% (Kappa coefficient) based on the RS image data. Therefore, it could
meet the requirements of PLE space evolution simulation and leading factor analysis.

3. Research Methods
3.1. Production-Living-Ecological Space Evolution Simulation Model Based on Macro-Micro
Joint Decision

According to Section 1, many models have been constructed to simulate urban space
evolution, and the simulation ability of CA + MAS is the strongest among the current
models. However, there are still some defects in the CA + MAS model; for example, the
correlations between macro and micro factors are neglected. To improve the performance of
the CA + MAS model, a macro–micro joint decision model is proposed in this study. Com-
pared with the current CA + MAS model, the proposed model has two main characteristics.
One is that the interaction between and mutual influence of the macro and micro factors
are considered to improve the simulation precision over the CA + MAS model; the other is
that PLE space is taken as the planning object to facilitate the unified implementation of
multiple planning. The specific steps of the proposed model are as follows: (i) Areas of
increased living space are obtained by predicting the growth of the urban population in
the future. (ii) Locations of increased living space are determined by the CA + MAS model.
It should be noted that the probability of the ith unit space to be transformed into living
space is calculated by the joint decision of macro and micro factors; the highest-probability
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unit space is transformed into living space. (iii) After completing the transformation of
the ith unit space, the model checks if the total of transformed area is equal to the area of
increased living space. If not, the above work is done iteratively until the total transformed
area is equal to the area of increased living space. (iv) After completing the simulation of
living space evolution, production and ecological space evolution are simulated using the
same method. However, the areas of increased production and ecological space are instead
determined by historical data and a Markov model. (v) After completing the nth simulation
of PLE space evolution, the simulation precision is calculated (Kappan) by comparing with
the results of RS image recognition. If the value of (Kappan − Kappan−) is smaller than the
threshold, the solution has converged and the nth simulation result is outputted. If not, the
weights of macro and micro factors aree adjusted and the above steps are done iteratively.
The method of factor weight adjustment is introduced below in Section 3.2. Figure 2 shows
the data processing flow of PLE space evolution simulation based on the macro and micro
factor joint decision model.
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3.1.1. Simulation Method of Living Space Evolution

According to Figure 2, the areas of increased living space should be determined first in
order to simulate the evolution of urban space. Two methods are often used to realize this.
One is based on the historical data (areas of increased living space in previous years) and a
Markov model. The other is based on predicting the growth of the urban population and
the per capita area of living space in the region. Existing studies indicate that the estimation
precision of areas of increased living space from the latter method is better than that from
the former method, if the urban population is predicted accurately [34]. Therefore, the
latter method is adopted in this study and the calculation formula is:

Ak = Pk × S (1)

Ak and Pk are the areas of increased living space and urban population in the kth year,
respectively. S is the per capita area of living space, which refers to the historical data of
this city or its urban planning and design standards. In China, the per capita area of living
space is divided into seven types, according to the urban population size and climatic
conditions. The per capita area of living space ranges from 65 m2 to 115 m2 based on the
different type of city. Xuzhou belongs to the second type of city, where the per capita area
of living space is 110 m2.

After obtaining the area of increased living space, one of most important problems is
determining the locations of these increases. In this model, locations of increased living
space are determined by the joint decision of macro and micro factors. The greater the
transformation probability of unit space, the higher its priority for transformation into
living space. The calculation formula is:

Fk
i,j = WmacroF

′k
i,j + WmicroF

′′′k
i,j (2)

Fk
i,j is the probability of unit space (i, j) to be transformed into living space in the

kth year. For convenience, probability is replaced with a score, where 0–100 scores de-
note 0–100%. F’k

i,j and F”’k
i,j are the scores from the macro and micro factors, respec-

tively. Wmacro and Wmicro are the weights of macro and micro factors, respectively, where
Wmacro + Wmicro = 1. The initial values of Wmacro and Wmicro can be determined by statistical
analysis. The specific implementation steps are introduced below in Section 3.2. Final
weights of the macro and micro factors are adjusted by comparing the simulation results
with RS image recognition results. The scores from macro factors include two components:
suitability and all other factors. The calculation formula is:

F
′k
i,j = WEEi,j + WQQk

i,j (3)

Ei,j and Qk
i,j are the scores of unit space (i, j) from the suitability evaluation and the

other factors, respectively. WE and WQ are their weights and Wmacro + Wmicro = 1. The
calculation formula is:

Ei,j = ∑n
m=1 WmFm

i,j (4)

Fm
i,j and Wm are the score and weight of the mth factor, respectively. In this model, the

factors of suitability evaluation include two parts: one is denoted the natural factor (e.g.,
elevation, slope); the other is denoted the location factor (e.g., the distances to water, main
road and city center). These can be obtained with ArcGIS (ESRI, Redlands, CA, USA). The
specific marking standards are as follows: the smaller the difference between the elevation
of the unit space (i, j) and the average elevation of the region, the higher the likelihood of
its transformation into living space. As the height difference increases from 0 to 10 km,
the suitability score decreases from 100 to 0. The steeper the slope, the lower the score; as
the slope increases from 0 to 90 degrees, the score decreases from 100 to 0. Likewise, the
shorter the distance to a water area (0–5 km), the lower the score (0–100); the shorter the
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distance to a main road (0–5 km), the higher the score (100–0); and the shorter the distance
to the city center (0–50 km), the higher the score (100–0). The calculation formula of scores
from the other factors is:

Qk
i,j = W1Fg + W2Fk−1

l + W3FN(∑n2
m2=1 Nm2

i,j ) + W4Fq(∑n3
m3=1 wm3 qm3

i,j ) (5)

Fg, Fk−1
l , Fn, Fq and W1, W2, W3, W4 are the scores and weights from government

planning, land type, neighborhood influence, and influence of micro factors, respectively.
W1 + W2 + W3 + W4 = 1. The specific marking standards are as follows: If the unit
space belongs to the first, second, or third class of urban construction land in government
planning, the score of Fg is 100, 80, or 50 respectively. If the probability of lth type of land to
be transformed into urban construction land is between 0 and 1 in the (k−1)th year, the score
of Fk−1

l is correspondingly between 0 and 100. If the number of living spaces permitted
is between 0 and 8 (in a 3 × 3 neighborhood), the score of Fn is correspondingly between
0 and 100. The score of Fq is a weighted average of the scores of qm3

i,j , where m3 = 4 (rural

resident, city resident, entrepreneur and environmentalist), and w1 + w2 + w3 + w4 = 1. The
calculation formula of F

′′′k
i,j in Equation (2) and the marking standards of qm3

i,j are as follows:

F
′′′k
i,j = WF′′ F

′′k
i,j + WF′F

′k
i,j (6)

F
′′k
i,j denotes the scores of the pure micro factors, which are calculated by Equation (7).

F
′k
i,j is the scores from the macro factors in Equation (3). WF′′ and WF′ are their weights,

and WF′′ + WF′ =1.

F
′′k
i,j =

n3

∑
m3=1

wm3 qm3
i,j (7)

The meanings of the symbols in Equation (7) are the same as those in Equation (5).
The marking standards of qm3

i,j can be introduced in detail: The shorter the distance to
cultivated land (0–10 km), the lower the score (0–100) from the rural resident agent. The
shorter the distance to public facilities (e.g., hospital, school, mall, 0–10 km), the higher the
score (100–0) from the city resident agent. The higher the housing price per unit of space
(0–20,000 CNY), the higher the score (0–100) from the enterprise agent. The shorter the
distance to ecological space (0–10 km), the lower the score (0–100) from the environmentalist
agent. Through Equations (1)–(7), the scores of all unit spaces transformed into living space
can be obtained. The highest scoring unit space is then transformed into living space. If the
accumulated transformed area is smaller than the area of increased living space (X), the
above work is done iteratively.

3.1.2. Simulation Method of Production and Ecological Space Evolution

After completing the simulation of living space evolution, production and ecological
space evolution is simulated by the above method. Similarly, the areas of increased
production and ecological space need to be determined first. In general, they are determined
by historical data and a Markov model. If the areas of increased production and ecological
space are Y and Z, and the areas of production and ecological space transformed into living
space are X1 and X2 (X1 + X2 = X), the following equation can be employed:

(SL + X1 + X2) + (SP − X1 − Z + Y) + (SE − X2 + Z−Y) = SL + SP + SE (8)

SL, SP and SE are the areas of original living, production and ecological space, respec-
tively. Equation (8) requires that the total area before and after transformation be equal, and
the method of determining the locations of increased production and ecological space is
the same as that for increased living space. However, their factors and marking standards
are different. In the simulation of production space evolution, the macro factors include
the natural factor (elevation, slope, soil quality), location factor (distance to water area,
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main road, city center), and the other factors. The marking standards are: the larger the
height difference between the elevation of unit space (i, j) and the average elevation of the
region (0–10 km), the lower the score for its transformation into production space (0–100);
the steeper the slope (0–90 degrees), the lower the score (0–100); the higher the soil quality
(level 1–10), the lower the score (100–0); the shorter the distance to a water area (0–5 km),
the higher the score (100–0); the shorter the distance to a main road (0–5 km), the higher
the score (100–0); and the shorter the distance to the city center (0–50 km), the higher the
score (100–0). The other factors include the land type, the neighborhood and the influence
of micro factors. The marking standards of land type and neighborhood influence are
similar to those of increased living space. However, the influence rules of micro factors are
different to those of increased living space.

In the simulation of production space evolution, the shorter the distance to cultivated
land (0–10 km), the higher the score (100–0) from the rural resident agent. The shorter
the distance to living space (0–10 km), the lower the score (0–100) from the city resident
agent. The higher the cost of land (0–10,000 CNY), the lower the score (100–0) from the
enterprise agent. The shorter the distance to ecological space (0–10 km), the lower the
score (0–100) from the environmentalist agent. Following the above rules, the final score
of each unit space can be obtained from the weighted average of the scores of all factors.
The highest-scoring unit space is transformed into production space. If the accumulated
transformed area is smaller than the area of increased production space (Y), the above work
is done iteratively.

In the simulation of ecological space evolution, the macro factors also include the
natural factor (elevation, slope), location factor (distance to water area, woodland, grass-
land), and the other factors. The marking standards are: the larger the height difference
between the elevation of unit space (i, j) and the average elevation of the region (0–10 km),
the higher the score for its transformation into ecological space (100–0); the steeper the
slope (0–90 degrees), the higher the score (100–0); the shorter the distance to a water area
(0–5 km), the higher the score (100–0); the shorter the distance to woodland (0–5 km), the
higher the score (100–0); and the shorter the distance to grassland (0–5 km), the higher the
score (100–0). The other factors include the land type, the neighborhood and the influence
of micro factors. The marking standards of land type and neighborhood influence are
similar to those of increased living space. However, the influence rules of micro factors
are different.

The shorter the distance to cultivated land (0–10 km), the lower the score (0–100) from
the rural resident agent for the simulation of ecological space evolution. The shorter the
distance to living space (0–10 km), the higher the score (100–0) from the city resident agent.
The shorter the distance to production space (0–10 km), the lower the score (0–100) from the
enterprise agent. The shorter the distance to ecological space (0–10 km), the higher the score
(100–0) from the environmentalist agent. The highest-scoring unit space is transformed into
ecological space, and the above work is done iteratively until the accumulated transformed
area is equal to the area of increased ecological space (Z).

3.2. Method of Factor Weight Determination

In general, factor weight determination includes two main steps: the first step is
the initial weight determination and the second step is the final weight adjustment. The
initial weights of all factors can be determined through the Delphi method (expert scoring)
or through statistical analysis. Although the Delphi method is easy to use, it has strong
subjectivity. Therefore, the statistical analysis method is adopted in this study. The im-
plementation steps of this method are introduced as follows, taking living space as an
example: (i) One hundred experimental units are selected as the samples and they are
evenly distributed across the study region. The area of each sample unit is 3 km × 3 km,
which include 10,000 grids (30 m × 30 m). (ii) Those grids are picked out which belonged
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to production or ecological spaces in 2000. If the number of grids is n, n equations can be
formed in one sample unit; see Equation (9).

W1F1
1 + . . . WjF1

j + . . . WmF1
m = V1

...
W1Fi

1 + . . . WjFi
j + . . . WmFi

m = Vi

...
W1Fn

1 + . . . WjFn
j + . . . WmFn

m = Vn

(9)

Wj is the weight of the jth factor, which is a known parameter; Fi
j is the score of the jth

factor in the ith grid, which can be obtained by the methods in Section 3.1; Vi is the total
score of the ith grid, which can be determined based on the time order of the transformation
into living space. The earlier the grid is transformed into living space (from 2001 to 2010),
the higher the score (from 100 to 0), which can be obtained by comparing the results of
RS image recognition in different years. For example, if the ith grid was transformed into
living space in 2001, Vi is 100; if it was transformed into living space in 2002, Vi is 90; if it
had not been transformed into living space in 2010, Vi is 0. m is the number of factors for
living space evolution simulation, which is 16 in this study (see Table 5). n is the number
of grids which belonged to production or ecological spaces in one sample unit in 2000. In
general, n is larger than m. In this example, n is approximately 6000. Therefore, in order
to strengthen the stability of solutions, n equations of one sample unit are divided into k
groups, with each group including approximately 200 equations. The unknown parameters
(factor weight Wj) of each group can then be estimated by the adjustment method (e.g.,
least square adjustment, LSQ), and solution precision (root mean square error, RMS) can
be obtained. If the RMS of this group is more than three times larger than the minimal
RMS of all groups, it is treated as an outlier and the estimated results of this group are
removed. Then, the weighted average values of the remaining groups are taken as the
estimated results of this sample unit. (iii) Finally, the estimated results of one hundred
units are analyzed by statistical methods (e.g., Shapiro–Wilk Test [35]). If the estimated
result of the factor shows a normal distribution, the weighted average value of all units
is taken as the initial weight of this factor. Otherwise, sample units are deleted from the
samples where the estimated values obviously deviate from the mean value of all samples,
and the estimated results are tested for a normal distribution again.

After the factor initial weights are obtained, they must be further adjusted to determine
the final weights, because the estimated precision and reliability of factor initial weight is
strongly related to the sample selection. Therefore, they need to be adjusted by comparing
the overall consistency of simulation and recognition results from the study region. In this
model, the best-fit method is adopted to determine the final weights of all factors. The
basic idea is that the results of simulation are always compared with those of RS image
recognition, in order to test the rationality of factor weight allocation. For example, if
the initial weights of macro and micro factors are 0.6 and 0.4, they will be reset to 0.59
and 0.41 on the first try. If the matching rate (Kappa) improves, they will be further
set to 0.58 and 0.42 in the second try and similar attempts will be carried out until the
matching rate starts to decline. Otherwise, if the matching rate in the first try is declined,
the weights of macro and micro factors will be adjusted in the opposite direction (e.g.,
be set to 0.61 and 0.39) and similar attempts will be carried out until the matching rate
starts to decline. The purpose of this method is to hunt for the optimal weight allocation
of factors by a continuous adjustment. However, some rules of weight adjustment are
defined to improve operating efficiency: (i) the overall weights between macro and micro
factors must be adjusted first, followed by the local weights of internal elements in macro
and micro factors; (ii) the lower the matching rate of space simulations, the more likely
the factor weight of this type of space is adjusted first. Based on the above rules, the
implementation steps of this method are as follows: (i) The matching rates of production,
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living and ecological spaces are calculated, based on the initial weights. (ii) The weights of
macro and micro factors are adjusted first in the type of space with the lowest matching
rate. If the matching rate improves, the adjustment is increased. If not, the adjustment is
repeated in the opposite direction and increased until the matching rate starts to decline.
(iii) Then, the weights of internal elements in the macro and micro factors are adjusted,
using a method similar to that of (ii). (iv) Finally, the weights of macro factors, micro factors
and their internal elements are adjusted one by one in the spaces with the second highest
and highest matching rates. After the weights of all factors are determined, the effect of
each factor on PLE space evolution can be analyzed by its weight. Figure 3 shows the data
process flow of factor weight determination by the statistical analysis and best-fit method.
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4. Experimental Results and Analysis
4.1. Simulation and Prediction Results of Production-Living-Ecological Space Evolution

For validation of the proposed model and method in Section 3, GaoFen-2 (GF) remote
sensing images, geographic information and socio-economic data from Xuzhou, China
between 2000 and 2020 were collected. Three experimental schemes were designed. In
scheme 1, the results of PLE space recognition from RS imaging in 2000 were taken as the
basic data, and used to simulate the PLE space evolution in 2010 based on the CA model.
The simulation precision was obtained by comparing its results with the result of RS image
recognition in 2010. In schemes 2 and 3, the basic data were the same as in scheme 1.
However, the CA + MAS model and the macro–micro joint decision model (CA + MAS
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+ Correlation) were adopted in schemes 2 and 3, respectively. Figure 4 shows the spatial
distribution of patches where the simulation results of the three schemes were different
from the results of RS imaging. Table 3 shows the statistical results of the simulation
precisions (Kappa coefficient) of the three schemes.
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Table 3. Statistical precisions of PLES evolution simulation from three schemes Unit: %.

Evaluated Object Scheme 1 Scheme 2 Scheme 3

Model CA CA + MAS CA + MAS + Correlation
Kappa 87.14 89.63 92.31

From Figure 4 and Table 3, it can be seen that the simulation precision of the CA
model was poor (87.14%) and that most of errors resulted from the simulation of living
space evolution. The simulation precision of production space evolution was better, and
that of ecological space evolution was best. In scheme 2, the simulation precision of PLE
space evolution was improved to 89.63% using the CA + MAS model. The precision
improvement in living space evolution simulation was the maximum. In scheme 3, the



Int. J. Environ. Res. Public Health 2021, 18, 9832 13 of 21

simulation precision of PLE space evolution increased to 92.31% by using the CA + MAS
+ Correlation model. These experimental results prove that the proposed model has a
stronger ability to simulate PLE space evolution than the current models (e.g., CA and CA
+ MAS).

To further verify the prediction ability of PLE space evolution of our proposed model,
three further experimental schemes were designed. In scheme 1, the recognition result
of PLE space from RS imaging in 2010 was taken as the basic data source. It was used
to predict the PLE space evolution in 2020 based on the CA model, and the prediction
precision was calculated by comparison with the results of RS image recognition in 2020. It
should be noted that the weights of all factors remained unchanged in the prediction, and
were derived from the simulation results comparing 2000 to 2010. The main reason was
that the actual distribution of PLE space in 2020 could not be known in advance during
the prediction. Therefore, the weights of all factors could not be adjusted over time in the
simulation. This led to a decrease in prediction precision. In schemes 2 and 3, the data and
method were the same as those used in scheme 1. However, the CA + MAS model and the
CA + MAS + Correlation were adopted to predict PLE space evolution in 2020 in schemes 2
and 3 respectively. Figure 5 shows the spatial distribution of patches where the prediction
results of three schemes were different from the recognition results from RS imaging in
2020. Table 4 is the statistical result of the prediction precisions of the three schemes.
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Table 4. Statistical precisions of PLES evolution prediction from three schemes Unit: %.

Evaluated Object Scheme 1 Scheme 2 Scheme 3

Model CA CA + MAS CA + MAS + Correlation
Kappa 84.59 86.19 89.33

From Figure 5 and Table 4, it can be seen that the prediction precisions of PLE space
evolution were lower than their simulation precisions in the earlier schemes, as the factor
weights from the prediction models were replaced with those from the simulation models.
This inevitably leads to errors. However, the prediction precision of the CA + MAS +
Correlation model remained better than that of the CA and CA + MAS models, and the
improvement in prediction precision was larger than that in simulation precision, after
considering the interactions of macro and micro factors. This proves that the proposed
model had a stronger ability to predict PLE space evolution than the CA and CA + MAS
models. Thus, the future distribution of urban PLE space may best be predicted by the
CA + MAS + Correlation model. Policy makers and city administrators can determine the
problems of urban space development in advance based on prediction results, and some
positive policies can be formulated to avoid these problems and realize the sustainable
development of urban PLE space.

4.2. Results of Factor Weight Determination

The initial weights of all factors can be obtained by statistical analysis methods and
the final weights are determined by the best-fit method, as introduced in Section 3.2.
The effect of each factor on PLE space evolution can be obtained based on the weight
determination results. It is helpful for policy makers to grasp the leading factors and
formulate scientific planning of urban PLE space development. Tables 5–7 show the
initial weight determination results of factors using the CA + MAS + Correlation model to
simulate the evolution of production, living and ecological space as described in Section 4.1,
respectively. Figure 6 shows the error distribution of the estimated initial weights of some
factors (e.g., elevation, slope, distance to water and distance to road) in the simulation of
living space evolution. Figure 7 shows the final weight determination results of all factors
in the simulation of production, living, and ecological space evolution and their differences
with the initial weights, respectively.

Table 5. Initial weight determination results of factors in living space evolution simulation.

Elevation Slope Distance to
Water

Distance to
Road

Distance to
Center

Government
Planning

Type of
Land

Neighborhood
Influence

0.028 0.104 0.035 0.064 0.043 0.076 0.047 0.056

Influence of
Micro factor

Protected
land House Price Hospital Mall School

Distance to
Ecological

Space

Influence of
Macro factor

0.014 0.076 0.095 0.109 0.058 0.089 0.064 0.042

Table 6. Initial weight determination results of factors in production space evolution simulation.

Elevation Slope Soil Quality Distance to
Water

Distance to
Road

Distance to
Center Type of Land

0.042 0.046 0.052 0.059 0.106 0.043 0.109

Neighborhood
Influence

Influence of
Micro factor Protected land Land Price Distance to

living space

Distance to
Ecological

Space

Influence of
Macro factor

0.065 0.032 0.184 0.091 0.102 0.035 0.034
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Table 7. Initial weight determination results of factors in ecological space evolution simulation.

Elevation Slope Distance to
Water

Distance to
Woodland

Distance to
Grassland Type of Land Neighborhood

Influence

0.069 0.076 0.072 0.148 0.076 0.064 0.091

Influence of
Micro factor Protected land

Distance to
production

space

Distance to
living space

Distance to
Ecological

Space

Influence of
Macro factor /

0.081 0.037 0.056 0.057 0.149 0.024 /
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simulation factors and their differences with the initial weights (d).

From Figures 5 and 6, it is known that the initial weights of all factors could be
obtained by statistical analysis methods and that the estimated results were reliable. In
general, the weights obeyed normal distributions, although the estimated precisions were
different. Some were high (e.g., elevation and distance to water), and some were low (e.g.,
slope and distance to road), because the estimated precision of factor initial weight was
strongly related to the sample selection. Therefore, it is a key to selecting representative
and diverse samples.

From Figure 7, it can be seen that the final weights of all factors had some changes from
the initial weights in Tables 5–7. The reason was that the local consistency of simulation
and recognition results from the samples was exclusively considered in the initial weight
determination, while the overall consistency from the study region was emphasized in
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the final weight determination. It is noted that the differences between the initial and
final weight determination were not obvious, proving that the initial weight determination
and sample selection were suitable for this study. Based on the results of factor weight
determination, the effect of each factor on PLE space evolution could be obtained. The
micro factors affected the evolution of production and living space more than the macro
factors. By contrast, the macro factors influenced the evolution of ecological space more
than the micro factors. For living space evolution, the most important factors were the city
resident (0.215), the entrepreneur (0.127) and the environmentalist (0.123). This indicates
that the decision-making behaviors of city residents play the most important role in urban
living space development. For production space evolution, the most important factors
were the rural resident (0.202), the entrepreneur (0.147), and the city resident (0.098). This
means that production space development depends more on human wishes than on natural
resources and conditions or the development of science and technology. For ecological
space evolution, the most important factors were the location condition (0.230), natural
condition (0.150), and neighborhood influence (0.142). This indicates that the location and
natural condition have an important influence on the development of ecological space, and
with the increase in awareness of environmental protection, human intervention in the
evolution of ecological space is decreasing. It has instead developed according to local
conditions in Xuzhou in the past decades.

5. Discussions

The scientific planning of urban space is an important way to realize urban sustainable
development. The precise simulation and understanding of the leading factors in urban
space evolution are essential prerequisites for urban space planning. However, there are
still some defects in existing models. For example, the econometric statistics model and the
system dynamics model have a strong ability to predict the size of urban space evolution,
but they are unable to simulate the variation in urban spatial distribution [36]. For another
example, the cellular automata model is a key milestone in the development of urban
spatial simulation technology, which can simulate not only the variation in urban space
size but also the variation in urban spatial distribution, but it is unable to simulate the
effects of macro-scale factors (e.g., policy, economy, culture) on urban space evolution, and
nor can it simulate the decision-making behaviors of different urban agents (e.g., resident,
entrepreneur, environmentalist) [37]. With the development of artificial intelligence (AI)
technology, the study of a joint model of MAS and CA has become a hot spot for urban
space evolution simulation. This type of model can simulate the influences of macro factors
(e.g., natural environment, geographical location, policy) and micro factors (e.g., different
urban agents) on urban space evolution [38]. Therefore, the joint model of MAS and CA
has a stronger ability to simulate urban space than other models.

However, the current CA + MAS model does not consider the correlations between
macro and micro factors. It is assumed that the effects of macro and micro factors are
completely independent, which is inconsistent with the facts, as macro factors (e.g., the
natural condition, government policy) often restrict the decision-making behaviors of micro
factors (e.g., residents, entrepreneurs, environmentalists). Meanwhile, the preferences of
micro factors also have an important influence on the decision-making behaviors of macro
factors. Therefore, if the interaction between and mutual influence of macro and micro
factors are neglected, the simulation precision of CA + MAS model will decrease. In
addition, the simulation objects of current models are usually unit plots with different
types of land use (e.g., woodland, grassland, water body). Therefore, the simulation result
ascribes a specific type of land use to each unit plot. However, the type of land use may
be different from the urban planning for a given unit plot (e.g., traffic planning, garden
planning, land planning) [39]. Therefore, if multiple plans are implemented in the same
place at the same time, it will lead to difficulties in decision-making and implementation
(e.g., the conflict areas) [40].
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To alleviate the above problems, a macro–micro joint decision model is proposed
based on the CA + MAS model in this study to improve the simulation of urban space
evolution. The simulation objects are unified into production, living and ecological space
for the convenience of unified implementation of multiple plans. For validation of the
proposed model, remote sensing images, geographic information and socio-economic data
from Xuzhou, China between 2000 and 2020 were collected and tested. The results proved
that the simulation and prediction precisions of the proposed model were better than those
of current models (e.g., CA, CA + MAS) for urban space evolution simulation, particularly
for the simulation of living space evolution.

It is very important for urban planning and sustainable development strategies that
the precision of PLE evolution simulation models be improved, because urban space
evolution simulation models are often used to compare the implementation effects of
different urban planning schemes. Therefore, it is beneficial to select the optimal planning
scheme for realizing sustainable urban development, if the model simulation precision
is high. Otherwise, this can result in faulty government decision-making and the waste
of urban resources if the model simulation precision is poor. A high-precision simulation
model helps urban planners discover the problems associated with different plans in
advance, and is also an important tool to analyze the effects of different factors on the
evolution of urban space. Therefore, it is very useful to grasp the rules governing urban
space evolution and operation mechanisms.

However, there are still some limitations of the proposed model in this study. (i) The
urban space is expressed as a regular grid (30 m × 30 m) in the proposed model, but actual
urban space is an irregular polygon. This led to inconsistencies between the simulation
result and the RS imaging-observed results, as well as a decrease in simulation preci-
sion [41]. (ii) In theory, the smaller the area of unit space, the higher the precision of urban
space simulation. However, the computational burden increases at exponential levels with
decreasing areas of unit space. Therefore, the selection of optimal geographic unit scale
for simulation of urban space evolution remains an unsolved problem. For larger areas
(e.g., an urban agglomeration or economic zone), an adaptive theory should be applied
to define the grid scale. Regions with rapid land use change could be defined using a
small grid (e.g., 30 m × 30 m), while regions with slow land use change could be simulated
using a large grid (e.g., 300 m × 300 m). On the one hand, the differentiating grids could
improve simulation accuracy; on the other hand, they could ensure operational efficiency.
(iii) The estimated precision of the factor initial weight is strongly related to the sample
selection when using a statistical method. Therefore, the selection of representative and
diverse samples is a key problem. In this study, an even sampling strategy was adopted to
select the experimental samples. However, this was not an optimal solution. In addition,
the variation in urban population size and spatial distribution is an important factor that
affects urban space evolution [42]. In this study, the information on urban population
size was used to predict the variation in living space size, but the data of population
spatial distribution is not used. Therefore, urban space evolution simulation models should
be further investigated considering the variations in population spatial distribution in
the future.

6. Conclusions

The accurate simulation of urban space evolution and understanding of the leading
factors are key issues to improve the sustainability of urban development. In this study, a
macro–micro joint decision model was constructed based on the CA + MAS model in order
to improve the ability to simulate urban space. A method of factor weight determination
was proposed to analyze the effects of different factors on urban space evolution. For
validation of the proposed model and method, experimental data (e.g., RS data, GIS
data and socio-economic data) were collected and tested. The results proved that the
proposed model and method were valid and reliable, and could improve the simulation
and prediction of urban space evolution. The main conclusions of this study are as follows:
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(1) The simulation precision of urban space evolution from the CA + MAS model
was better than that from the CA model, because the decision-making behaviors of dif-
ferent urban agents (e.g., resident, entrepreneur, environmentalist) were considered in
the CA + MAS model and not the CA model. Moreover, if the interactions and influences
of macro and micro factors were considered (e.g., CA + MAS + Correlation model), the
simulation precision of the CA + MAS model could be further improved. In this study, the
simulation precisions (Kappa coefficient) of urban space evolution from the CA, CA + MAS
and CA + MAS + Correlation models were 87.14%, 89.63% and 92.31%, respectively. The
improvement in living space simulation precision was the most significant when using the
CA + MAS+ Correlation model, compared with simulation of other types of spaces.

(2) The prediction precisions of CA, CA + MAS and CA + MAS + Correlation model
were worse than their simulation precisions, as the factor weights in prediction models
were replaced with those from the simulation models, disregarding changes that occurred
during the prediction period. Therefore, errors were inevitably introduced. However, the
prediction precision of the CA + MAS + Correlation model remained better than that of the
CA and CA + MAS models, and the improvement in prediction precision was larger than
that in simulation precision using the CA + MAS + Correlation model, compared to the
CA and CA + MAS models. It was proved that the CA + MAS + Correlation model had a
stronger ability to predict PLE space evolution than the CA and CA + MAS models.

(3) According to the results of factor weight determination, it was determined that the
effects of micro factors on the evolution of living and production space were greater than
those of macro factors. This indicated that the influences of desires and behaviors of human
beings on the evolution of living and production space are increasing, correlating with the
development of science and technology. The decision-making behaviors of city residents
played the most important role in urban living space development. In the evolution of
production space, rural residents and entrepreneurs had more influence than the other
factors. By comparison, the effects of macro factors on the evolution of ecological space
were more significant than those of micro factors, where the three most important factors
were the location condition, neighborhood influence and natural condition. This means
that the location and natural condition have more influence on the evolution of ecological
space than the other factors.

According to the above analysis and conclusions, some policy implications are pro-
posed to improve the sustainability of urban development. At present, the micro factors
(e.g., city and rural residents and entrepreneurs) are the leading factors in the evolution of
living and production space. Therefore, active policies should be formulated to strengthen
the ideological guidance for these micro individuals, help them establish scientific views
of urban space utilization, and realize the ordered development of living and production
space. In addition, macro factors (e.g., location condition, natural environment) have the
most important influence on the evolution of ecological space. Therefore, urban ecological
space planning should closely link with the local environmental and natural conditions, to
improve urban ecological carrying capacity and realize urban sustainable development.
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