# Research on the Evolutionary Game of Construction and Demolition Waste (CDW) Recycling Units’ Green Behavior, Considering Remanufacturing Capability

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

#### 2.1. Closed-Loop Supply Chain for Recycling and Remanufacturing

#### 2.2. Green Behavior and Recycling of Construction Waste as a Response to Government Rewards and Punishment

#### 2.3. Consumers’ Green Preferences and Production Unit Leadership Level

#### 2.4. Expectation Inconsistency Theory

## 3. Model Building

#### 3.1. Model Assumptions

#### 3.2. Model Parameters

## 4. Evolutionary Game Model Analysis

#### 4.1. The First Situation, the Game between Recycling Units and Consumers

#### 4.1.1. Calculation of the Stable Point

_{11}a

_{22}− a

_{12}a

_{21}> 0; (2) Tr (J) = a

_{11}+ a

_{22}< 0. Table 6 shows the values of a

_{11}, a

_{12}, a

_{21}, and a

_{22}for each stable point.

- (1)
- When ${0<\mathrm{a}<\mathrm{a}}_{2}{,\mathsf{\delta}}_{2}<\mathsf{\delta}<1$ or ${\mathrm{a}}_{1}{<\mathrm{a}<\mathrm{a}}_{2}{,\mathsf{\delta}}_{2}<\mathsf{\delta}<1$, ESS is (0, 0)
- (2)
- When ${0<\mathrm{a}<\mathrm{a}}_{1}{,0<\mathsf{\delta}<\mathsf{\delta}}_{1}$, ESS is (0, 1)
- (3)
- When ${\mathrm{a}}_{2}{<\mathrm{a}<1,\mathsf{\delta}}_{2}<\mathsf{\delta}<1$, ESS is (1, 0)
- (4)
- When ${\mathrm{a}}_{1}{<\mathrm{a}<\mathrm{a}}_{2}{,\mathsf{\delta}}_{1}{<\mathsf{\delta}<\mathsf{\delta}}_{2}$, ESS is (0, 0) or (1, 1)
- (5)
- When ${\mathrm{a}}_{1}{<\mathrm{a}<1,0<\mathsf{\delta}<\mathsf{\delta}}_{1}$ or ${\mathrm{a}}_{1}{<\mathrm{a}<\mathrm{a}}_{2}{,0<\mathsf{\delta}<\mathsf{\delta}}_{1}$, ESS is (1, 1)

#### 4.1.2. Analysis of Evolutionary Stability in Case 4

**Proposition**

**1.**

**Proof.**

**Proposition**

**2.**

**Proof.**

**Proposition**

**3.**

**Proof.**

#### The Influence of Government Supervision Rate on the Evolutionary Results of Both Sides of the Game

#### The Influence of Recycling Unit Leadership on the Evolutionary Results of Both Parties in the Game

#### The Impact of the Consumer Payment Difference Coefficient on the Evolutionary Results of Both Parties in the Game

#### 4.2. In the Second Situation, the Game between Recycling Units and Third-Party Remanufacturers

#### 4.2.1. Calculation of Stable Points

_{11}b

_{22}− b

_{12}b

_{21}> 0; (2) Tr (J) = b

_{11}+ b

_{22}< 0. Table 14 shows the values of b

_{11}, b

_{12}, b

_{21}, and b

_{22}for each stable point.

- (1)
- When ${0<\mathrm{k}<\mathrm{k}}_{1}{,0<\mathrm{s}<\mathrm{s}}_{1}$, ESS is (0, 0);
- (2)
- When ${\mathrm{k}}_{1}{<\mathrm{k}<\mathrm{k}}_{2}{,\mathrm{s}}_{2\text{}}{\mathrm{s}1\mathrm{or}0\mathrm{k}\mathrm{k}}_{1}{,\mathrm{s}}_{1}\mathrm{s}1,\text{}$ESS is (0, 1);
- (3)
- When ${\mathrm{k}}_{2}{<\mathrm{k}<1,0<\mathrm{s}<\mathrm{s}}_{2}{\text{}\mathrm{or}\text{}\mathrm{k}}_{1\text{}}{\mathrm{k}1,0\mathrm{s}\mathrm{s}}_{1}$,ESS is (1, 0);
- (4)
- When ${\mathrm{k}}_{1}{<\mathrm{k}<\mathrm{k}}_{2}{,\mathrm{s}}_{1}{<\mathrm{s}<\mathrm{s}}_{2}$,ESS is (0, 1) or (1, 0);
- (5)
- When ${\mathrm{k}}_{2}{<\mathrm{k}<1,\mathrm{s}}_{2}<\mathrm{s}<1$, ESS is (1, 1).

#### 4.2.2. Analysis of Evolutionary Stability Based on Parameter Changes (Case (4))

**Proposition**

**4.**

**Proof.**

**Proposition**

**5.**

**Proof.**

**Proposition**

**6.**

**Proof.**

#### 4.2.3. Numerical Simulation and Discussion

#### The Effect of Government Cost Subsidy Rate on the Evolutionary Results of Both Parties in the Game

#### The Influence of the Increase Coefficient of Recovered Unit Income on the Evolutionary Results of Both Parties

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Zhang, L. Carrying out the comprehensive utilization of bulk solid waste is “the way of efficiency reform”. China Building Materials News, 8 April 2021. [Google Scholar]
- Xu, X.; Ren, X.; Chang, Z. Big Data and Green Development. China Ind. Econ.
**2019**, 4, 5–22. [Google Scholar] - Shi, D. The Green Development and the New Stage of Industrialization: Progress in China and Comparison with Others. China Ind. Econ.
**2018**, 10, 5–18. [Google Scholar] - Li, X.; Du, J.; Long, H. Theoretical framework and formation mechanism of the green development system model in China. Environ. Dev.
**2019**, 32, 100465. [Google Scholar] [CrossRef] - Li, X.; Du, J.; Long, H. Understanding the Green Development Behavior and Performance of Industrial Enterprises (GDBP-IE): Scale Development and Validation. Int. J. Environ. Res. Public Health
**2020**, 17, 1716. [Google Scholar] [CrossRef] [Green Version] - Yang, C.; Zhu, Y. Research Progress Overview of International Green Development. J. Cent. SOUTH Univ. For. Technol. Soc. Sci.
**2015**, 9, 43–50. [Google Scholar] - Li, X.; Long, H. Research Focus, Frontier and Knowledge Base of Green Technology in China: Metrological Research Based on Mapping Knowledge Domains. Pol. J. Environ. Stud.
**2020**, 29, 3003–3011. [Google Scholar] [CrossRef] - Zhang, J.; Ul-Durar, S.; Akhtar, M.N.; Zhang, Y.; Lu, L. How does responsible leadership affect employees’ voluntary workplace green behaviors? A multilevel dual process model of voluntary workplace green behaviors. J. Environ. Manag.
**2021**, 296, 113205. [Google Scholar] [CrossRef] - Li, X.; Du, J.; Long, H. Green development behavior and performance of industrial enterprises based on grounded theory study: Evidence from China. Sustainability
**2019**, 11, 4133. [Google Scholar] [CrossRef] [Green Version] - Li, X.; Du, J.; Long, H. Dynamic analysis of international green behavior from the perspective of the mapping knowledge domain. Environ. Sci. Pollut. Res.
**2019**, 26, 6087–6098. [Google Scholar] [CrossRef] - Li, X.; Du, J.; Long, H. Mechanism for Green Development Behavior and Performance of Industrial Enterprises (GDBP-IE) Using Partial Least Squares Structural Equation Modeling (PLS-SEM). Int. J. Environ. Res. Public Health
**2020**, 17, 8450. [Google Scholar] [CrossRef] - Niu, F. China’s construction waste is in urgent need of resource treatment. China Economic Times, 11 February 2015; 2. [Google Scholar]
- Li, D.; Peng, Y.; Guo, C.; Tan, R. Pricing Strategy of Construction and Demolition Waste Considering Retailer Fairness Concerns under a Governmental Regulation Environment. Int. J. Environ. Res. Public Health
**2019**, 16, 3896. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Xi’an Construction Waste Management Regulations. Xi’an Daily, 14 August 2012; 6.
- Zhang, H.; Yu, H.; Li, C. Equilibrium Path Analysis of Price Cheating on Remanufactured Products in Closed-loop Supply Chain. Available online: https://kns.cnki.net/kcms/detail/34.1133.g3.20200928.1616.002.html (accessed on 31 August 2021).
- Long, H.; Liu, H.; Li, X.; Chen, L. An Evolutionary Game Theory Study for Construction and Demolition Waste Recycling Considering Green Development Performance under the Chinese Government’s Reward-Penalty Mechanism. Int. J. Environ. Res. Public Health
**2020**, 17, 6303. [Google Scholar] [CrossRef] [PubMed] - Luo, B.; Zhang, Z. An Empirical Examination: Leadership and Dynamic Capabilities Influence on Performance. Sci. Sci. Manag. S. T.
**2012**, 33, 137–146. [Google Scholar] - Wang, Y.; Hou, G. A duopoly game with heterogeneous green supply chains in optimal price and market stability with consumer green preference. J. Clean. Prod.
**2020**, 255, 120161. [Google Scholar] [CrossRef] - Dong, J.; Kong, D. Analysis on the Status Quo and Countermeasures of Urban Construction Waste Treatment in China. Constr. Sci. Technol.
**2012**, 78–80. [Google Scholar] - Guide, V.D.R.; Van Wassenhove, L.N. OR FORUM—The Evolution of Closed-Loop Supply Chain Research. Oper. Res.
**2009**, 57, 10–18. [Google Scholar] [CrossRef] - Atasu, A., Jr.; Guide, V.D.R.; Van Wassenhove, L.N. Product reuse economics in closed-loop supply chain research. Prod. Oper. Manag.
**2008**, 17, 483–496. [Google Scholar] [CrossRef] - Souza, G.C. Closed-Loop Supply Chains: A Critical Review, and Future Research. Decis. Sci.
**2013**, 44, 7–38. [Google Scholar] [CrossRef] - Hiete, M.; Stengel, J.; Ludwig, J.; Schultmann, F. Matching construction and demolition waste supply to recycling demand: A regional management chain model. Build. Res. Inf.
**2011**, 39, 333–351. [Google Scholar] [CrossRef] - Fleischmann, M.; Beullens, P.; Bloemhof-Ruwaard, J.M.; Van Wassenhove, L.N. The impact of product recovery on logistics network design. Prod. Oper. Manag.
**2001**, 10, 156–173. [Google Scholar] [CrossRef] - Savaskan, R.C.; Bhattacharya, S.; Van Wassenhove, L.N. Closed-Loop Supply Chain Models with Product Remanufacturing. Manag. Sci.
**2004**, 50, 239–252. [Google Scholar] [CrossRef] [Green Version] - Wang, W.; Da, Q. The Study on Collection and Pricing for Closed-loop Supply Chain with Retailer and the Third Party Collecting. J. Ind. Eng. Eng. Manag.
**2010**, 24, 130–134. [Google Scholar] - Vorasayan, J.; Ryan, S.M. Optimal Price and Quantity of Refurbished Products. Prod. Oper. Manag.
**2006**, 15, 369–383. [Google Scholar] [CrossRef] - Majzoub, O.; Haeusler, M.H. Investigating Computational Methods and Strategies to Reduce Construction and Demolition Waste in Preliminary Design. Digit. Des. Sustain. Build.
**2021**, 1, 325–334. [Google Scholar] - Yu, Y.; An, M.; Yao, Q. Technical Standard for Construction Waste Disposal; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2019.
- Liu, J.-K.; Wang, Y.-S.; Zhang, W.-J.; Zheng, Z.-T. Cost-benefit analysis of construction and demolition waste management based on system dynamics: A case study of Guangzhou. Syst. Eng.—Theory Pract.
**2014**, 34, 1480–1490. [Google Scholar] - Liu, H.; Long, H.; Li, X. Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: A Chinese perspective. Environ. Sci. Pollut. Res.
**2020**, 27, 8507–8525. [Google Scholar] [CrossRef] [PubMed] - AECOM. People’s Republic of China: Construction and Demolition Waste Management and Recycling; AECOM: Beijing, China, 2018. [Google Scholar]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.C.; Tam, V.W.Y. Effective construction and demolition waste management assessment through waste management hierarchy; a case of Australian large construction companies. J. Clean. Prod.
**2021**, 312, 127790. [Google Scholar] [CrossRef] - Shen, H.; Peng, Y.; Guo, C. Analysis of the Evolution Game of Construction and Demolition Waste Recycling Behavior Based on Prospect Theory under Environmental Regulation. Int. J. Environ. Res. Public Health
**2018**, 15, 1518. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhang, K.; Wu, Y.; Hou, S. Differential Pricing Strategy of Considering Retailer’s Fairness Concerns in the Closed-Loop Supply Chain. Chin. J. Manag. Sci.
**2014**, 22, 51–58. [Google Scholar] [CrossRef] - Guo, Q. Analysis and Research on the Cost of Construction Waste Resource—Taking Tingzi Village in Huayin City as an Example. Available online: http://doi.org.10.16663/j.cnki.lskj.2020.16.016 (accessed on 31 August 2021).
- Ma, L.; Zhang, L. Evolutionary game analysis of construction waste recycling management in China. Resour. Conserv. Recy.
**2020**, 161, 104863. [Google Scholar] [CrossRef] - Xie, X.; Zhu, Q.; Wang, R. Turning green subsidies into sustainability: How green process innovation improves firms’ green image. Bus. Strategy Environ.
**2019**, 28, 1416–1433. [Google Scholar] [CrossRef] - Qu, X.; Hou, G.; Sun, X. Evolutionary Game Analysis of Green Innovation Ecosystem of Enterprises under Government Regulation:Analysis from the Perspective of Initial Willingness Differentiation. Syst. Eng.
**2019**, 37, 1–12. [Google Scholar] - Xia, D. Research on the Mechanism of Consumer Behavior on the Green Transformation of Manufacturing Enterprises: Based on the Perspective of Government Supervision. J. Commer. Econ.
**2019**, 181–184. [Google Scholar] - Li, Z.; Liu, X.; Peng, R. The game analysis of green production and green consumption in manufacturing industry considering consumer acceptance soft science. Available online: http://kns.cnki.net/kcms/detail/51.1268.G3.20210315.1342.012.html (accessed on 31 August 2021).
- Ren, Y.; Chen, G.; Yu, H.; Zhang, J. “14th Five-Year Plan” to promote the formation of green consumption and lifestyle policy recommendations. China Environment News, 22 September 2020; 3. [Google Scholar]
- Xing, G.; Li, Y. Competitive closed-loop supply chain production decision studies considering consumers’ green preferences. Ind. Eng.
**2020**, 23, 22–29. [Google Scholar] - He, B.; Liu, Q. Analysis on Evolutionary Game of Vertical Cooperation in Supply Chain Considering Consumer’s Green Preference. Stat. Decis.
**2018**, 34, 39–43. [Google Scholar] - Reimann, M.; Xiong, Y.; Zhou, Y. Managing a closed-loop supply chain with process innovation for remanufacturing. Eur. J. Oper. Res.
**2019**, 276, 510–518. [Google Scholar] [CrossRef] - Robotis, A.; Boyaci, T.; Verter, V. Investing in reusability of products of uncertain remanufacturing cost: The role of inspection capabilities. Int. J. Prod. Econ.
**2012**, 140, 385–395. [Google Scholar] [CrossRef] - Genc, T.S.; De Giovanni, P. Closed-loop supply chain games with innovation-led lean programs and sustainability. Int. J. Prod. Econ.
**2020**, 219, 440–456. [Google Scholar] [CrossRef] - Jiang, Z.G.; Zhou, T.T.; Zhang, H.; Wang, Y.; Cao, H.J.; Tian, G.D. Reliability and cost optimization for remanufacturing process planning. J. Clean. Prod.
**2016**, 135, 1602–1610. [Google Scholar] [CrossRef] - Cui, L.; Wu, K.J.; Tseng, M.L. Selecting a remanufacturing quality strategy based on consumer preferences. J. Clean. Prod.
**2017**, 161, 1308–1316. [Google Scholar] [CrossRef] - Morgeson, F.P.; DeRue, D.S.; Karam, E.P. Leadership in Teams: A Functional Approach to Understanding Leadership Structures and Processes. J. Manag.
**2009**, 36, 5–39. [Google Scholar] [CrossRef] - Oliver, R.L. Customer Satisfaction: A Behavioral Perspective on the Consumer; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Ladhari, R. The effect of consumption emotions on satisfaction and word-of-mouth communications. Psychol. Mark.
**2007**, 24, 1085–1108. [Google Scholar] [CrossRef] - Oliver, R.L. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. J. Mark. Res.
**1980**, 17, 460–469. [Google Scholar] [CrossRef] - Olshavsky, R.A.; Miller, J.A. Consumer Expectations, Product Performance, and Perceived Product Quality. J. Mark. Res.
**1972**, 9, 19–21. [Google Scholar] [CrossRef] - Anderson, R. Consumer Dissatisfaction: The Effect of Disconfirmed Expectancy on Perceived Product Performance. J. Mark. Res.
**1973**, 10, 38–44. [Google Scholar] [CrossRef] - Hu, Y.; Chen, Y.; Shao, J. Analysis on Influencing Factors of Satisfactory Degree of Outpatient with Inconsistent Expectations. Modem Hosp. Manag.
**2016**, 14, 63–65. [Google Scholar] - Zhang, Y.; Ma, Q.; Liu, R. A Literature Review on the Relationship among Expectancy Disconfirmation, Customer Emotion and Customer Satisfaction. Manag. Rev.
**2010**, 22, 56–64. [Google Scholar] - Zhao, Y.; Wang, Y. The Impact of Relationship Type on Customer Perceived Loss Emotion and Behavioral Intentions under the Circumstance of Service Failure—An Empirical Study from Catering Industry. J. Dalian Univ. Technol. Soc. Sci.
**2012**, 33, 53–59. [Google Scholar] - Wen, X.; Cheng, H.; Cai, J.; Lu, C. Analysis of government subsidy strategy and effect in Green supply chain. Manag. J.
**2018**, 15, 625–632. [Google Scholar] - Chen, X.; Wang, J.; Wang, F. Two-channel closed-loop supply chain decision study under consumer preference and government subsidies. Syst. Eng. Theory Pract.
**2016**, 36, 3111–3122. [Google Scholar] - Hai, T.; Li, X. Optimal government subsidies for the consumption of green products with uncertain demand. China Manag. Sci.
**2021**, 29, 180–189. [Google Scholar] - Shen, C.; Zhang, X. Remanufacturing mode and dynamics pricing decisions considering strategic consumer behavior. Syst. Eng.
**2016**, 34, 38–42. [Google Scholar] - Monica, L.; Perry, C.L.; Pearce, H.P. Sims. Empowered Selling Teams: How Shared Leadership Can Contribute to Selling Team Outcomes. J. Pers. Sell. Sales Manag.
**1999**, 19, 1–18. [Google Scholar] - Ensley, M.D.; Hmieleski, K.M.; Pearce, C.L. The importance of vertical and shared leadership within new venture top management teams: Implications for the performance of startups. Leadersh. Q.
**2006**, 17, 217–231. [Google Scholar] [CrossRef] [Green Version] - Sun, H.; Ding, R.; Wang, N. Emergence of Shared Leadership Behaviors and Effect on Innovation Performance in R&D Team:Based on the Influence of Vertical Leadership. J. Manag. Sci.
**2018**, 31, 17–28. [Google Scholar] - Mu, Y.; Nie, J.; Ma, Z. Study on the Enterprise Low-carbon Technology Choice Facing the Consumer Heterogeneity. Ind. Eng.
**2012**, 50, 2465–2483. [Google Scholar] - Zou, D.; Zhao, P. The Shape of the Function Linking Expectancy-discon-frmation to Customer Satisfaction: Predictions of Prospect Theory. Nankai Bus. Rev.
**2008**, 11, 79–85. [Google Scholar] - Gerchak, Y.; Wang, Y. Revenue-sharing vs wholesale-price contracts in assembly systems with random demand. Prod. Oper. Manag.
**2004**, 13, 23–33. [Google Scholar] [CrossRef] - Zhang, H.; Yu, H.; Li, C. Incentive contract designand optimization of government subsidies policy in the closed-loop supply chain. China Manag. Sci.
**2016**, 24, 71–78. [Google Scholar] - Liu, J.; Liu, J.; Lei, X. Evolution Game and Simulation on Government Incentive and Social Capital Effort in PPP Project. Ind. Eng. J.
**2021**, 24, 77–84. [Google Scholar] - Taylor, P.D.; Jonker, L.B. Evolutionarily stable strategies and game dynamics. Math. Biosci.
**1978**, 40, 145–156. [Google Scholar] [CrossRef] - Friedman, D. Evolutionary game in economics. Econometrica
**1991**, 59, 637–666. [Google Scholar] [CrossRef] [Green Version] - Gang, H.; Hao, J.; Zhenhao, X. Development and Utilization of Construction Waste from the Perspective of “Urban Minerals”—Take 1036 Guangzhou for example. Available online: http://doi.org.10.13239/j.bjsshkxy.cswt.160108 (accessed on 31 August 2021).
- Zhang, H.; Wang, H. An empirical study on the premium of consumption intention of green agricultural products and its influencing factors: A case study of consumers in Guangzhou. Available online: http://doi.org.10.1324/j.cnki.jae (accessed on 31 August 2021).
- Feucht, Y.; Zander, K. Consumers’ preferences for carbon labels and the underlying reasoning. A mixed methods approach in 6 European countries. J. Clean. Prod.
**2018**, 178, 740–748. [Google Scholar] [CrossRef] - Mei, X. The Current Problems Faced by Law Enforcement Supervision and Countermeasures. Adm. Law
**2012**, 28–31. [Google Scholar] - Fu, P.; Wu, T. Research on Leadership Transformation of SC Company. Econ. Res. Guide
**2017**, 325, 169–171. [Google Scholar] - Zhang, Q.; He, G. Analysis on the Lack and Improvement of Chinese Enterprise Leadership. Mod. Enterp. Educ.
**2008**, 47–48. [Google Scholar] - Shi, Z.; Zhang, C. Why do consumers fall into the green consumption trap?—Effect of Green Consumption on Overconsumption. Nankai Manag. Rev.
**2021**, 1–17. Available online: http://kns.cnki.net/kcms/detail/12.1288.F.20210422.0927.002.html (accessed on 17 May 2021). - Pomares, J.C.; González, A.; Saura, P. Simple and Resistant Construction Built with Concrete Voussoirs for Developing Countries. J. Constr. Eng. Manag.
**2018**, 144, 04018076. [Google Scholar] [CrossRef] - Bautista, A.; Pomares, J.C.; González, M.N.; Velasco, F. Influence of the microstructure of TMT reinforcing bars on their corrosion behavior in concrete with chlorides. Constr. Build. Mater.
**2019**, 229, 116899. [Google Scholar] [CrossRef] [Green Version]

**Figure 5.**System evolution trajectory under different payment difference coefficients$\text{}\delta $.

**Figure 7.**The influence of the government subsidy rate $s$ on the dynamic evolution of the two parties in the game.

**Figure 8.**The effect of the profit increase coefficient $k$ of the recycling unit on the evolution result of the two sides of the game.

Assumption | Content |
---|---|

Assumption 1 | The three parties involved are all economic entities with bounded rationality. |

Assumption 2 | The government’s subsidy to the recycling unit comes before the recycling process, while the government’s subsidy to consumers comes after the consumers’ purchase of remanufactured CDW products. |

Assumption 3 | In the first situation, the recycling unit has two strategies: (1) strictly producing remanufactured products (AP); or (2) tendency to formally produce manufactured products (F). |

Assumption 4 | In the first situation, consumers have two strategies: (1) active participation (A); or (2) passive participation (N). |

Assumption 5 | The actual cost of producing remanufactured CDW products is as follows: ${\mathrm{C}}_{\mathrm{r}1,2}=(1\text{}-{\text{}\mathrm{b})\mathrm{C}}_{\mathrm{R}1,2}$, where b is the leadership of the management $(0<\mathrm{b}<1)$. |

Assumption 6 | The highest price that consumers are willing to pay for actively participating is ${I}_{C}$, while the highest price that passively participating consumers are willing to pay is $\delta {I}_{C}$, $\delta \in \left(0,1\right)$. |

Assumption 7 | Consumers will experience perceived loss ${D}_{C}$ when consumers choose strategy A and recycling units choose strategy F. When they choose strategy N and recycling units choose strategy AP, they can generate perceived benefits ${E}_{C}$. In addition, they do not produce perceived gains or losses in the other two possible situations. |

Assumption 8 | In the second situation, the strategies of both the recycling unit and the 3PR are either (1) quality effort(E); or (2) not quality effort (EN). |

Assumption 9 | There is a linear incentive contract between 3PRs and recyclers, as follows: $S\left({\pi}_{p}\right)$ = M + $\beta {\pi}_{p}$. |

Assumption 10 | The government subsidy is an ex post reward; the subsidy rate is r and the subsidy fee is $C\ast r$. |

Game Subject | Parameter | Parameter Description |
---|---|---|

Recycling unit (R) | $\mathrm{x}$ | Probability that the recycling unit chooses “strict manufacturing” in the first situation. |

$(1-\mathrm{x})$ | Probability that the recycling unit chooses “tendency to manufacture” in the first situation. | |

${\mathrm{I}}_{\mathrm{R}}$ | The basic income from producing remanufactured CDW products. | |

${\mathrm{S}}_{\mathrm{R}}$ | Government subsidies obtained after producing remanufactured CDW products. | |

${\mathrm{C}}_{\mathrm{R}1}$ | The cost of strictly producing remanufactured CDW products. | |

${\mathrm{E}}_{\mathrm{R}}$ | Additional benefits such as economic and social benefits brought by consumers who passively participate in the purchase and recognition of remanufactured CDW products. | |

${\mathrm{D}}_{\mathrm{R}}$ | The loss caused by the tendency of formally remanufactured CDW products to disappoint the active consumers, including tangible and intangible losses; tangible means the loss of a group of trusted customers, while intangible means the loss of corporate reputation. | |

${\mathrm{P}}_{\mathrm{R}}$ | The fines incurred by recycling units that tend towards formal manufacturing after being discovered by the government. | |

$\mathrm{a}$ | Probability of tendency towards formal manufacturing being discovered by the government. $(0<\mathrm{a}<1)$ | |

$b$ | Management leadership. $(0<\mathrm{b}<1)$ | |

Consumer (C) | $z$ | Probability that the consumer is “active”. |

$(1-\mathrm{z})$ | Probability that the consumer is “negative”. | |

${\mathrm{I}}_{\mathrm{C}}$ | The highest price that consumers who actively participate are willing to pay. | |

${\mathrm{C}}_{\mathrm{C}}$ | Basic cost paid by consumers | |

$\mathsf{\delta}$ | The ratio of the highest price that passively participating consumers are willing to pay to that of actively participating consumers. ($0<\mathsf{\delta}<1$) | |

${\mathrm{D}}_{\mathrm{C}}$ | The consumer’s perceived loss when actively participating consumers and the recycling unit choose “tendency to manufacture”. | |

${\mathrm{E}}_{\mathrm{C}}$ | The perceived benefits generated by consumers when passively participating consumers and the recycling unit choose “strict manufacturing”. | |

${\mathrm{S}}_{\mathrm{C}}$ | Government subsidies to consumers who purchase remanufactured products. |

Both Sides of the Game | Consumer (C) | |
---|---|---|

Positive (z) | Negative (1−z) | |

Recycling unit (R) | Strict manufacturing(x) $\left({u}_{r1},{u}_{c1}\right)$ | $\left({u}_{r2},{u}_{c2}\right)$ |

Tend towards formal manufacturing (1 −x) $\left({u}_{r3},{u}_{c3}\right)$ | $\left({u}_{r4},{u}_{c4}\right)$ |

Game Subject | Parameter | Parameter Description |
---|---|---|

Recycling unit (R) | x | Probability of “high-quality effort” of the recycling unit. |

$(1-\mathrm{x})$ | Probability of “low-quality effort” of the recycling unit. | |

${\mathrm{C}}_{\mathrm{r}}$ | The basic cost of recycling CDW. | |

${\mathsf{\Delta}\mathrm{C}}_{\mathrm{r}}$ | The cost of recycling unit’s effort. | |

$\mathsf{\beta}$ | The share of the output profit shared by the 3PR using CDW remanufacturing under the cooperative incentive mechanism. $(0<\mathsf{\beta}<1)$ | |

Third-party remanufacturers (3PRs) | y | Probability of the 3PR choosing “high-quality effort”. |

$(1-\mathrm{y})$ | Probability of the 3PR choosing “low-quality effort”. | |

${\mathsf{\pi}}_{\mathrm{p}1}$ | The profit that the 3PR produces using CDW under the condition that recycling units and the 3PR choose “low-quality effort”. (${\mathsf{\pi}}_{\mathrm{p}1}>0)$ | |

${\mathsf{\pi}}_{\mathrm{p}2}$ | The profit that the 3PR produces using CDW in the case that recycling units choose “low-quality effort” and the 3PR chooses “high-quality effort”. (${\mathsf{\pi}}_{\mathrm{p}2}>0$) | |

${\mathrm{C}}_{\mathrm{p}}$ | The cost of basic remanufacturing to the 3PR. | |

${\mathsf{\Delta}\mathrm{C}}_{\mathrm{p}}$ | The cost of the 3PR choosing “high-quality effort”. | |

Others | k | The income increase coefficient when recycling units choose “high-quality effort”. ($0<\mathrm{k}<1$) |

s | The government subsidy rate to the 3PR. $(0<\mathrm{s}<1)$ |

Both Sides of the Game | 3PR (P) | |
---|---|---|

High-Quality Effort (y) | Low-Quality Effort (1−y) | |

Recycling unit (R) | High-quality Effort (x) $({u}_{r1},{u}_{p1})$ | $\left({u}_{r2},{u}_{p2}\right)$ |

Low-quality Effort (1−x)$\text{}({u}_{r3},{u}_{p3})$ | $\left({u}_{r4},{u}_{p4}\right)$ |

Equilibrium Point | a11 | a12 | a21 | a22 |
---|---|---|---|---|

(0, 0) | ${(1-\mathrm{b})(\mathrm{C}}_{\mathrm{R}2}-{\mathrm{C}}_{\mathrm{R}1}{)+\mathrm{E}}_{\mathrm{R}\text{}}{+\mathrm{aP}}_{\mathrm{R}}$ | $0$ | $0$ | ${\mathrm{I}}_{\mathrm{C}}(1-\mathsf{\delta})-{\mathrm{D}}_{\mathrm{C}}$ |

(0, 1) | ${(1-\mathrm{b})(\mathrm{C}}_{\mathrm{R}2\text{}}-{\mathrm{C}}_{\mathrm{R}1}{)+\mathrm{aP}}_{\mathrm{R}}{+\mathrm{D}}_{\mathrm{R}}$ | $0$ | $0$ | $-{[\mathrm{I}}_{\mathrm{C}}(1-\mathsf{\delta})-{\mathrm{D}}_{\mathrm{C}}]$ |

(1, 0) | $-{\left[\right(1-\mathrm{b}\left)\right(\mathrm{C}}_{\mathrm{R}2}-{\mathrm{C}}_{\mathrm{R}1}{)+\mathrm{E}}_{\mathrm{R}\text{}}{+\mathrm{aP}}_{\mathrm{R}}]$ | $0$ | $0$ | ${\mathrm{I}}_{\mathrm{C}}(1-\mathsf{\delta})-{\mathrm{E}}_{\mathrm{C}}$ |

(1, 1) | $-{\left[\right(1-\mathrm{b}\left)\right(\mathrm{C}}_{\mathrm{R}2}-{\mathrm{C}}_{\mathrm{R}1}{)+\mathrm{aP}}_{\mathrm{R}}{+\mathrm{D}}_{\mathrm{R}}]$ | $0$ | $0$ | $-{[\mathrm{I}}_{\mathrm{C}}(1-\mathsf{\delta})-{\mathrm{E}}_{\mathrm{C}}]$ |

(x*, z*) | $0$ | - | - | $0$ |

Point | ${0<\mathbf{a}<\mathbf{a}}_{2}{,\mathsf{\delta}}_{2}<\mathsf{\delta}<1$ | ${\mathbf{a}}_{1}{<\mathbf{a}<\mathbf{a}}_{2}{,\mathsf{\delta}}_{2}<\mathsf{\delta}<1$ | ||||
---|---|---|---|---|---|---|

Det(J) | Tr(J) | Stability | Det(J) | Tr(J) | Stability | |

(0, 0) | + | - | ESS | + | - | ESS |

(0, 1) | − | ? | Saddle point | + | + | Unstable point |

+ | + | Unstable point | ||||

(1, 0) | − | ? | Saddle point | + | + | Unstable point |

− | ? | Saddle point | ||||

(1, 1) | − | ? | Saddle point | − | ? | Saddle point |

+ | + | Unstable point |

Point | ${0<\mathbf{a}<\mathbf{a}}_{1}{,0\mathsf{\delta}\mathsf{\delta}}_{1}$ | ||
---|---|---|---|

Det(J) | Tr(J) | Stability | |

(0, 0) | − | ? | Saddle point |

(0, 1) | + | − | ESS |

(1, 0) | + | + | Unstable point |

(1, 1) | − | ? | Saddle point |

Point | ${\mathbf{a}}_{2}{<\mathbf{a}<1,\mathsf{\delta}}_{2}<\mathsf{\delta}<1$ | ||
---|---|---|---|

Det(J) | Tr(J) | Stability | |

(0, 0) | − | ? | Saddle point |

(0, 1) | + | + | Unstable point |

(1, 0) | + | − | ESS |

(1, 1) | − | ? | Saddle point |

Point | ${\mathbf{a}}_{1}{<\mathbf{a}<\mathbf{a}}_{2}{,\mathsf{\delta}}_{1}{<\mathsf{\delta}<\mathsf{\delta}}_{2}$ | ||
---|---|---|---|

Det(J) | Tr(J) | Stability | |

(0,0) | + | − | ESS |

(0,1) | + | + | Unstable point |

(1,0) | + | + | Unstable point |

(1,1) | + | − | ESS |

Point | ${\mathbf{a}}_{1}{<\mathbf{a}<1,0<\mathsf{\delta}<\mathsf{\delta}}_{1}$ | ${\mathbf{a}}_{1}{<\mathbf{a}<\mathbf{a}}_{2}{,0<\mathsf{\delta}<\mathsf{\delta}}_{1}$ | ||||
---|---|---|---|---|---|---|

Det (J) | Tr (J) | Stability | Det(J) | Tr (J) | Stability | |

(0, 0) | − | ? | Saddle point | − | ? | Saddle point |

+ | + | Unstable point | ||||

(0, 1) | − | ? | Saddle point | − | ? | Saddle point |

(1, 0) | − | ? | Saddle point | + | + | Unstable point |

(1, 1) | + | − | ESS | + | − | ESS |

Parameter | $\mathit{a}$ | $\mathit{b}$ | $\mathit{\delta}$ |
---|---|---|---|

↑ | ↑ | ↑ | |

S1 | ↓ | ↓ | ↑ |

The Form of the Parameter | Parameter Setting | Parameter Value |
---|---|---|

Fixed parameter | ${I}_{R}$ | 70 |

${S}_{R}$ | 40 | |

${C}_{R1}$ | 70 | |

${C}_{R2}$ | 50 | |

${E}_{R}$ | 2 | |

${D}_{R}$ | 8 | |

${P}_{R}$ | 10 | |

${I}_{C}$ | 84 | |

${C}_{C}$ | 55 | |

${D}_{C}$ | 50 | |

${E}_{C}$ | 16 | |

${S}_{C}$ | 20 | |

Variable parameter | $a$ | 0.5 |

$\delta $ | 0.6 | |

$b$ | 0.5 |

Equilibrium Point | b11 | b12 | b21 | b22 |
---|---|---|---|---|

(0, 0) | ${\mathrm{k}\mathsf{\beta}\mathsf{\pi}}_{\mathrm{p}1}-{\mathsf{\Delta}\mathrm{C}}_{\mathrm{r}}$ | $0$ | $0$ | ${(\mathsf{\pi}}_{\mathrm{p}2}-{\mathsf{\pi}}_{\mathrm{p}1}\left)\right(1-{\mathsf{\beta})+\mathsf{\Delta}\mathrm{C}}_{\mathrm{p}}\mathrm{s}$ |

(0, 1) | ${\mathrm{k}\mathsf{\beta}\mathsf{\pi}}_{\mathrm{p}2}-{\mathsf{\Delta}\mathrm{C}}_{\mathrm{r}}$ | $0$ | $0$ | $-{\left[\right(\mathsf{\pi}}_{\mathrm{p}2}-{\mathsf{\pi}}_{\mathrm{p}1}\left)\right(1-{\mathsf{\beta})+\mathsf{\Delta}\mathrm{C}}_{\mathrm{p}}\mathrm{s}]$ |

(1, 0) | $-{(\mathrm{k}\mathsf{\beta}\mathsf{\pi}}_{\mathrm{p}1}-{\mathsf{\Delta}\mathrm{C}}_{\mathrm{r}})$ | $0$ | $0$ | ${(\mathsf{\pi}}_{\mathrm{p}2}-{\mathsf{\pi}}_{\mathrm{p}1}\left)\right(1-{\mathsf{\beta}\left)\right(\mathrm{k}+1)+\mathsf{\Delta}\mathrm{C}}_{\mathrm{p}}\mathrm{s}$ |

(1, 1) | $-{(\mathrm{k}\mathsf{\beta}\mathsf{\pi}}_{\mathrm{p}2}-{\mathsf{\Delta}\mathrm{C}}_{\mathrm{r}})$ | $0$ | $0$ | $-{\left[\right(\mathsf{\pi}}_{\mathrm{p}2}-{\mathsf{\pi}}_{\mathrm{p}1}\left)\right(1-{\mathsf{\beta}\left)\right(\mathrm{k}+1)+\mathsf{\Delta}\mathrm{C}}_{\mathrm{p}}\mathrm{s}]$ |

(x*, y*) | $0$ | − | − | $0$ |

Point | ${0<\mathbf{k}<\mathbf{k}}_{1}{,0<\mathbf{s}<\mathbf{s}}_{1}$ | ||
---|---|---|---|

Det (J) | Tr (J) | Stability | |

(0, 0) | + | − | ESS |

(0, 1) | − | ? | Saddle point |

(1, 0) | − | ? | Saddle point |

(1, 1) | + | + | Unstable point |

Point | ${\mathbf{k}}_{1}{<\mathbf{k}<\mathbf{k}}_{2}{,\text{}\mathbf{s}}_{2}\mathbf{s}1$ | ${0<\mathbf{k}<\mathbf{k}}_{1}{,\text{}\mathbf{s}}_{1}\mathbf{s}1$ | ||||
---|---|---|---|---|---|---|

Det (J) | Tr (J) | Stability | Det (J) | Tr (J) | Stability | |

(0, 0) | + | + | Unstable point | − | ? | Saddle point |

(0, 1) | + | − | ESS | + | − | ESS |

(1, 0) | − | ? | Saddle point | + | + | Unstable point |

− | ? | Saddle point | ||||

(1, 1) | − | ? | Saddle point | + | + | Unstable point |

− | ? | Saddle point |

Point | ${\mathbf{k}}_{2}{<\mathbf{k}<1,\text{}0\mathbf{s}\mathbf{s}}_{2}$ | ${\mathbf{k}}_{1}{<\mathbf{k}<1,\text{}0\mathbf{s}\mathbf{s}}_{1}$ | ||||
---|---|---|---|---|---|---|

Det (J) | Tr (J) | Stability | Det (J) | Tr (J) | Stability | |

(0, 0) | − | ? | Saddle point | − | ? | Saddle point |

+ | + | Unstable point | ||||

(0, 1) | + | + | Unstable point | − | ? | Saddle point |

− | ? | Saddle point | + | + | Unstable point | |

(1, 0) | − | + | ESS | − | + | ESS |

(1, 1) | − | ? | Saddle point | + | + | Unstable point |

− | ? | Saddle point |

Point | ${\mathit{k}}_{1}<k<{\mathit{k}}_{2},{\mathit{s}}_{1}<s<{\mathit{s}}_{2}$ | ||
---|---|---|---|

Det (J) | Tr (J) | Stability | |

(0, 0) | + | + | Unstable point |

(0, 1) | − | + | ESS |

(1, 0) | − | + | ESS |

(1, 1) | + | + | Unstable point |

Point | ${\mathbf{k}}_{2}{<\mathbf{k}<1,\text{}\mathbf{s}}_{2}\mathbf{s}1$ | ||
---|---|---|---|

Det (J) | Tr (J) | Stability | |

(0, 0) | + | − | Unstable point |

(0, 1) | − | ? | Saddle point |

(1, 0) | − | ? | Saddle point |

(1, 1) | + | − | ESS |

Parameter | $k$ | $s$ | $\beta $ |

↑ | ↑ | ↑ | |

S3 | ↓ | ↑ | U ^{1} |

^{1}indicates that the correlation of the parameter is uncertain.

Parameter | $\mathit{\Delta}{\mathit{C}}_{\mathit{r}}$ | $\mathit{\Delta}{\mathit{C}}_{\mathit{p}}$ | ${\mathit{\pi}}_{\mathit{p}1}$ | ${\mathit{\pi}}_{\mathit{p}2}$ | $\mathit{k}$ | $\mathit{\beta}$ | $\mathit{s}$ |
---|---|---|---|---|---|---|---|

Value | 200 | 600 | 2500 | 2000 | 0.3 | 0.2 | 0.6 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, X.; Huang, R.; Dai, J.; Li, J.; Shen, Q.
Research on the Evolutionary Game of Construction and Demolition Waste (CDW) Recycling Units’ Green Behavior, Considering Remanufacturing Capability. *Int. J. Environ. Res. Public Health* **2021**, *18*, 9268.
https://doi.org/10.3390/ijerph18179268

**AMA Style**

Li X, Huang R, Dai J, Li J, Shen Q.
Research on the Evolutionary Game of Construction and Demolition Waste (CDW) Recycling Units’ Green Behavior, Considering Remanufacturing Capability. *International Journal of Environmental Research and Public Health*. 2021; 18(17):9268.
https://doi.org/10.3390/ijerph18179268

**Chicago/Turabian Style**

Li, Xingwei, Ruonan Huang, Jiachi Dai, Jingru Li, and Qiong Shen.
2021. "Research on the Evolutionary Game of Construction and Demolition Waste (CDW) Recycling Units’ Green Behavior, Considering Remanufacturing Capability" *International Journal of Environmental Research and Public Health* 18, no. 17: 9268.
https://doi.org/10.3390/ijerph18179268