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Abstract: This study proposes the concept of duration (D) and severity (S) measures, which were
derived from unhealthy air pollution events. In parallel with that, the application of a copula model
is proposed to evaluate unhealthy air pollution events with respect to their duration and severity
characteristics. The bivariate criteria represented by duration and severity indicate their structural
dependency, long-tail, and non-identically marginal distributions. A copula approach can provide a
good statistical tool to deal with these issues and enable the extraction of valuable information from
air pollution data. Based on the copula model, several statistical measurements are proposed for
describing the characteristics of unhealthy air pollution events, including the Kendall’s τ correlation
of the copula, the conditional probability of air pollution severity based on a given duration, the joint
OR/AND return period, and the conditional D|S and conditional S|D return periods. A case study
based on air pollution data indices was conducted in Klang, Malaysia. The results indicate that a
copula approach is beneficial for deriving valuable information for planning and mitigating the risks
of unhealthy air pollution events.

Keywords: air pollution characteristics; pollution risk assessment; statistical modeling

1. Introduction

Air pollution is an important issue that needs to be addressed worldwide, particularly
in urban areas. This issue relates to the condition of the air environment corresponding to
unhealthy air pollution events [1,2]. Unhealthy air pollution events can be characterized
based on their duration and severity. The duration of an air pollution event is determined
based on the period in which the air pollution index (API) values are harmful to human
health for consecutive periods [3], while severity measures the magnitude of the air pol-
lution event based on the cumulative effect of an unhealthy API during a particular air
pollution event. These measures are related because the severity of an air pollution event
always depends on its duration. Separate analyses of the duration and severity of an
air pollution event cannot reveal their significant association. To model their relation-
ship, joint modeling is required, in which the marginal distributions of both variables are
combined [4,5]. Several different bivariate distributions have been proposed by previous
researchers in order to model the joint characteristics of bivariate variables. For example,
bivariate normal distribution has been applied in many research areas, particularly for
the cases where each considered variable can be easily described by a Gaussian/normal
distribution [6–9]. In a similar vein, bivariate lognormal distribution has been employed to
describe a phenomenon that can be represented by a lognormal-distributed marginal [10,11].
The Gumbel logistic model [12,13] and the Gumbel mixed model [14,15] were proposed to
describe a phenomenon that can be represented by random variables corresponding to a
Gumbel-distributed marginal. A bivariate exponential model [16,17] and a Nagao–Kadoya
bivariate exponential model [7] have been proposed to model a phenomenon where their
marginal random variables can be represented by an exponential model [18]. Apart from
that, there are various forms of bivariate gamma models, such as Royen’s Bivariate Gamma
model [19], the Izawa Bigamma model [20], the Moran model [21], Schmeiser and Lal’s
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Bivariate Gamma model [22], and the Loaciga and Leipnik Bivariate Gamma model [23],
have been proposed to model the bivariate random variable with a combination of marginal
Gamma distribution [24–26]. However, if the marginal distribution among the variables is
non-identically distributed, obtaining the analytical or closed form of the joint probability
model is difficult [27], which makes it challenging to use the available bivariate models to
describe the statistical properties of the data. Fortunately, this issue can be resolved using
the copula approach [28,29].

Copula functions have the advantage of providing a platform for representing a multi-
variate distribution for any type or form of marginal variable distribution involved [30,31].
Several researchers have employed the copula model to analyze the air pollution data.
Sak et al. [32], for instance, used a copula model to quantify the pollution risk of PM2.5
concentration in several cities in China. Chan and So [33] used a copula approach to
model extreme spatial air pollution events in Guangdong province, China. Falk et al. [34]
used a copula approach to evaluate the joint exceedance probabilities for air pollutants in
Milan, Italy. Kim et al. [35] characterized the dependence between several cities in China
based on a measure of directional dependence estimated from the PM2.5 pollutant variable.
Masseran and Hussain [36] modelled and visualized the dependency fluctuation among
the air pollution variables in Malaysia using a dynamic Copula approach. He at al. [37]
employed a copula model to investigate the time-varying correlations between meteoro-
logical factors and atmospheric pollutants in the cities of Beijing and Guangzhou, China.
However, most of the available literature focuses on the copula analysis of real values
or the magnitude of air pollution events. Thus, this study attempts look at a different
perspective by attempting to investigate another important aspect of air pollution events,
which is characterized by their duration and severity size. In summary, all of the previous
studies found that the copula approach could provide good modeling flexibility for the
multivariate distribution of random variables. However, when the dimensionality of the
dataset increases, a single copula model parameter is unreliable to describe a simultane-
ous relationship among the variables [28,29]. To overcome this problem, a vine-copula
approach needs to be adopted [38,39]. Fortunately, for the case of bivariate data analysis,
the problem of dimensional complexity does not occur [40,41].

A bivariate copula of air pollution severity and duration can effectively reveal the
significant relationship between these characteristics. In addition, the copula model can be
used to measure the conditional probability and return period of air pollution episodes,
which are essential for predicting air pollution events and mitigating their impacts. This
information can be beneficial to environmental management authorities in planning for and
measuring the risks associated with unhealthy air pollution events. The rest of this paper
is organized as follows: Section 2 describes the study area and data. Section 3 provides a
description of copula modeling on air pollution characteristics. A variety of copula models
are presented in Section 4. In Section 5, an application of flexible parameter estimation
and model selection are proposed based on pseudo maximum likelihood approach. In
Section 6, the performance of each fitted copula model on the characteristics of unhealthy
air pollution data are evaluated. Apart from that, Section 6 also presents several valuable
statistical measures for assessing air pollution risk, including (i) the Kendall’s τ correlation
of the copula to measure the dependency between the duration and severity of an air
pollution event, (ii) the conditional probability of a certain air pollution severity given the
air pollution duration, (iii) the joint OR/AND return period, and (iv) the conditional D|S
and S|D return periods. Finally, in Section 7, the conclusions about the overall findings
are provided.

2. Study Area and Data

This study investigates the API data in the area of Klang, Peninsular Malaysia, which
is located at latitude 101◦26′44.023 E and longitude 3◦2′41.701 N. Klang is one of the
largest cities in Malaysia, with a land area of approximately 573 km2. This city has a dense
population and is very actively involved in a range of important economic and industrial
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activities, particularly with the import and export trade. Klang has also been recognized as
the 13th busiest trans-shipment port and the 16th busiest container port in the world [42].
Although many advantages are associated with its rapid development, economic activity,
and dense population, Klang is prone to poor air quality, which makes it an ideal case for
the investigation and continuous evaluation of the Malaysia’s air quality [43]. Figure 1
shows maps of Klang and Peninsular Malaysia [44].

Figure 1. Maps of (a) Peninsular Malaysia (Klang location identified by red dot) and (b) the city of Klang.

In Malaysia, the responsibility for collecting, supervising, and reporting API data
is held by the Department of Environment (DOE), Malaysia. As a case study, hourly
API data in Klang for the period of 1 January 1997 to 31 August 2020 was used in the
analysis. A total of five major pollutant variables are recorded hourly, including carbon
monoxide (CO), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate
matter less than 10 microns in size (PM10). The observed data for O3, CO, NO2, and SO2,
have been measured in terms of the parts per million (ppm) unit mass of a contaminant,
while the observed PM10 data have been measured in terms of micrograms per cubic
meter (µg/m3). Thus, to measure the API indices, these pollutant variables need to be
standardized to derive individual indices. Based on each individual indices, their values
can then be integrated based on the highest sub-indices to determine the API indices at
particular times [45]. A detailed calculation on the standardization and determination
of the sub-indices values for each pollutant variable can be referred to in Masseran and
Safari [46]. Figure 2 illustrate the schematic process for determining the API value based
on five pollutant variables [47].



Int. J. Environ. Res. Public Health 2021, 18, 8751 4 of 18

Figure 2. The process of determining the API value.

Based on the API index values, the DOE classifies API values higher than 100 as
unhealthy air pollution events [48], and consecutive API values greater than 100 in a given
period indicate the duration of an air pollution event. Assuming that the random variable
Di represents the duration of any pollution event, then i = 1, 2, 3, . . . , n. Mathematically,
the duration of an air pollution event can be determined as follows:

Di =
N

∑
j=1

Ii
(

APIj
)
, f or i = 1, 2, 3, . . . , n, (1)

where N is the total number of observations, and Ii
(

APIj
)

is an indicator function, which
is determined as follows:

Ii
(

APIj
)
=

{
1, i f APIj > 100,

0, i f APIj ≤ 100.
(2)

For any pollution event of a certain duration, the severity of that event can be de-
termined based on the cumulative API values obtained during that period using the
following equation:

Si =
Di

∑
j=1

APIj, (3)

where Si is a random variable representing the severity of a pollution event, i = 1, 2, 3, . . . ,
n. Figure 3 shows a graphical representation of the process used to determine the severity
and duration of an air pollution event.
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Figure 3. Time series plot corresponding to unhealthy air pollution event threshold.

3. Copula Description of Air Pollution Characteristics

Sklar’s theorem [49] provides an important foundation for the theory and application
of the copula model. Copulas play a significant role as mapping functions that enable the
combination of uniformly distributed marginal models. Specifically, copulas represent
a joint distribution and describe the dependence structure of any arbitrarily distributed
dependent variables [50]. Based on Sklar’s theorem, a copula function can be constructed
using the following equation:

H(x1, x2, . . . , x2) = C[F1(x1), F2(x2), . . . , Fn(xn)] = C(u1, u2, . . . , un) (4)

where H(x1, x2, . . . , x2) denotes an n-dimensional distribution function, Fi(xi) = ui is a
specified univariate marginal distribution function for random variable Xi with
U ∼ uni f orm(0, 1), and C denotes the copula function [29]. In the context of the bivariate
model used in air pollution studies, assuming that the random variables X1 = D and X2 = S
represent the duration and severity of an air pollution event, respectively, the copula model
described in Equation (4) can be simplified as follows:

H(d, s) = C[FD(d), FS(s)] = C(u1, u2). (5)

Equation (5) defines a two-dimensional copula as a mapping function of [0, 1]2 → [0, 1] ,
which implies that a bivariate distribution function can be defined in [0, 1]2 with the stan-
dard univariate margins u1 and u2 [31]. Thus, the bivariate density function of a copula
can be obtained as follows:

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
. (6)

Based on the copula model, the dependency between the pollutant duration and
severity can be determined using Kendall’s τ correlation. This correlation provides a
scale-invariant measure for determining this dependency based on the concept of concor-
dance [51]. As mentioned by Klein et al. [52], Kendall’s τ has good resistance to outliers
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and provides a wider class of dependencies. Generally, the Kendall’s τ correlation can be
related to the copula parameter, θ, using the following equation:

τ = 4
x

[0,1]

C(u, v; θ)c(u1, u2; θ)du1du2 − 1. (7)

Another important piece of information that can be determined is the conditional
probability of the air pollution severity given a certain air pollution duration. This informa-
tion can benefit authorities who are tasked with evaluating the patterns and trends of air
pollution behavior, particularly during critical air pollution events. Mathematically, this
conditional probability can be computed using the following formula [40]:

P(S ≤ s|D ≥ d′) = FS(s)− C(FD(d′), FS(s))
1− FD(d′)

=
u2 − C

(
u′1, u2

)
1− u′1

. (8)

The copula model can also be used to estimate the return periods of air pollution char-
acteristics. An understanding of the information provided by the return period can serve
as a basis for planning and developing monitoring systems to reduce the risk associated
with extreme air pollution events. The return period provides insight into the average
recurrence interval between unhealthy air pollution events. This information could be
beneficial for evaluating the patterns and trends of air pollution behaviors, particularly
during critical air pollution events. According to Shiau [40], the copula model is useful for
providing information about the joint and conditional return periods of a bivariate event.
The joint return period for D ≥ d or S ≥ s can be determined as follows:

T′DS =
E(L)

P(D ≥ d ∪ S ≥ s)
=

E(L)
1− FDS(d, s)

=
E(L)

1− C(FD(d), FS(s))
, (9)

where E(L) is the expected inter-arrival time of an air pollution event. Likewise, the joint
return period for D ≥ d and S ≥ s can be determined as follows:

TDS = E(L)
P(D≥d∩S≥s) =

E(L)
1−FD(d)−FS(s)+FDS(d,s)

= E(L)
1−FD(d)−FS(s)+C(FD(d),FS(s))

.
(10)

On the other hand, the conditional return period for D, given S ≥ s, can be determined
as follows:

TD|S≥s = E(L)
1−FS(s)

× 1
1−FD(d)−FS(s)+FDS(d,s)

= 1
[1−FS(s)][1−FD(d)−FS(s)+C(FD(d),FS(s))]

,
(11)

Additionally, the conditional return period for S given D ≥ d can be determined
as follows:

TS|D≥d = E(L)
1−FD(d) ×

1
1−FD(d)−FS(s)+FDS(d,s)

= 1
[1−FD(d)][1−FD(d)−FS(s)+C(FD(d),FS(s))]

.
(12)

4. Copula Models

Various copula models are available in the literature for modeling the relationship
between the duration–severity variables. However, to obtain an accurate result, comparing
several copula models is important to find the one that provides the best representation of
the dataset.

4.1. Clayton Copula

The Clayton copula model is useful for capturing the positive dependence of bivariate
variables in which the strength of the dependency is dictated by the parameter 0 ≤ θ < ∞.
With a particular rotation, this copula is appropriate for modeling either a positive or
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negative dependence structure that exists in a dataset [53]. The bivariate joint cumulative
distribution function (CDF) and probability density function (PDF) of a Clayton copula are
given as:

C(u1, u2) =
(

u−θ
1 + u−θ

2 − 1
)− 1

θ , (13)

c(u1, u2) = (θ + 1)
(

u−θ
1 + u−θ

2 − 1
)−( 1+2θ

θ )
(u1u2)

−θ−1. (14)

The Kendall’s τ correlation determined by the Clayton copula is given as:

τ =
θ

θ + 2
(15)

4.2. Ali–Mikhail–Haq (AMH) Copula

The AMH copula is suitable for datasets in which there is a weaker dependence among
the variables [53]. However, this copula is always used for comparison with other copulas
in terms of model fitting. The bivariate joint CDF and PDF of the AMH copula are given as:

C(u1, u2) =
u1u2

1− θ(1− u1)(1− u2)
, (16)

c(u1, u2) =
[1− θ(1− u1)(1− u2)] + 2θu1u2

[1− θ(1− u1)(1− u2)]
3 , (17)

With the parameter space [−1,1), the Kendall’s τ correlation determined by the AMH
copula is given as:

τ =

[
3θ − 2

3θ

]
−
[

2(1− θ)2

3θ2

]
[ln(1− θ)]. (18)

4.3. Frank Copula

The Frank copula provides a versatile dependency measure because it can accommo-
date the entire range of dependencies, τθ ∈ [1,−1] [41]. Thus, with the correct rotation,
the Frank copula is an appropriate model for describing either a positive or negative
dependence structure in the dataset [54]. The bivariate joint CDF and PDF of the Frank
copula are given as:

C(u1, u2) = −
1
θ

ln

[
1 +

(
e−θu1 − 1

)(
e−θu2 − 1

)
e−θ − 1

]
, (19)

c(u1, u2) =
−θe−θ(u1+u2)

(
e−θ − 1

)[
e−θ(u1+u2) − e−θu1 − e−θu2 + e−θ

]2 , (20)

The Kendall’s τ correlation determined by the Frank copula is given as:

τ = 1 +
4[D1(θ)− 1]

θ
, (21)

where D1(θ) =

∫ θ
0

tk

e(t−1) dt

θ is a Debye function [50].
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4.4. Plackett Copula

The Plackett copula is also appropriate for modeling either the positive or negative
dependence structures in a dataset [53]. The bivariate joint CDF and PDF of the Plackett
copula are given as:

C(u1, u2) =

{
1 + (θ − 1)(u1 + u2)−

[
(1 + (θ − 1)(u1 + u2))

2 − 4θ(θ − 1)(u1u2)
] 1

2
}

2(θ − 1)
, (22)

c(u1, u2) =
[
(1 + (θ − 1)(u1 + u2))

2 − 4θ(θ − 1)(u1u2)
]− 3

2
θ[1 + (θ − 1)(u1 + u2 − 2u1u2)] (23)

with the parameter space (0, ∞). However, the Plackett copula has no analytical form for
Kendall’s τ correlation. Thus, the measure of Kendall’s τ correlation must be obtained by
the numerical integration of Equation (7) [50].

4.5. Gumbel–Hougaard (GH) Copula

The GH copula is suitable to be used to model the positive dependence structure
among variables [41,53]. The GH copula can be extended to model the negative dependence
by using the concept of rotations [38]. The bivariate joint CDF and PDF of the GH copula
are given as:

C(u1, u2) = e−[(− ln u1)
θ+(− ln u1)

θ ]
1
θ

, (24)

c(u1, u2) =
C(u1, u2)[(− ln u1) + (− ln u2)]

θ−1[ϑ]
2
θ−2
{
[(θ − 1)][ϑ]−

1
θ + 1

}
u1u2

, (25)

with the parameter space [1, ∞), and ϑ = (− ln u1)
θ + (− ln u2)

θ . The Kendall’s τ correla-
tion determined by the GH copula is given as:

τ = 1− 1
θ

. (26)

4.6. Joe Copula

The Joe copula is also suitable for describing the positive dependence among vari-
ables [41,53]. As reported by McNeil et al. [55], the Joe copula is a good choice for cases
in which the dataset exhibits a higher positive correlation among the random variables
involved. Apart from that, the Joe copula can be extended to model negative dependence
by using the concept of rotations [38]. The bivariate joint CDF and PDF of the Joe copula
are given as:

C(u1, u2) = 1−
[
(1− u1)

θ + (1− u2)
θ − (1− u1)

θ(1− u2)
θ
] 1

θ , (27)

c(u1, u2) =

∂

{
1−

[
(1− u1)

θ + (1− u2)
θ − (1− u1)

θ(1− u2)
θ
] 1

θ

}
∂u1∂u2

, (28)

with the parameter space [1, ∞). The Kendall’s τ correlation for the Joe copula is obtained
as follows:

τ = 1 +

−2 + 2γ + 2 ln(2) + Ψ
(

1
θ

)
+ Ψ

(
1
θ

(
2+θ

θ

))
+ θ

θ − 2

, (29)

where γ = lim
n→∞

(
n
∑

i=1

1
i − ln(n)

)
≈ 0.57721 is a Euler constant, and Ψ(x) = d

dx ln(Γ(x)) is a

digamma function [38].
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5. Parameter Estimation and Model Selection

Several methods are available in the literature for estimating copula parameters. In
this study, the pseudo maximum likelihood estimation (pseudo-MLE) method is used
to estimate the parameter of each copula model. This method has the advantage of not
requiring accurate information of the parametric form in the marginal model for each
variable. Thus, this method provides a more flexible approach than other estimation
methods [31].

5.1. Pseudo Maximum Likelihood Estimation (Pseudo-MLE)

In general, the pseudo-MLE is a semi-parametric method that uses a nonparametric
empirical distribution (NED) to represent the marginal distribution of the variables in-
volved in the copula model [56]. The NED for both the duration and severity variables is
determined as follows:

F̂i(u) =

n
∑

j=1
1
(
Uij ≤ u

)
n + 1

, i = 1, 2. (30)

Next, using the NED as a basis for the marginal models, the copula parameter is esti-
mated using the maximum likelihood approach by maximizing the pseudo-log-likelihood
function as follows:

log L(θ) =
n

∑
j=1

ln
[
c
(

F̂1
(
u1j
)
, F̂2
(
u2j
)
; θ
)]

. (31)

5.2. Cross-Validation Copula Information Criterion (cvCIC)

The cvCIC criterion is used to select the copula model that best fits a dataset. Hofert
et al. [29] briefly reported that the cvCIC measure for a fitted copula model can be deter-
mined as follows:

xvn =

n
∑

i=1
log
[
cθn,−i (Fn,−i(Ui))

]
n

, (32)

where θn,−i represents the maximum pseudo-likelihood estimate, and
Fn,−i(Ui) = [Fn,1,−i(u1), Fn,2,−i(u2)] can be computed using the following equation:

Fn,j,−i(u)


n
∑

k=1
1(Ukj≤u)

n , i f u ≥ min
k∈[1,2,...,n]\[i]

Ukj,

1
n , otherwise.

(33)

The copula model that maximizes the cvCIC criterion provides the best-fitted model
to the dataset [57]. A detailed discussion of the cvCIC criterion can be found in [58,59].

6. Results and Discussion

Before conducting a detailed analysis of the structure of the dependency of the vari-
ables for duration and severity, providing a statistical summary of the dataset is useful.
Figure 4 show that the time series plot corresponds to an unhealthy air pollution events
threshold in Klang for the period of January 1, 1997 to August 31, 2020. Based on the
observed API data, the proportion of unhealthy air pollution events is found to be 2.44%.
As described by Masseran and Safari [48], although this proportion is quite small, how-
ever, these events provide the most valuable information, particularly on pollution risk
management and mitigation.
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Figure 4. Time series plot corresponds to unhealthy threshold of air pollution events.

Table 1 show the descriptive statistics for the severity and duration data. Based on
Table 1, the center measures for both variables provided by their means and medians show
a large discrepancy, and the measure of spread shows a very large range between the
maximum and minimum values. In fact, their standard deviations are also very large,
which indicates significant variation in both variables. These findings are more pronounced
for severity, but both have significant skewness with a long right-tail distribution. These
results are based on measures of skewness and kurtosis. A long right-tail distribution also
indicates the presence of extreme and rare events for both variables.

Table 1. Descriptive statistics for the severity and duration data.

Variable Mean Median Min. Value Max. Value Std. Deviation Skewness Kurtosis

Duration
(hours) 21.39 3.00 1.00 224.00 64.81 2.78 9.23

Severity 2876.50 367.00 102.00 36,677.00 15,193.68 3.38 13.12

The empirical distribution plots shown in Figure 5 illustrate these findings. The scatter
plot in Figure 5 also indicates that the duration and severity have a strong positive depen-
dence, with a Pearson correlation coefficient of 0.95. Note that the asterisks *** indicate the
significant correlation at 1% significance level. However, the Pearson correlation measure
is not a reliable method for dealing with data that exhibit skewness, long-tail, and non-
identically marginal distributions [28]. Kendall’s τ correlation, which is derived from a
fitted copula model that takes into account the dependence structure among the variables,
could provide a more reliable measurement [29]. In addition, some large data points are
observed to deviate from the diagonal line, which could be because of the skewness of the
data set. To check further, a K-plot is used to reveal the dependent relationships between
the points close to the curve, which imply high dependence. If the points are close to the
diagonal, this indicates relatively weaker dependence [60]. Figure 6 shows that all of the
data points for air pollution severity–duration are very close to the curve, thus confirming
the positive relationship between the two.
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Figure 5. Empirical plots of the relationship of air pollution severity and duration.

Figure 6. K-plot of the relationship between the duration and severity of air pollution events.

Based on the empirical statistics and plots, first, the marginal model is determined
for the duration–severity data, which serves as a building block for constructing a copula
model. As indicated by Table 1 and Figure 5, the distributions of both the duration and
severity data are highly skewed to the right. In the literature, the exponential, gamma,
lognormal, and Weibull distributions of the models are used to represent marginal models
of the duration and severity data [40,61]. Figure 7 shows the fitted marginal distribution
used to represent the marginal model. The lognormal and gamma distributions seem to
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provide an approximate representation of the duration and severity datasets. However, to
ensure the accuracy of these fitted models, their goodness of fit needs to be evaluated.

Figure 7. Fitted statistical distributions of duration and severity data.

Table 2 presents the results of the goodness-of-fit evaluation on each of the fitted
statistical distributions obtained using the Kolmogorov–Smirnov (KS) test. We found that
the p-values corresponding to the K–S statistics for all of the fitted distributions of both
variables are not significant at α = 0.05, which means that the null hypotheses (i.e., the
data follow a specified distribution) is rejected. Thus, although the plots in Figure 7 show a
good approximation, these fitted distributions cannot reliably represent a marginal model.
An accurate marginal model is critical for ensuring precision in copula modeling [62]. To
overcome this weakness, an empirical distribution determined using Equation (30) will be
used to represent a marginal model.

Table 2. Goodness-of-fit evaluations of the fitted statistical distributions.

Variable Fitted Distribution KS-Statistic p-Value

Duration

Exponential 0.3843 0.0000
Gamma 0.1834 0.0009

Lognormal 0.1877 0.0006
Weibull 0.2227 0.0002

Severity

Exponential 0.3973 0.0000
Gamma 0.2969 0.0000

Lognormal 0.1834 0.0009
Weibull 0.2139 0.0005

Based on the empirical distribution, a pseudo-MLE method is used to estimate the
parameters of each fitted copula model for the dataset. Table 3 shows the parameter
estimates, cvCIC, and Kendall’s τ correlation obtained from each fitted copula model.
Based on the estimated parameters for each fitted copula model, the Joe copula model
was found to obtain the maximum cvCIC criterion value. Thus, we can conclude that
the Joe copula is better than the other copula models in describing the severity–duration
relationship. This result is supported by the graphical representation given in Figure 8
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of each fitted copula model, in which it is clearly shown that the relationship between
the duration and severity of air pollution events is of highly positive dependence with a
stronger structural dependency in the right-upper tails of their distributions. Except for
the AMH copula model, all of the fitted copula models provide a good representation
of the dataset. However, as determined by the cvCIC criterion shown in Table 3, the
model that best represents the data is the Joe copula, which has the maximum cvCIC
criterion value. The Kendall’s τ correlations determined for each copula model do not
differ very much, with the exception of that of the AMH copula. The Kendall’s τ correlation
(0.9195) determined by the Joe copula model is slightly lower that that obtained for the
Pearson correlation (0.9500) and is more reliable because it considers the properties of data
skewness and long-tail behavior in its computation. Next, based on the fitted copula model,
the dependence structure of the severity–duration relationship can be analyzed. This
information could benefit the governing authorities who are responsible for managing the
risk of extreme air pollution, particularly during critical air pollution events. In addition,
the copula approach can work as a simulated model for air pollution risk assessment.
For any given air pollution duration size, the analyst can employ the copula model to
determine the estimated severity size of air pollution event. Figure 9 shows the PDF and
CDF of the fitted Joe copula as density and contour plots.

Table 3. Parameter estimates and cvCIC and Kendall’ τ measures obtained by each fitted cop-
ula model.

Copula Model Parameter Estimate
(θ) cVCIC Kendall’s τ

Clayton 22.85 49.108 0.9195
Ali–Mikhail–Haq 1 35.689 0.3333

Frank 48 142.708 0.9195
Placket 846.5 221.530 0.9195
Gumbel 12.42 199.361 0.9194

Joe 25.38 255.258 0.9195

Figure 8. Fitted copula models for the severity–duration dataset.
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Figure 9. PDF and CDF plots for the fitted Joe copula model corresponding to their contour representations.

The PDF and CDF density and contour plots depict the probable behaviors of the
duration–severity relationship and confirm the dependence structure shown in the scatter
plot of Figure 8. However, the information provided by the PDF and CDF are described
with respect to their joint probability distribution of the duration–severity relationship.
Therefore, PDF and CDF information are referred to as the likelihood or probability of a
certain duration period and severity level occurring simultaneously. The PDF and CDF
contour plots efficiently illustrate the positive dependence and stronger structural depen-
dency in the right-upper tails of the duration–severity data. From the fitted Joe copula, the
probabilities of air pollution events under certain circumstances with a specific severity or
duration can determined. Figure 10 shows the curves of various conditional probabilities of
a certain severity level given the duration of an air pollution event. For example, the author-
ities might want to determine the risk probability for an air pollution severity of less than
8000 and 15,000 for a given duration exceeding 64 h. By normalizing these values using the
probability integral transform to obtain a uniform (0,1), the computed probabilities obtained
are Pr(X2 ≤ 0.90|X1 ≥ 0.89) = 0.908 and Pr(X2 ≤ 0.9608|X1 ≥ 0.89) = 1, respectively.
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Figure 10. Conditional probability of severity level given the duration.

Based on the fitted Joe copula model, the return periods for recurrent air pollution
events of different durations and severities can be computed, as shown in Table 4. The rows
correspond to the first and second columns in Table 4, indicating given specific levels of
duration and severity sizes that represent various scenarios related to air pollution events.
On the other hand, all of the values represented in the third, fourth, fifth, and sixth columns
indicate the estimated joint and conditional return periods for the air pollution duration–
severity pairs in Klang. If the authorities want to evaluate the expected recurrence of air
pollution events of a particular duration and severity, four types of information can be
determined, as described in Equations (9)–(12). For example, for an air pollution event with
a duration of 50 h, with a possibility that this event will achieve a severity level of 20,000,
its joint OR return period (D ≥ 50h ∪ S ≥ 20, 000) is approximately 34.4 days, and its
AND return period (D ≥ 50h ∩ S ≥ 20, 000) is approximately 135.4 days. The conditional
D|S return period for D = 50 h given S ≥ 20, 000 is approximately 4153.6 days, and the
conditional S|D return period for S = 20,000 given D ≥ 50 h is approximately 1056 days.
The above information could be very beneficial to the authorities for air pollution even
planning and for mitigating the risks associated with unhealthy air pollution events.

Table 4. Joint and conditional return periods for the air pollution duration–severity pairs in Klang using the Joe copula.

Duration Size API Severity Joint OR Return
Period, T ′DS (Days)

Joint AND Return
Period, TDS (Days)

Conditional D|S
Return Period,
TD|S≥s (Days)

Conditional S|D
Return Period,
TS|D≥d (Days)

50-h

100 4.4 34.4 34.6 268.5
1000 10.8 34.4 84.3 268.5

10,000 34.4 56.4 720.9 439.9
20,000 34.4 135.4 4153.6 1056.0
30,000 34.4 406.3 4328.5 3168.0

80-h

100 4.4 56.4 56.7 721.1
1000 10.8 56.4 138.1 721.1

10,000 54.8 58.2 743.2 743.2
20,000 56.4 135.4 4153.6 1730.7
30,000 56.4 406.3 7382.4 5192.0
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Table 4. Cont.

Duration Size API Severity Joint OR Return
Period, T ′DS (Days)

Joint AND Return
Period, TDS (Days)

Conditional D|S
Return Period,
TD|S≥s (Days)

Conditional S|D
Return Period,
TS|D≥d (Days)

100-h

100 4.4 101.6 102.0 2336.4
1000 10.8 101.6 248.6 2336.4

10,000 56.4 101.6 1297.9 2336.4
20,000 101.5 135.5 4153.9 3115.4
30,000 101.6 406.3 7382.4 9345.6

120-h

100 4.4 169.3 170.0 6490.0
1000 10.8 169.3 414.2 6490.0

10,000 56.4 169.3 2163.1 6490.0
20,000 135.4 169.3 5193.5 6491.8
30,000 169.3 406.3 7382.4 15,576.0

150-h

100 4.4 225.7 226.7 11,537.9
1000 10.8 225.7 552.3 11,537.9

10,000 56.4 225.7 2884.1 11,537.9
20,000 135.4 225.7 6922.7 11,537.9
30,000 225.7 406.3 7382.4 20,768.1

7. Conclusions

This study proposes the concept of duration and severity measures for evaluating
unhealthy air pollution events. Since these bivariate criteria indicate the properties of
structural dependency, long-tail, and non- identically marginal distributions, a copula
model is proposed to deal with these issues. In particular, this study presents the application
of a copula model in evaluating the behaviors of unhealthy air pollution events with respect
to their duration and severity characteristics. The duration of an air pollution event was
defined as a period in which the air pollution index values qualify as unhealthy for a period
of consecutive days. On the other hand, the severity was defined as a magnitude of an air
pollution event based on the cumulative effect of an unhealthy API during air pollution
events. These two characteristics are related because the severity of an air pollution event
always depends on its duration. Thus, considering their dependency, copula models were
used to jointly model a combination of the marginal distributions of both variables.

A case study was conducted using data from Klang, Malaysia. To ensure the accuracy
of the marginal model, an empirical distribution approach was proposed in the copula
model. A total of six types of copula models, namely the Clayton, Ali–Mikhail–Haq,
Frank, Plackett, Gumbel–Hougaard, and Joe copulas, were considered for evaluating the
relationship between the duration and severity of unhealthy air pollution events in Klang.
Based on its efficient fit, the Joe copula was found to best fit the data. Based on the Joe copula
model, several valuable statistical measures for assessing air pollution risk were proposed,
including (i) the Kendall’s τ correlation of the copula to measure the dependency between
the duration and severity of an air pollution event, (ii) the conditional probability of a
certain air pollution severity given the air pollution duration, (iii) the joint OR/AND return
period, and (iv) the conditional D|S and S|D return periods. All of the these measures
could be very beneficial for planning and mitigating the risks associated with unhealthy air
pollution events. On the other hand, this approach is also applicable in other areas such as
for natural hazards, extreme wind speeds, climate change, extreme temperature analysis,
etc. Particularly, for the purpose of investigating the severity impact of some particular risky
events corresponding to their duration size. Further research is recommended to evaluate
how the trivariate relationship corresponds to the duration, severity, and intensity of air
pollution event. A vine-copula approach could be used to analyze various combination
structures represented by a duration–severity–intensity relationship.
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