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Abstract: The correct diagnosis and recognition of crop diseases play an important role in ensuring
crop yields and preventing food safety. The existing methods for crop disease recognition mainly
focus on accuracy while ignoring the algorithm’s robustness. In practice, the acquired images
are often accompanied by various noises. These noises lead to a huge challenge for improving
the robustness and accuracy of the recognition algorithm. In order to solve this problem, this
paper proposes a residual self-calibration and self-attention aggregation network (RCAA-Net) for
crop disease recognition in actual scenarios. The proposed RCAA-Net is composed of three main
modules: (1) multi-scale residual module, (2) feedback self-calibration module, and (3) self-attention
aggregation module. Specifically, the multi-scale residual module is designed to learn multi-scale
features and provide both global and local information for the appearance of the disease to improve
the performance of the model. The feedback self-calibration is proposed to improve the robustness
of the model by suppressing the background noise in the original deep features. The self-attention
aggregation module is introduced to further improve the robustness and accuracy of the model
by capturing multi-scale information in different semantic spaces. The experimental results on the
challenging 2018ai_challenger crop disease recognition dataset show that the proposed RCAA-Net
achieves state-of-the-art performance on robustness and accuracy for crop disease recognition in
actual scenarios.

Keywords: crop disease recognition; self-calibration; self-attention; residual

1. Introduction

The occurrence of crop diseases has a certain negative impact on agricultural produc-
tion. If crop diseases are not discovered in time, it will increase the risk of food loss [1],
especially for some major food crops, such as corn, rice, wheat, etc., which are key to
meeting human living needs and promoting productivity development. Therefore, it is of
great practical significance to explore an intelligent, low-cost, and highly accurate method
to implement crop disease recognition. The feature extraction and pattern recognition in
machine learning help to identify the type and severity of crop diseases. Automatic quality
analysis of plant health status through the color, shape and size of plant leaf images is an
accurate and reliable method to improve productivity [2,3].

Crop disease recognition based on traditional image processing methods is incompa-
rable in recognition accuracy and robustness compared to methods based on deep neural
networks that have emerged in recent years. Most of the current methods based on deep
neural networks are trained on the public dataset PlantVillage [4] or simple background
images to construct models for realizing crop disease image recognition. However, the
type of method creates some problems. The public dataset PlantVillage has a simple
background, and the characteristics of crop diseases are diverse. Since the acquisition of
annotated images requires the participation of experts, the categories are often unbalanced,
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and the direct migration of the model trained on PlantVillage is not very good. When the
disease recognition method based on simple background images is applied to recognize the
crop disease in the actual environment, it needs to fight against various noise interference
factors. In addition, the actual recognition accuracy will be greatly reduced, which cannot
meet the practical requirement.

Aiming at the characteristics of crop disease image recognition with a complex back-
ground, more interference, and diverse disease features, this paper takes both the recog-
nition accuracy and robustness of the model into account and proposes a residual self-
calibration and self-attention aggregation network (RCAA-Net) for crop disease recognition
in actual scenarios. The main contributions of this paper are as follows:

• A residual self-calibration and self-attention aggregation network is proposed for crop
disease recognition in actual scenarios. For the problem of crop disease recognition
in actual scenarios, the proposed RCAA-Net can achieve a double improvement of
accuracy and robustness.

• A feedback self-calibration module is proposed to further suppress the background
noise in the original deep features by fine filtering and adjusting the network features
again, thereby effectively improving the robustness of the model.

• A self-attention aggregation module is proposed to automatically focus on discrimina-
tive regions by capturing multi-scale information in different semantic spaces, thereby
further improving the robustness and accuracy of the model.

The rest of this paper is arranged as follows. Section 2 summarizes the related work;
Section 3 details the proposed RCAA-Net method; Section 4 introduces the experimental
settings and results; Section 5 gives the conclusions.

2. Related Work

Crop disease image recognition is a comprehensive use of image processing, phy-
topathology, pattern recognition and other technical means to analyze disease image
information to obtain the characteristic representation and classification model of the dis-
ease so as to accurately classifying the disease category. According to the current idea of
disease image recognition, methods can be divided into the following two categories.

2.1. Traditional Image Processing Methods

Many previous works have considered the problem of image recognition and apply a
special classifier to discern healthy and diseased images. Generally speaking, plant leaves
are primary information for the recognition of crop diseases because most of the symptoms
of diseases first appear on leaves. In the past few decades, the recognition and classifi-
cation of major diseases have been widely used in plants, including K-Nearest Neighbor
(KNN) [5], Support Vector Machine (SVM) [6], Fisher Linear Discriminant (FLD) [7], Artifi-
cial Neural Network (ANN) [8], Random Forest (RF) [9], etc. The disease recognition rate
of classical methods largely depends on the lesion segmentation of various algorithms and
hand-crafted features, such as seven invariant moments, scale-invariant feature transform
(SIFT), Gabor transform, global-local singular values and sparse representation [10–12].
However, hand-crafted features require expensive resource conditions and professional
knowledge, and at the same time, have a certain degree of subjectivity. Moreover, it is
difficult to determine which disease recognition features are the best and most robust
from the extracted target. In addition, most methods cannot effectively separate leaves
and lesion images from the background under complex conditions, resulting in failure to
predict the occurrence of disease. Therefore, due to the complexity of diseased leaf images,
automatic recognition of crop disease is still a challenging task.

2.2. Deep Neural Network Methods

In recent years, deep learning techniques, especially convolutional neural networks
(CNN) [13–15], are rapidly becoming the preferred method to overcome the above-mentioned
challenges [16–20]. Due to the scale invariance of the convolutional neural network, the
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image problem it solves is not limited by the scale and shows outstanding ability in
recognition and classification. For example, Mohanty et al. [21] trained a deep learning
model to identify 14 crops and 26 crop diseases. Ma et al. [22] used deep CNN to identify the
symptoms of cucumber downy mildew, anthracnose, powdery mildew and target leaf spot,
with a recognition accuracy of 93.4%. Kawasaki et al. [23] proposed a CNN-based cucumber
leaf disease recognition method, which achieved an accuracy of 94.9%. Similarly, this paper
also uses CNN to extract plant leaf disease characteristics and proposes a lightweight
convolutional network based on VGG-16. First of all, the original network introduces
depthwise separable convolution (DSC) [24] and global average pooling (GAP) [25] to
replace the standard convolution operation and perform the complete operation at the end
of the network. The connection layer is replaced, and at the same time, batch normalization
technology is applied to training the network and improving the data distribution in the
middle layer and increasing the convergence speed [26]. The experimental results of the
improved network on the plant leaf disease dataset PlantVillage show that the proposed
lightweight convolutional network has a significant improvement in recognition accuracy
and efficiency and is suitable for the task of plant leaf disease recognition, which has
strong engineering practicality and high research value. Most of these methods are aimed
at PlantVillage or simple background image recognition. When facing the recognition
of complex background and various noise interference in the actual environment, the
recognition accuracy will often be greatly reduced due to the complex background noise
interference. Therefore, improving the accuracy, robustness and anti-interference ability
of crop disease image recognition in the actual environment has become the key to crop
disease recognition.

3. Methods

This paper aims to build a novel deep convolutional neural network with simple,
accurate, robust and strong anti-interference ability to achieve high-precision recognition of
crop disease in images. This section first introduces the framework of the proposed RCAA-
Net. Then, the multi-scale residual module, feedback self-calibration module and self-
attention aggregation module are elaborated, respectively. Finally, the network parameters
of the proposed RCAA-Net method are reported, and the loss function is provided.

3.1. Overview

The proposed RCAA-Net method realizes the accurate recognition of crop diseases
and, meanwhile, takes the anti-interference ability into account. The overall network
structure of the RCAA-Net method is shown in Figure 1. For the disease image to be
classified, this paper adopts 1 convolutional layer, 3 residual modules, 3 parallel feedback
self-calibration modules, 1 self-attention aggregation module, 1 global average pooling
layer and 1 Softmax layer to directly output the category probability of the cropped image.

In Figure 1, in order to effectively utilize features of different scales, the output of the
three residual modules is adopted in the proposed RCAA-Net method. By synthesizing the
features of the three scales, it can provide richer features for the subsequent network layer,
improve the recognition accuracy of the model, and indirectly improve the robustness of
the network. In order to finely filter the image features to improve their anti-interference
ability, for each scale feature, we input a feedback self-calibration module to finely filter the
image features and improve anti-interference abilities. In addition, the three scale features
processed by the feedback self-calibration module are input to the self-attention aggregation
module to capture multi-scale information in different semantic spaces to automatically
focus on the discriminative regions, thereby further improving the robustness and accuracy
of the model. The three main modules in the proposed RCAA-Net are described in detail
as follows.
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Figure 1. The framework of the proposed RCAA-Net.

3.2. Multi-Scale Residual Module

Residual network [27] has achieved satisfying results on IRSVRC. The residual net-
work can not only speed up the network fitting and improve the recognition accuracy, but
also has a certain anti-interference ability. Prior to this, residual networks for crop disease
recognition had not attracted enough attention and research. In addition, multi-scale
features can use different levels of semantic information at the same time, thereby avoid-
ing the adverse mesoscale effects in crop disease recognition. To this end, we designed
a multi-scale residual module to effectively solve the above problems and improve the
performance of the crop disease recognition model.

The proposed multi-scale residual module consists of three consecutive residual
modules, and the structure of each residual block is shown in Figure 2. As can be seen
from Figure 2, each residual block consists of 3 dilation convolutional layers, which are
respectively denoted as Conv1, Conv2 and Conv3. The detailed parameters of each
convolutional layer are listed in Figure 2. Here, the adoption of dilation convolution is to
increase the receptive field of feature points, thereby handling large-scale variance of the
lesion area for crop disease without introducing additional computation [28]. The output
after the input passes through Conv1, Conv2 and Conv3 are denoted as X1, X2 and X3,
respectively. We directly cascade X1 and X3 as the total output of the entire residual block.
The specific cascade model can be expressed by:

R(X1) = X1 + X3 = Γ(X1) + X1, (1)

where Γ(·) represents the residual mapping function and R(·) represents the output of
each residual block.

The residual block obtains more prominent fine information in the image by learning
the residual mapping function. The residual block realizes that the low-level features
extracted through Conv1 convolution and the high-level detailed features acquired through
Conv1, Conv2 and Conv3 three-layer convolution are transmitted to the following network
at the same time, and more refined feature extraction is continued. By inputting the
output of the three residual blocks as multi-scale features into the subsequent network,
the detailed description of the low-level features and the abstract representation of the
high-level features in the convolutional neural network can be comprehensively used to
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provide rich and detailed feature representation for the appearance of the disease. In this
way, the recognition accuracy of the model can be effectively improved.

Figure 2. The architecture of the residual block.

3.3. Feedback Self-Calibration Module

In order to achieve high recognition accuracy and anti-interference ability for the im-
ages collected in the actual environment that may contain various noise factors, a feedback
self-calibration module is designed, and its structure is shown in Figure 3. The feedback
self-calibration module is to reload the convolutional layer, perform two deconvolution
operations after loading, and then return the deconvolution result to the previous shallow
layer. Subsequently, it is passed as output to the subsequent network layer model after
repeated loading. The convolutional layer involved is a 3× 3 convolution kernel with
a step size of 1. We can clearly see the entire process of feedback to the self-calibration
module from Figure 3. Let the input of the feedback self-calibration module be Xc, and
the result after deconvolution be Xdec. Then, the feedback self-calibration module can be
optimized under the constraints of the following equation:

lc = ‖Ψ(Xc)− Xc‖2 = ‖Xdec − Xc‖2, (2)

where Ψ(•) represents the feedback self-calibration function and ‖•‖2 represents the L2
norm. Through this constraint, the features after deconvolution can be used to feedback
and adjust the original deep features, thereby suppressing the background noise in the
original deep features and improving the robustness of the model.

Figure 3. The architecture of the feedback self-calibration module.
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In summary, the purpose of introducing the feedback self-calibration module in this
paper is to return the features of the deep convolutional layer in the network to the shallow
convolutional layer so that the network features can be fine-filtered and readjusted. In this
way, the background noise in the original deep features is further suppressed, effectively
improving the robustness of the model.

3.4. Self-Attention Aggregation Module

Research has found that attention can selectively focus on important information in
the data. This paper takes this as inspiration and draws on the Transformer model [29]. The
multi-head self-attention mechanism (MHA) is adopted to extract dependency relationships
in different semantic spaces. The architecture is shown in Figure 4. Multi-head self-attention
is based on the principle of scaled dot-product attention, and its calculation formula is
as follows:

}(Q, V, K) = softmax
(

QKT
√

dk

)
V (3)

where }(·, ·, ·) stands for scaled dot-product attention operation, Q, V, K are the query,
value, and key matrix for calculating self-attention, respectively. QKT is the attention
matrix, weighting the V matrix. dk represents the dimension of the key.

√
dk turns the

attention matrix into a standard normal distribution so that the result is more stable and a
balanced gradient can be obtained when backpropagating.

Figure 4. The architecture of the self-attention aggregation module.

Based on the scaled dot-product attention calculated by Equation (1), the semantic
features are integrated from the subspace containing different semantic information.

Furthermore, the value of MultiHead is obtained through the following two steps.

(1) Firstly, the Q, V and K matrices are mapped into multiple subspaces:
Qi = QW(qi)

Ki = KW(ki)

Vi = VW(vi)

, (4)

where Qi, Ki, and Vi are the query, key and value matrix of each subspace. W(qi),
W(ki) and W(vi) are conversion matrices.
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(2) Secondly, the scaled dot-product attention in each subspace is calculated in paral-
lel, and then the results are concatenated to obtain the context matrix after linear
transformation:

headi = }(Qi, Ki, Vi) (5)

MultiHead = Concat(head 1, head2, . . . , headh)W
T (6)

where headi is the scaled dot-product attention of each subspace, and MultiHead is
the final result.

3.5. Network Parameters and Loss Function

In this paper, RCAA-Net is a simple, accurate and highly robust convolutional neural
network. Table 1 lists the main parameters in this method. Among them, the parameters
of the multi-scale residual module and the feedback self-calibration module are shown in
Figures 2 and 3, respectively. In order to reduce the number of network parameters, we
only use two types of kernels, 1× 1 and 3× 3, which also helps to avoid overfitting due to
the small image set.

Table 1. The detailed parameters of the proposed RCAA-Net.

Layers Output Size

Convolution layer 256× 256× 16
Residual block1 128× 128× 32
Residual block2 64× 64× 64
Residual block3 32× 32× 128

Feedback self-calibration module 1 128× 128× 128
Feedback self-calibration module 2 64× 64× 128
Feedback self-calibration module 3 32× 32× 128
Self-attention aggregation module 1× 128

FC layer 1× 256
Softmax layer 1× 61

In order to realize the proposed RCAA-Net for end-to-end training, the objective
function of this paper adopts Softmax, and its formula is as shown in Equation (7).

lcls = −
1
L

 L

∑
l=1

K

∑
k=1

q(yl == k) log
eθT

k Xt

K
∑

p=1
eθT

p Xt

 (7)

where (X1, y1), (X2, y2), . . . , (XL, yL) is the training set, Xl is the l-th training sample, and
yl ∈ 1, 2, 3, . . . , K is the label corresponding to Xl . θT

k and θT
p denote the transposition of θk

and θp, respectively. L and K denote the number of training samples and the number of
categories, respectively. q(·) is the guiding function.

By combining Equations (2) and (7), the final loss function is obtained as follows:

l f inal = lc + lcls = ‖Xdec − Xc‖2 −
1
L

 L

∑
l=1

K

∑
k=1

q(yl == k) log
eθT

k Xt

K
∑

p=1
eθT

p Xt

 (8)

By minimizing the final loss in Equation (8), the proposed RCAA-Net is trained end-to-end.
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4. Experiment
4.1. Experiment Setup
4.1.1. Dataset

The dataset employed in this paper comes from the crop disease detection competition
in 2018ai_challenger. The dataset contains 31,718 training images, 4540 verification images,
and 4514 testing images, covering different diseases in apples, corn, grapes, citrus, peaches,
peppers, potatoes, strawberries, tomatoes and others. Some examples of the dataset are
shown in Figure 5. The images in this dataset contain various noises and environmental
factors such as angles and lighting. Therefore, the dataset can truly reflect the current status
of data resources during crop disease image recognition in the actual environment and is
sufficient to verify the accuracy and robustness of the method in this paper for crop disease
recognition in actual scenarios.

Figure 5. Some examples of the dataset.

4.1.2. Implementation Details

We verify the RCAA-Net method on the 2018ai_challenger crop disease recognition
dataset. The model is trained on a machine with NVIDIA GPU 1080i with 300 epochs.
Generally, after 50 iterations of training, RCAA-Net can output satisfactory accuracy. In
this paper, the Adam optimization algorithm is used to optimize the loss function of
Equation (8), and the initial learning rate is 3× 10−3. The batch size is set to 128. In the test
phase, in order to prove the anti-interference ability of the proposed RCAA-Net network,
we add different levels of Gaussian and salt and pepper noise to the test images to verify
the recognition accuracy of the network and evaluate the robustness of the network.

4.1.3. Comparison Methods

In order to verify the effectiveness and superiority of the proposed RCAA-Net, we
conducted experiments on the 2018ai_challenger crop disease recognition dataset. Specifi-
cally, detailed experiments were conducted to verify the proposed RCAA-Net in terms of
accuracy and robustness.

The comparison methods used in the experiment include LeafSnap SVM (RBF) method [30],
LeafSnap NN method, HCF SVM (RBF) method [31], HCF-Scale Robust SVM (RBF)
method [31], combined linear SVM method [31] and SIFT linear SVM method [32].

Among them, the LeafSnap NN method uses neural networks to classify and recognize
gist features. HCF SVM (RBF) classifier leverages SVM (RBF) to classify hand-designed
features. Here, the SVM (RBF) method is to apply the radial basis kernel function SVM
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classifier to classify the leaf gist features [31]. The SVM classifier was implemented by
libsvm [33]. The HCF-Scale Robust SVM (RBF) method extracts the features except for
the leaf contour length, area and skeleton length from the HCF features and uses the
SVM (RBF) classifier for classifying. The features in the combined linear SVM method
include the features extracted by the convolutional neural network ConvNet [34] and the
features extracted by the HCF-Scale Robust method. Among them, ConvNet includes
5 convolutional layers, 3 maximum pooling layers and 2 fully connected layers. The SIFT
linear SVM method is to extract SIFT features and use a simple linear SVM classification
method based on sparse coding linear space pyramid matching SPM kernel for classification
and recognition.

In addition, to make a fair comparison, we adopt the proposed RCAA-Net by adopting
the input image size 256× 256, which matches the input images size of the other comparison
methods. The adapted method is noted as RCAA-Net (adaptive).

In order to verify the effectiveness of each module, we design different models. Specif-
ically, a model that does not include residual connections, feedback self-calibration and
self-attention aggregation is used as a baseline. On this basis, we have added residual
connections to form a comparison method named RES. The feedback self-calibration mod-
ule is added based on the baseline to form the self-calibration method. The self-attention
aggregation module is added on the basis of the baseline to form the self-attention method.
The effectiveness of each module is illustrated by comparing each method.

4.2. Comparison with State-of-the-Art Methods

In order to verify the accuracy of the RCAA-Net method in this paper, this paper
trains the model on the 2018ai_challenger crop disease recognition dataset. The accuracy
change of the model during training is shown in Figure 6. It can be seen that the RCAA-Net
proposed in the end-to-end training manner can quickly converge and achieve an ideal
recognition accuracy. This shows the efficiency of the proposed RCAA-Net.

Figure 6. The accuracy curve during the training phase.

In order to more accurately illustrate the superiority of the proposed RCAA-Net
method, we have compared the recognition accuracy with the existing methods. The
experimental comparison results are shown in Table 2.
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Table 2. The comparison results with the state-of-the-art methods.

Methods Accuracy Image Size

RCAA-Net 0.892 224× 224
RCAA-Net (adaptive) 0.895 256× 256
LeafSnap SVM (RBF) 0.407 256× 256

LeafSnap NN 0.569 256× 256
HCF SVM (RBF) 0.676 256× 256

HCF-Scale Robust SVM (RBF) 0.625 256× 256
Combined linear SVM 0.871 256× 256

SIFT linear SVM 0.548 256× 256

It can be seen from Table 2 that the RCAA-Net method in this paper is significantly
better than other methods except for the combined linear SVM method. Compared with the
combined linear SVM method that utilizes more complex networks, the proposed RCAA-
Net method still has higher recognition accuracy, which further illustrates the efficiency of
the proposed RCAA-Net method in crop disease recognition. The proposed RCAA-Net
method only adopts a simple network to achieve end-to-end recognition. The size of the
convolutional layer and the number of parameters are small, which effectively reduces
the difficulty of model training. In this paper, the network operation parameters are only
45.68% of the ConvNet parameters in the combined linear SVM method. In addition, when
identifying crop diseases in the actual environment, due to the limited number of labeled
image sets and fewer parameters, the over-fitting problem caused by insufficient training
data can be better alleviated by the proposed method. We argue that the main reason for
the state-of-the-art performance includes two aspects. On the one hand, we develop a
self-attention aggregation module to automatically focus on the discriminative regions
by capturing multi-scale information in different semantic spaces, which can effectively
make the proposed RCAA-Net more accurate. On the other hand, we develop a feedback
self-calibration module for further suppressing the background noise in the original deep
features by fine filtering and adjusting the network features, thereby effectively improving
the effectiveness of the proposed RCAA-Net. Note that when we adopt more small-input
images (224× 224), the accuracy of the proposed method had almost no change, but the
computational burden was further decreased.

4.3. The Discussion under Different Noise Conditions

In order to prove the effectiveness of various modules in the proposed RCAA-Net
method, we perform the proposed RCAA-Net method, baseline model, RES model, self-
calibration model and self-attention model on the 2018ai_challenger crop disease recogni-
tion dataset. The experimental results are shown in Table 3.

Table 3. The experimental ablation results.

Methods Accuracy

RCAA-Net 0.892
Baseline 0.617

RES 0.705
Self-calibration 0.684
Self-attention 0.751

From Table 3, it can be seen that on the 2018ai_challenger crop disease recognition
dataset, when the general convolutional network CNN is utilized, the recognition accu-
racy rate was 0.617. When the residual connection, the feedback self-calibration module
and self-attention aggregation module were added separately, the accuracy rates were
increased to 0.705, 0.684 and 0.751, respectively. Compared with the baseline, RES, self-
calibration and self-attention methods, the RCAA-Net method in this paper achieves the
highest recognition accuracy rate of 0.892. This fully shows that when combined with the
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residual connection, the self-calibration module and the self-attention aggregation module
can be fed back to bring higher recognition accuracy, which has important enlightening
significance and reference value for crop disease recognition and recognition problems in
other fields.

Furthermore, in order to verify the robustness of the proposed RCAA-Net method in
this paper, we add Gaussian noise, salt and pepper noise, and Gaussian and salt and pepper
noise at the same time to the testing set. The proposed RCAA-Net method is evaluated
to show the robustness of the model by adding different levels of noise interference. The
noise level interval added in the testing set of this experiment is 0.005.

Figures 7–9 respectively show the comparison results of recognition accuracy when
adding Gaussian noise, salt and pepper noise, and both Gaussian and salt and pepper noise
in the test set of the 2018ai_challenger crop disease recognition dataset. In Figures 7–9,
the abscissa represents the added noise level, and the ordinate represents the recognition
accuracy obtained by the test. It is obvious from Figures 7–9 that the recognition accuracy
of the blue curve (corresponding to the RCAA-Net method) is higher than other methods.
In this work, we can also find the performances of the proposed RCAA-Net dropdown
more rapidly when the noise levels increase, which is maybe due to the adverse interaction
of various modules when combining them. In the future work, we will explore a more
effective combination manner among different modules to further improve the performance
for crop disease recognition in actual scenarios. Furthermore, when the noise is added, the
recognition accuracy will decrease because the addition of noise will affect the network
model extracts and effective features of the image lesions, which in turn affects the accurate
recognition of the model. In the same way, the recognition accuracy will decrease as the
noise level increases. This is because as the level increases, the number of effective pixels in
the lesion area that can be extracted will gradually decrease, which makes it difficult for
the model to obtain an accurate prediction category.

Figure 7. Recognition accuracy results when adding different levels of Gaussian noise.

It can be seen from Figure 7 that when Gaussian noise with a level of 0.005 is added,
the recognition accuracy of all methods gets different degrees of attenuation. Under the
conditions of different levels of Gaussian noise, in addition to the RCAA-Net method, the
self-attention method has the highest recognition accuracy. When other levels of noise are
added, it can also be seen that the RCAA-Net method has the highest recognition accuracy.
It can be seen that the anti-interference ability of the RCAA-Net method against Gaussian
noise is stronger than other comparison methods. Similar conclusions can be drawn from
the test results of adding different noises. Therefore, when adding different levels of noise
to the testing set of the 2018ai_challenger crop disease recognition dataset, the proposed
RCAA-Net in this paper achieves high accuracy and strong robustness.
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Figure 8. Recognition accuracy results when adding different levels of salt and pepper noise.

Figure 9. Recognition accuracy results when adding different levels of Gaussian noise + salt and
pepper noise.

5. Conclusions

In order to improve the accuracy and robustness of crop disease recognition, this
paper introduces a residual self-calibration and self-attention aggregation network (RCAA-
Net) for crop disease recognition in actual scenarios. On the one hand, we develop a
self-attention aggregation module to automatically focus on the discriminative regions
by capturing multi-scale information in different semantic spaces, which can effectively
make the proposed RCAA-Net more accurate. On the other hand, we develop a feedback
self-calibration module for further suppressing the background noise in the original deep
features by fine filtering and adjusting the network features; thereby, effectively improv-
ing the effectiveness of the proposed RCAA-Net. Subsequently, in order to verify the
proposed RCAA-Net method, this paper carried out corresponding experiments on the
2018ai_challenger crop disease recognition dataset. After a large number of experimental
verifications, the proposed RCAA-Net method had higher accuracy and robustness on the
same testing dataset. In the next step, we will consider two aspects to further improve the
method for crop disease recognition in actual scenarios. Firstly, we plan to add a saliency
detection module to the network model to better locate the significant lesion area in the
data, further optimize the model structure, and improve the accuracy and robustness of
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network recognition. Secondly, we will explore a more effective combination manner
among different modules to further improve the performance for crop disease recognition
in actual scenarios.

Author Contributions: Conceptualization, Q.Z. and X.L.; formal analysis, Q.Z.; data curation, Q.Z.;
writing—original draft preparation, Q.Z.; writing—review and editing, B.S., Y.C. and X.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62001378, in part by National Natural Science Foundation of China (62076199), in
part by the Shaanxi Provincial Department of Education 2020 Scientific Research Plan under Grant
20JK0913, and in part by the Shaanxi Province Network Data Analysis and Intelligent Processing Key
Laboratory Open Fund under Grant XUPT-KLND (201902).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated for this study are available online at https:
//challenger.ai/competition/pdr2018 (accessed on 5 March 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Wu, H.; Kang, Z.; Li, X.; Li, Y.; Li, Y.; Wang, S.; Liu, D. Identification of Wheat Leaf Rust Resistance Genes in Chinese Wheat

Cultivars and the Improved Germplasms. Plant Dis. 2020, 104, 2669–2680. [CrossRef] [PubMed]
2. Boulent, J.; Foucher, S.; Théau, J.; St-Charles, P.L. Convolutional neural networks for the automatic identification of plant diseases.

Front. Plant Sci. 2019, 10, 941. [CrossRef] [PubMed]
3. Wang, X.; Liu, J.; Zhu, X. Early real-time detection algorithm of tomato diseases and pests in the natural environment.

Plant Methods 2021, 17, 1–17. [CrossRef] [PubMed]
4. Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease

diagnostics. arXiv 2015, arXiv:1511.08060.
5. Guettari, N.; Capelle-Laizé, A.S.; Carré, P. Blind image steganalysis based on evidential k-nearest neighbors. In Proceedings of

the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway,
NJ, USA, 2016; pp. 2742–2746.

6. Deepa, S.; Umarani, R. Steganalysis on Images using SVM with Selected Hybrid Features of Gini Index Feature Selection
Algorithm. Int. J. Adv. Res. Comput. Sci. 2017, 8, 1503–1509.

7. Ramezani, M.; Ghaemmaghami, S. Towards genetic feature selection in image steganalysis. In Proceedings of the 2010 7th IEEE
Consumer Communications and Networking Conference, Las Vegas, NV, USA, 9–12 January 2010; IEEE: Piscataway, NJ, USA,
2010; pp. 1–4.

8. Sheikhan, M.; Pezhmanpour, M.; Moin, M. Improved contourlet-based steganalysis using binary ppaper swarm optimization and
radial basis neural networks. Neural Comput. Appl. 2012, 21, 1717–1728. [CrossRef]

9. Kodovsky, J.; Fridrich, J.; Holub, V. Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 2011,
7, 432–444. [CrossRef]

10. Guo, Y.; Hastie, T.; Tibshirani, R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2007,
8, 86–100. [CrossRef] [PubMed]

11. Zhang, S.; Wang, Z. Cucumber disease recognition based on global-local singular value decomposition. Neurocomputing 2016,
205, 341–348. [CrossRef]

12. Zhang, S.; Wu, X.; You, Z.; Zhang, L. Leaf image based cucumber disease recognition using sparse representation classification.
Comput. Electron. Agric. 2017, 134, 135–141. [CrossRef]

13. Ning, H.; Zhao, B.; Yuan, Y. Semantics-Consistent Representation Learning for Remote Sensing Image-Voice Retrieval. IEEE Trans.
Geosci. Remote. Sens. 2021. [CrossRef]

14. Almabadi, E.S.; Bauman, A.; Akhter, R.; Gugusheff, J.; Van Buskirk, J.; Sankey, M.; Eberhard, J. The Effect of a Personalized Oral
Health Education Program on Periodontal Health in an At-Risk Population: A Randomized Controlled Trial. Int. J. Environ. Res.
Public Health 2021, 18, 846. [CrossRef] [PubMed]

15. Alsoghair, M.; Almazyad, M.; Alburaykan, T.; Alsultan, A.; Alnughaymishi, A.; Almazyad, S.; Alsuhaibani, M. Medical Students
and COVID-19: Knowledge, Preventive Behaviors, and Risk Perception. Int. J. Environ. Res. Public Health 2021, 18, 842. [CrossRef]
[PubMed]

https://challenger.ai/competition/pdr2018
https://challenger.ai/competition/pdr2018
http://doi.org/10.1094/PDIS-12-19-2619-RE
http://www.ncbi.nlm.nih.gov/pubmed/32729796
http://doi.org/10.3389/fpls.2019.00941
http://www.ncbi.nlm.nih.gov/pubmed/31396250
http://doi.org/10.1186/s13007-021-00745-2
http://www.ncbi.nlm.nih.gov/pubmed/33892765
http://doi.org/10.1007/s00521-011-0729-9
http://doi.org/10.1109/TIFS.2011.2175919
http://doi.org/10.1093/biostatistics/kxj035
http://www.ncbi.nlm.nih.gov/pubmed/16603682
http://doi.org/10.1016/j.neucom.2016.04.034
http://doi.org/10.1016/j.compag.2017.01.014
http://doi.org/10.1109/TGRS.2021.3060705
http://doi.org/10.3390/ijerph18020846
http://www.ncbi.nlm.nih.gov/pubmed/33478179
http://doi.org/10.3390/ijerph18020842
http://www.ncbi.nlm.nih.gov/pubmed/33478172


Int. J. Environ. Res. Public Health 2021, 18, 8404 14 of 14

16. Duan, C.; Xiao, N. Parallax-based second-order mixed attention for stereo image super-resolution. IET Comput. Vis. 2021.
[CrossRef]

17. Xie, X.; Yang, T.; Zhang, Y.; Liang, B.; Liu, L. Accurate localization of moving objects in dynamic environment for small unmanned
aerial vehicle platform using global averaging. IET Comput. Vis. 2021. [CrossRef]

18. Hu, J.; Kong, H.; Fan, L.; Zhou, J. Enhancing feature fusion with spatial aggregation and channel fusion for semantic segmentation.
IET Comput. Vis. 2021. [CrossRef]

19. Kong, J.; Shen, H.; Huang, K. DualPathGAN: Facial reenacted emotion synthesis. IET Comput. Vis. 2021. [CrossRef]
20. Sohrabi Nasrabadi, M.; Safabakhsh, R. 3D object recognition with a linear time-varying system of overlay layers. IET Comput. Vis. 2021.

[CrossRef]
21. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016,

7, 1419. [CrossRef] [PubMed]
22. Ma, J.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Sun, Z. A recognition method for cucumber diseases using leaf symptom images

based on deep convolutional neural network. Comput. Electron. Agric. 2018, 154, 18–24. [CrossRef]
23. Kawasaki, Y.; Uga, H.; Kagiwada, S.; Iyatomi, H. Basic study of automated diagnosis of viral plant diseases using convolutional

neural networks. In Proceedings of the International Symposium on Visual Computing, Monte Carlo, Monaco, 14–16 December
2015; Springer: Cham, Switzerland, 2015; pp. 638–645.

24. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Adam, H. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

25. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
26. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. PMLR 2015,

37, 448–456.
27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
28. Ding, H.; Jiang, X.; Shuai, B.; Liu, A.Q.; Wang, G. Semantic correlation promoted shape-variant context for segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 8885–8894.

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. arXiv 2017,
arXiv:1706.03762.

30. Kumar, N.; Belhumeur, P.; Biswas, A.; Jacobs, D.; Kress, W.; Lopez, I.; Soares, J. Leafsnap: A computer vision system for automatic
plant species identification. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 502–516.

31. Hall, D.; McCool, C.; Dayoub, F.; Sunderhauf, N.; Upcroft, B. Evaluation of features for leaf classification in challenging conditions.
In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 797–804.

32. Yang, J.; Yu, K.; Gong, Y.; Huang, T. Linear spatial pyramid matching using sparse coding for image classification. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway,
NJ, USA, 2009; pp. 1794–1801.

33. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
34. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]

http://doi.org/10.1049/cvi2.12063
http://doi.org/10.1049/cvi2.12053
http://doi.org/10.1049/cvi2.12026
http://doi.org/10.1049/cvi2.12047
http://doi.org/10.1049/cvi2.12029
http://doi.org/10.3389/fpls.2016.01419
http://www.ncbi.nlm.nih.gov/pubmed/27713752
http://doi.org/10.1016/j.compag.2018.08.048
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1145/3065386

	Introduction 
	Related Work 
	Traditional Image Processing Methods 
	Deep Neural Network Methods 

	Methods 
	Overview 
	Multi-Scale Residual Module 
	Feedback Self-Calibration Module 
	Self-Attention Aggregation Module 
	Network Parameters and Loss Function 

	Experiment 
	Experiment Setup 
	Dataset 
	Implementation Details 
	Comparison Methods 

	Comparison with State-of-the-Art Methods 
	The Discussion under Different Noise Conditions 

	Conclusions 
	References

