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Abstract: This study conducted a review on the concentrations, spatial distribution and pollution
assessment of metals including As, Hg, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in 102 river sediments
in China between January 2008 and July 2020 based on the online literature. The geo-accumulation
index (Igeo) and potential ecological risk index (RI) were used for the pollution assessment of the
metals. The results showed that the ranges of metals were: 0.44 to 250.73 mg/kg for As, 0.02 to
8.67 mg/kg for Hg, 0.06 to 40 mg/kg for Cd, 0.81 to 251.58 mg/kg for Co, 4.69 to 460 mg/kg for
Cr, 2.13 to 520.42 mg/kg for Cu, 39.76 to 1884 mg/kg for Mn, 1.91 to 203.11 mg/kg for Ni, 1.44
to 1434.25 mg/kg for Pb and 12.76 to 1737.35 mg/kg for Zn, respectively. The median values of
these metals were descending in the order: Mn > Zn > Cr > Cu > Pb > Ni > Co > As > Cd > Hg.
Compared with the SQGs, As and Cr manifested higher exceeding sites among the metals. Metals of
river sediments manifested a significant spatial variation among different regions, which might be
attributed to the natural weathering and anthropogenic activity. The mean Igeo values of the metals
presented the decreasing trends in the order: Cd > Hg > Zn > Cu > As > Pb > Ni > Co > Cr > Mn. Cd
and Hg manifested higher proportions of contaminated sites and contributed most to the RI, which
should be listed as priority control of pollutants. Southwest River Basin, Liaohe River Basin, and
Huaihe River Basin manifested higher ecological risks than other basins. The study could provide a
comprehensive understanding of metals pollution in river sediments in China, and a reference of the
control of pollutant discharge in the river basins for the management.
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1. Introduction

With the rapid growth of population, and industrial and agricultural development,
heavy metal pollution in aquatic systems has gradually become a global issue and attracted
widespread attention of studies [1,2]. In the aquatic environment, river sediments serve
as the repository of metals [3], and are considered as one of the important monitoring
indicators for long-term metal deposition pollution in ecosystems [4,5]. Sediments may di-
rectly affect overlying waters and become a potential secondary non-point source of metals
pollution [3,6]. Due to the persistent, toxic, less degradable nature and bioaccumulation
of metals in the environment, they could be released under favorable conditions such as
redox potential, pH, dissolved oxygen, and temperature, and pose a great potential threat
to aquatic ecosystems and the local inhabitants through the food chain [2,5,7–9]. Metals in
river sediments originate from both natural sources and anthropogenic activities, such as
chemical leaching of bedrock, water drainage, mining, the discharge of urban industrial
and rural agricultural wastewaters [10–12]. Studying the content, distribution, and harm
of metals in river sediments can be helpful to better understand the impact of human
activities on river ecosystem.
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In China, heavy metal pollution has become one of the main concerns of the govern-
ment; several metals including Hg, Cr, Cd, Pb and As have been listed as the target of total
load control in the 12th Five-Year Plan of Environmental Protection [13]. It was reported
that 40% of the 10 primary river systems monitored in China had been disturbed by human
factors and resulted in adverse impacts to human beings [14]. Historically, there have been
serious water pollution problems in China’s rivers, such as the water pollution accident
in the Tuojiang River of Sichuan province in 2004, the major water pollution incident in
the Songhua River in 2005, arsenic contamination in Yueyang of Hunan province in 2006,
and arsenic pollution in the Huai River basin in 2008, etc. These major water pollution acci-
dents have caused a great impact on people’s life; furthermore, they generated long-term
influence that was difficult to eliminate from the aquatic ecosystem.

A large number of studies have been conducted in metals contamination assessment
in river sediments in different regions of China. For example, Zhao, Ye [3] carried out
heavy metal contamination assessment in river sediments of the Pearl River Delta; Chai,
Li [15] assessed metals distribution, contamination, and ecological risks in the surface
sediments of the Xiangjiang River; Cheng, Wang [5] assessed heavy metal contamination
in the sediments of the Yellow River Wetland National Nature Reserve; Yang, Chen [16]
reported the heavy metal contents and ecological risk in sediments in the Wei River
Basin, etc. Previous studies have shown that anthropogenic activities have caused metals
contamination in the river sediments. However, these studies were mainly focused on river
sediments in certain river basin or individual rivers; to our knowledge, there is currently
no systematic, comprehensive assessment and comparison of the pollution status of metals
in river sediments in China. Therefore, it is particularly urgent to investigate the spatial
distribution, pollution degree and ecological risks of metals in river sediments in different
regions of China on a national scale. The potential ecological risk index (RI) is usually
used as an indicator to assess the risk of heavy metal contamination in river and lake
sediments [17].

This study was conducted to evaluate the pollution status of metals (As, Hg, Cd, Co,
Cr, Cu, Mn, Ni, Pb and Zn) in river sediments in different basins of China based on the
online literature. The major objectives of this study are: (i) to analyse the concentration
and spatial distribution of metals in river sediments in different basins of China; (ii) to
evaluate the pollution degree of metals by using the geoaccumulation index (Igeo); (iii) to
assess the potential ecological risks caused by the metals based on the potential ecological
risk index (RI); (iv) to investigate the pollution status and risks of metals in different
river basins. The results can provide scientific support for environment management to
develop corresponding control measures, and it will generate beneficial impacts on aquatic
ecosystems and human health.

2. Methods
2.1. Searching Method

This study conducted a comprehensive search of literature on metals in the sediments
of 102 rivers in China published from January 2008 to July 2020, gained from the China
National Knowledge Infrastructure (CNKI) and Web of Science using the terms “heavy
metal”, “metals”, “China”, “river”, and “sediment” as the searching subjects. A total of 2182
and 2810 articles were obtained from CNKI and Web of Science, respectively. Finally, we
selected 102 pieces of literature (18 in Chinese and 84 in English) by eliminating the articles
that were irrelevant and unable to provide total contents of the metals in the sediment,
through three screening procedures including title review, abstract review and full text
review (Figure 1); a total of 3063 samples sites were contained in this study. The metals
were digested with mixed acids HNO3 + HF + HCl or HF + HClO4 + HNO3; the total
concentrations of the metals were determined by ICP-MS, ICP-OES, ICP-AES or AAS. The
sample analysis process was carried out in strict accordance with the standards. The mean
contents of metals, research area, river name, published year and sampling number of the
selected articles were extracted and recorded for further statistical analysis (Table 1), and
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the distribution of the river basins were presented in Figure 2. The sample sites in different
river basins were distributed as follows: Heilongjiang River Basin (n = 266), Liaohe River
Basin (n = 395), Haihe River Basin (n = 321), Yellow River Basin (n = 210), Huaihe River
Basin (n = 174), Yangtze River Basin (n = 839), Southeast Coastal Basin (n = 82), Pearl River
Basin (n = 615), Southwest River Basin (n = 102), and Northwest River Basin (n = 59).
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Table 1. Statistics of chemical parameters of metals in river sediments in China (µg/L).

River Sites Year Number of
the Sites As Hg Cd Co Cr Cu Mn Ni Pb Zn Reference

Wuli River 2008 10 — 8.67 7.95 — — 56.63 — — 80.50 525.20 [18]

Liuchahe Watershed 2008 — — — 0.11 — 67.80 39.80 — 38.30 37.70 53 [19]

Lianshan River 2008 4 — 1.59 9.73 — — 73.08 — — 104.90 450.90 [18]

Second Songhua River 2008 — — — — 9.97 49.42 23.58 775 18.75 23.76 90.29 [6]

Mainstream of the
Yangtze River Catchment

of Wuhan
2009 16 15.85 0.15 1.53 — 87.82 51.64 — 41.91 45.18 140.27 [20]

Luan River 2009 10 5.15 0.18 0.15 — 71.47 45.98 — — 22.11 75.52 [21]

Lanzhou Section of
Yellow River 2010 — — — 0.59 — — 18.49 — — 16.13 78.53 [22]

Dongjiang Harbor 2010 11 17.13 0.07 0.06 — — 19.36 — — 4.34 88.40 [23]

Lianshui River 2011 64 — — 9.11 55 95 71 — 102 412 1299 [24]

Estuary in Daliao River
and Yingkou Bay 2011 35 — — 0.34 — 60.83 — 615.58 35.23 — — [25]

Wuding River 2011 5 — — 0.30 — 60.71 19 426.86 29.64 15.60 76.55 [26]

Lower Reach of
Yangtze River 2011 83 13.54 0.16 2.82 17.33 98.32 48.61 — 41.49 50.77 129.73 [27]

Guangzhou Section of
Pearl River 2011 22 — — 1.80 — 97.40 351.80 — — 103.50 387.40 [28]

Rivers of Chaohu City 2012 9 44.35 0.49 — — 102.03 79.44 — — 49.46 206.07 [13]

Pearl River Estuary 2012 20 17.42 — 0.29 — — — — — 40.51 109.09 [29]

Shuangqiao River 2012 66 4.40 3.80 7.10 — 52.70 435.20 — — — 779.90 [30]

Wenruitang River 2012 29 — — 13.84 — 369.11 520.42 — 203.11 58.68 1065.82 [31]

Luanhe River 2012 15 — — 0.30 — 60.40 48.07 — 26.15 25.55 76.42 [32]

Urban River in Northern
Anhui Province 2013 37 14 — — 245.64 53.42 44.80 854 — 33.45 107.43 [33]

Tuo River of Suzhou 2013 5 — — — 251.58 55.51 44.91 — — — 108.47 [34]

Tuohe River 2013 — — — 40 — 46 35 853 — 24 61 [35]

Shiqiao River 2013 9 — — 2.79 — 133 100 — 66 96 327 [12]

Shawan River 2013 7 — — 2.99 — 109 75 — 53 86 253 [12]

Yangtze Estuary 2013 — 10.10 0.07 0.23 — 86 29 — 34 27 93 [36]

Haihe Basin 2013 117 — — 0.36 13.40 81.90 53.30 435 27.80 20 256 [37]

Changhua River Estuary 2013 27 9.50 0.02 0.09 — 53.10 15 — 23 27 73.70 [38]

Upper Reach of
Hun River 2013 — 9.93 — 1.08 — 86.63 23.18 — 35.77 23.34 472.32 [39]

Shenzhen River 2014 9 12.30 0.25 0.82 — 134 178.20 — 120 92 692.20 [40]

Jialu River 2014 19 6.31 0.10 2.93 — 60.80 39.22 — 42.44 29.35 107.58 [41]

Wusuli River 2014 40 — — — 9.30 50.75 17.43 194.75 19.28 57.75 50.75 [42]

Yangtze River 2014 61 25.40 0.16 2.46 18.53 89.54 82 — 37.40 60 174 [43]

Wuyuer River Basin 2014 187 15.25 0.12 0.13 — 54.49 19.58 — 61.40 24.87 80.11 [44]

Lancang River 2014 22 47.33 — — 14.40 128.23 37.38 562.91 49.38 98.27 99.67 [45]

Sanmenxia Section of
Yellow River Wetland

National Nature Reserve
2015 7 — — 0.11 — 53.60 39.30 1633.50 — 41.10 72.40 [5]

Dayan River 2015 11 — — 0.77 — — 103.40 — — 76.72 188.26 [46]

Yellow River 2015 — — — 0.23 — 77 34 912 — 27 97 [47]

Inflow Rivers of
Taihu Basin 2015 71 — 0.16 0.74 15.04 165.57 115.78 503.10 63.05 69.39 344.03 [48]

Hainan Island rivers 2015 36 8.79 0.05 0.33 — 56.48 33.35 — — 43.44 102.10 [49]

Rivers in Yangyuan 2015 — — — 5.71 — 138.97 87.20 — 75.07 64.47 322.40 [50]

Dan River Drainage 2015 95 7.97 — 0.80 0.81 4.69 2.13 39.76 1.91 3.40 12.76 [51]

Tiaozi River 2015 — — — 0.19 — — 42.48 377.08 29.39 21.50 83.56 [52]

Liaohe River 2015 24 — — 0.47 — — 12.70 104.20 10.30 7.40 169.50 [53]

Daqing River System 2015 37 — — 0.68 — 110.28 73.91 — 34.74 32.01 227.88 [54]
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Table 1. Cont.

River Sites Year Number of
the Sites As Hg Cd Co Cr Cu Mn Ni Pb Zn Reference

Rivers in Chongqing 2015 14 — — 0.63 — 94.10 48.50 — 31.40 30.70 190 [55]

Yanghe River 2016 8 — — 0.16 — 44.25 25.40 — — 20.90 74.30 [56]

Nanfei River in Chaohu
Basin 2016 21 12.20 0.90 3.80 — 143.20 145.40 — 45.70 70.80 869.30 [57]

Liangtan River 2016 10 — — — — 75.77 — 533.30 — 186.16 226.60 [58]

Tributary of Zhedong
River 2016 13 168.72 0.20 — — — 28.87 — — 23.06 92.38 [59]

Lijiang River 2016 20 18.05 0.18 1.72 — 56.38 38.07 — — 51.54 142.16 [14]

Upper Reach of the
Yangtze River 2016 30 8.79 0.10 0.93 — 80.04 65.80 — — 51.01 141.85 [60]

Huaihe River 2016 54 — — — — — 31.30 876.49 32.79 53.43 183.57 [61]

Gan River 2016 21 — — 2.29 15.78 59.94 48 — 25.43 60.49 139.44 [62]

Ziya River 2016 28 — — 1.31 — 460 91 — 39.10 49.70 459 [63]

Kuitun River 2016 18 — — — 5.43 69.55 50.27 551.14 22.32 26.19 92.06 [64]

Bortala River 2016 41 9.67 0.02 0.17 — 51.55 30.09 — 22.32 31.98 99.19 [65]

Duliujian River
Drainage Basin 2016 42 68.40 — 0.60 — 62.10 142.50 — 33.9 30.10 111.40 [66]

Jiulong River 2016 39 — 0.17 0.96 14.92 93.64 83.03 1132.90 28.24 103.02 172.20 [67]

Qinghai Lake watershed 2016 6 10.32 0.10 — 32.20 11.59 409.40 15.83 14.43 43.40 [68]

Yalu River Estuary 2016 27 — 0.06 0.30 — 56.50 113.60 — — 30.20 100.30 [69]

Minjiang River in Fuzhou 2016 — 10.02 — 0.90 — 66.62 42.33 — — 79.14 195.57 [70]

Kuye River 2016 26 33.53 — 1.08 16.68 289.59 56.01 1471.91 — 51.92 172.86 [71]

Songhua River 2016 10 — 0.98 1.10 — — 10.70 759 45.70 32.40 214 [72]

Xiaojiang River 2017 15 39.50 — 2.30 — — 130.40 — — 103.40 564.90 [73]

Jiaozhou Bay Catchment 2017 — 7.70 — 0.16 — 69.30 23.60 — — 20.20 64.60 [10]

Jinjiang River Estuary 2017 14 — 0.49 1.59 13.10 99.90 102 1264 28.50 95.60 331 [74]

Qinhuai River 2017 35 10.78 0.25 0.61 — 79.92 44.71 — 34.60 33.39 149 [75]

Liaohe River
protected Area 2017 19 9.88 — 1.20 — 35.06 17.82 — 17.73 10.57 50.24 [76]

Songhua River
Harbin Region 2017 11 10.13 0.56 0.27 — 121.40 13.33 — 12.89 18.80 92.54 [77]

Xiangjiang River 2017 16 54.90 — 13.68 23.19 120.44 101.36 1805.17 57.14 214.91 443.32 [15]

Rivers of Yangzhou 2017 38 11.12 0.20 0.28 — 37.85 29.07 — 24.15 38.87 64.40 [78]

Huntai River 2017 184 — — 0.29 — 30 34 551 23 1.44 71 [79]

Rivres in Beijing
Central District 2017 42 6.01 0.67 0.29 — 63 45 277 — 31.10 — [80]

Duliujiang River 2017 62 30.61 — 0.42 17.91 38.60 22.65 — 33.36 27.21 93.40 [81]

Xiaoqinghe Watershed 2017 — 4.37 — 6.20 — 257.79 73.35 — 56.89 250.49 418.44 [82]

Shaliuhe River 2017 56 10.40 — 0.12 — 49.10 19.70 618 24.90 18.70 68.10 [83]

Hengyang Segment of
Xiangjiang River Basin 2018 8 135.20 1.19 21.66 — 54.59 112.10 1884 — 359.40 659.70 [84]

Zijiang River 2018 59 31.53 — 3 16.76 67.51 34.19 1322.89 34.66 35.68 141.90 [85]

Shima River 2018 40 — — 1.05 — 141.48 186 — 79.88 — 528.98 [86]

River of Nantong 2018 134 15.8 0.13 2.53 — 112 53.90 — 31.20 448 869 [11]

Yongding River 2018 11 — — — — 47.61 24.71 450.09 40.45 35.47 94.75 [87]

Taizihe River 2018 24 — — — — 136.80 92.60 — — 1434.25 1737.35 [88]

Liuyang River 2018 13 14.55 — 1.24 10.72 38.67 50.20 581.67 17.48 37.82 138.48 [89]

Baoxiang River 2018 10 — — — — 24.9 34.26 — 13.52 13.99 55.25 [90]

Pearl River Delta 2018 323 18.23 0.10 0.84 — 55.19 42.89 — — 44.61 135.87 [3]

Shaying River 2019 14 0.44 — 5.32 — 58.19 37.14 — — 35.64 — [91]

Modaomen Estuary 2019 19 — — 1.16 20.05 124.13 34.64 — 35.22 51.85 161.8 [8]

Chunfeng Lake Estuary 2019 13 45.45 — 0.64 — 28.06 9.06 — 16.54 42.83 84.76 [17]

Guishui River 2019 — 6.81 — 0.14 10.48 50.45 17.95 631.74 21.78 22.42 66.76 [92]
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Table 1. Cont.

River Sites Year Number of
the Sites As Hg Cd Co Cr Cu Mn Ni Pb Zn Reference

Lishui River Watershed 2019 21 — — — 9.39 61.20 22.84 757.15 25.31 40.19 91.66 [93]

Quannan Section of
Taojiang River 2019 12 15.95 1.70 9.09 — 38.94 43.09 — — 48.72 156.80 [94]

Lanmuchang 2019 13 250.73 — 0.69 33.61 201.41 98.47 — 79.41 28.16 213.84 [95]

Rivers of Linyi 2019 12 — — — — 14.12 12.25 — 9.99 11.75 21.73 [96]

Wei River 2019 12 5.44 0.03 — — 59.17 — — — 45.96 79.08 [16]

Longjiang River 2019 6 46.72 — 13.92 — — — — — 139.23 472.83 [97]

Majiagou River 2019 12 — — 0.76 — 107.37 28.05 — 17.82 26.98 358.54 [98]

Yunliang River 2019 6 — — 1.83 — 68.19 19.46 — 8.16 32.75 861.63 [98]

River of Zigong 2019 15 19.46 0.18 0.64 — 61.95 48.62 — 33.76 29.92 165.03 [99]

River in the Baiyinnuoer
lead–zinc Mining Area 2019 6 35.17 — 6.06 — — 32.23 — — 906.50 1432.88 [100]

Xiashan Stream 2020 13 12.68 1.05 2 — 112.76 261.88 — 46.52 93.62 332.83 [9]

Yarlung Tsangpo River 2020 67 23.70 3.26 0.16 10.25 82.29 46.01 628.24 36.73 37.05 75.53 [101]

Urban Rivers in Baoan
District 2020 28 — 0.20 — — 101.76 465.91 — 77.42 71.73 481.34 [102]

Qingshui River Basin 2020 32 10.23 0.20 — — 41.38 — — — 13.99 — [103]

“—” refers no data.

2.2. Analytical Methods
2.2.1. Sediment Quality Guidelines

Sediment quality guidelines (SQGs) proposed by MacDonald, Ingersoll [104] were
used to evaluate the quality of the sediment in the freshwater ecosystems and determine
the degree to which the metals of the sediment might pose a threat to the aquatic organisms.
It contains threshold effect concentration (TEC) and a probable effect concentration (PEC).
When values are below the TEC, harmful effects are unlikely to be observed; values above
PEC indicate that harmful effects are likely to be observed.

2.2.2. Geoaccumulation Index

The geo-accumulation index (Igeo) was used to quantify metals contamination caused
by both natural geological and geographical processes and human activities [1], which was
introduced by Müller [105]. The Igeo values were calculated by the following equation:

Igeo = log2

[
Cn

1.5Bn

]
(1)

where Cn represents the concentration of the measured metal (n) in the sediment and Bn
represents the regional geochemical background (BG) value of the metal; we chose the
arithmetic means of background values of the metals in soils in different provinces of China
as the BG regulated by Chinese environmental monitoring stations [106]; the factor 1.5 is
the background matrix correction factor. The Igeo can be classified into seven classes: class 0
(Igeo ≤ 0), uncontaminated; class 1 (0 < Igeo ≤ 1), uncontaminated to moderately contam-
inated; class 2 (1 < Igeo ≤ 2), moderately contaminated; class 3 (2 < Igeo ≤ 3), moderately
to heavily contaminated; class 4 (3 < Igeo ≤ 4), heavily contaminated; class 5 (4 < Igeo ≤ 5),
heavily contaminated to extremely contaminated; class 6 (5≤ Igeo), extremely contaminated.

2.2.3. Potential Ecological Risk Index

The potential ecological risk index (RI) proposed by Hakanson [107] was employed to
quantify the level of ecological risk degree of metals in aquatic sediments [85]. It is widely
used by researchers as an effective method to assess the contamination levels and potential
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risks of heavy metal in the sediments by combining ecological and environmental effects
with toxicology. The calculation of RI is based on the following equation:

Ei
r = Ti

r × Ci
f = Ti

r ×
Ci

s
Ci

n
(2)

RI =
n

∑
i=1

Ei
r (3)

where Ti
r is the biological toxic response factor for heavy metal i, the toxic response factors of

metals are: As = 10, Hg = 40, Cd = 30, Co = Cu = Ni = Pb = 5, Cr = 2, and Mn = Zn = 1 [16,85],
Ci

f refers to the toxic response factor of the heavy metal i, Ci
s is the measured concentration

of the heavy metal i, Ci
n is the background concentration of the heavy metal i. The classi-

fications of RI values are as follows [107]: RI < 150 (low ecological risk), 150 ≤ RI < 300
(moderate ecological risk), 300 ≤ RI < 600 (considerable ecological risk), and RI > 600 (very
high ecological risk), respectively.

2.3. Statistical Analysis

Microsoft Office 2016 for Windows (Microsoft office, Washington, DC, USA) was
applied to perform all statistical analysis. A scatter diagram was performed to map the
spatial distribution of metals in rivers sediments selected in China based on Origin (Version
2018) (OriginLab, Massachusetts, MA, USA).

3. Results and Discussion
3.1. Concentrations and Spatial Distribution of Metals
3.1.1. Heavy Metal Concentrations

The concentrations of 10 metals in selected river sediments were summarized in
Table 2. The ranges of metals were: 0.44 to 250.73 mg/kg for As, 0.02 to 8.67 mg/kg for
Hg, 0.06 to 40 mg/kg for Cd, 0.81 to 251.58 mg/kg for Co, 4.69 to 460 mg/kg for Cr, 2.13
to 520.42 mg/kg for Cu, 39.76 to 1884 mg/kg for Mn, 1.91 to 203.11 mg/kg for Ni, 1.44
to 1434.25 mg/kg for Pb and 12.76 to 1737.35 mg/kg for Zn, respectively. The median
values of these metals were descending in the order: Mn > Zn > Cr > Cu > Pb > Ni >
Co > As > Cd > Hg. The variable coefficient (CV) of the metals presented in the trends:
Pb > Hg > Cd > Co > As > Cu > Zn > Cr > Ni > Mn, and Mn, Zn, and Pb showed higher
standard deviation (SD) among the metals. When comparing with the mean values of these
metals with the background values of China, all the metals were larger than the BG values,
suggesting that anthropogenic activities exert great influences on the river sediments,
especially Cd and Hg, which were 29.59 and 11.54 times higher than BG values. Compared
with the SQGs, the mean contents of the metals were between the range of TEC and PEC,
while some of the sites exceeded the PEC; the exceeding rates were 21.82% in As, 15.38%
in Hg, 16.67% in Cd, 20.45% in Cr, 7.29% in Cu, 19.70% in Ni, 9.09% in Pb and 16.32% in
Zn, and the values of these metals between TEC and PEC accounted for 52.73%, 38.46%,
28.57%, 65.91%, 61.46%, 54.55%, 43.43% and 38.78%, respectively, indicating that these sites
probably cause adverse biological effects. As and Cr manifested the higher exceeding sites
among the metals, which most likely generate adverse effects in the ecosystem, followed
by Ni, Cd, Zn, Hg and Pb, the least was Cu.

In addition, when comparing the mean values of the metals with other countries
(Table 3), As, Cd and Co were higher than the those of other selected countries, Hg was
higher than Awash River in Ethiopia, Cr, Cu, Mn, Ni, Pb and Zn were larger than in most
other countries, and lower than a few countries; e.g., Cr was lower than Khorramabad
River in West Iran and Awash River in Ethiopia, but was higher than those of other selected
countries, Pb was lower than Tinto River in Spain and was over the other selected countries,
Zn was below Danube River in Serbia, Tinto River in Spain and Awash River in Ethiopia,
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while it was higher than Red River in Vietnam, Merang river in Malaysia, Georges River in
Australia and River Chenab in Pakistan.

Table 2. Statistics of metals concentrations (mg/kg) in river sediments and comparison with guidelines (mg/kg), back-
ground (mg/kg).

Items As Hg Cd Co Cr Cu Mn Ni Pb Zn Reference

Min 0.44 0.02 0.06 0.81 4.69 2.13 39.76 1.91 1.44 12.76
This

study
Max 250.73 8.67 40 251.58 460 520.42 1884 203.11 1434.25 1737.35

Median 13.11 0.19 0.87 14.98 67.995 43.9 618 33.95 38.345 141.06

Mean ± SD 27.36 ±
42.75

0.75 ±
1.56

2.87 ±
5.66

35.47 ±
66.47

88.71 ±
68.87

71.24 ±
90.55

751.27 ±
460.70

39.61 ±
30.38

84.06 ±
180.12

265.61 ±
311.35

CV 156.28 206.77 197.56 187.38 77.64 127.10 61.46 76.70 214.28 117.22
TEC 9.79 0.18 0.99 — 43.40 31.60 — 22.70 35.80 121 [104]
PEC 33.0 1.06 4.98 — 111 149 — 48.6 128 459 [104]

% of samples < TEC 25.45 46.16 54.76 — 13.64 31.25 — 25.75 47.48 44.90
% of samples

between TEC-PEC 52.73 38.46 28.57 — 65.91 61.46 — 54.55 43.43 38.78

% of samples > PEC 21.82 15.38 16.67 — 20.45 7.29 — 19.70 9.09 16.32
Background 11.20 0.065 0.097 12.70 61 22.60 583 26.90 26 74.20 [106]

Table 3. Comparison of average contents of metals concentrations (mg/kg) in river sediments with other countries in
the world.

Regions As Hg Cd Co Cr Cu Mn Ni Pb Zn Reference

China 27.36 0.75 2.87 35.47 88.71 71.24 751.27 39.61 84.06 265.61 This study
Red River, Vietnam — — 0.35 — 85.71 83 806 38 66 127 [108]

Merang river, Malaysia 6.06 — — — 39.26 9.87 226.29 — 11.58 49.39 [109]
Khorramabad River, West Iran 5.80 — — — 169.60 49.40 636.30 76.80 19.20 87.60 [110]

Danube River, Serbia 13.89 0.80 1.69 — — 50.93 — — 64.92 270.40 [4]
Zarrin-Gol River, Iran 21.91 — — 8.79 37.67 — 286.28 12.39 — 32.68 [111]

Danube, Europe 17.60 — 1.20 — 64 65.70 819 49.60 46.30 187 [112]
Tinto River, Spain — — 2.70 21 56 805 — 17 2330 901 [113]

Georges River, Australia 11 — — — 39 30 — 13 67 157 [114]
River Chenab, Pakistan — — 1.67 7.95 — 8.16 494 — 18.10 33.70 [115]
Awash River, Ethiopia 15.87 0.17 2.60 — 120.58 79.43 — 89.46 13.53 382.73 [116]

3.1.2. Spatial Distribution

The spatial distributions of metals were presented in Figure 3. As was illustrated
in Figure 3, the spatial variations of the concentrations of metals in the river sediments
varied significantly. High As levels were mainly distributed in Lanmuchang, Tributary
of Zhedong River and Hengyang Segment of Xiangjiang River Basin; the concentrations
of these sites were 250.73 mg/kg, 168.72 mg/kg and 135.2 mg/kg, respectively. High
Hg levels were mainly located in Wuli River, Shuangqiao River and Yarlung Tsangpo
River, with the highest Hg content of 8.67 mg/kg in Wuli River sites. High Cd levels were
mainly observed in Tuohe River (40 mg/kg), Hengyang Segment of Xiangjiang River Basin
(21.66 mg/kg), Wenruitang River (13.84 mg/kg) and Xiangjiang River (13.68 mg/kg). Co
showed higher concentrations in Tuo River of Suzhou (251.58 mg/kg) and Urban River
in Northern Anhui Province (245.64 mg/kg). Cr exhibited higher levels in Ziya River
(460 mg/kg), Wenruitang River (369.11 mg/kg), Kuye River (289.59 mg/kg), Xiaoqinghe
Watershed (257.79 mg/kg) and Lanmuchang (201.41 mg/kg). Higher Cu sites were sit-
uated in Wenruitang River (520.42 mg/kg), Urban Rivers in Baoan District in Shenzhen
(465.91 mg/kg), Shuangqiao River (435.20 mg/kg) and Guangzhou Section of the Pearl
River (351.80 mg/kg). A higher Mn was distributed in Hengyang Segment of Xiangjiang
River Basin (1884 mg/kg), Xiangjiang River (1805.17 mg/kg), Sanmenxia Section of Yellow
River Wetland National Nature Reserve (1633.50 mg/kg), Kuye River (1471.91 mg/kg),
Zijiang River (1322.89 mg/kg), Jinjiang River Estuary (1264 mg/kg) and Jiulong River
(1132.90 mg/kg). Ni levels were high in Wenruitang River, Shenzhen River and Lianshui
River, with the concentrations of 203.11 mg/kg, 120 mg/kg and 102 mg/kg, respectively.
Pb had the highest concentration in Taizihe River, with the content of 1434.25 mg/kg,
followed by 906.50 mg/kg in the river in the Baiyinnuoer lead–zinc Mining Area. Zn
was higher in Taizihe River, the river in the Baiyinnuoer lead–zinc Mining Area, Lian-
shui River, Wenruitang River, and Nanfei River in Chaohu Basin, with concentrations of
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1737.35 mg/kg, 1432.88 mg/kg, 1299 mg/kg, 1065.82 mg/kg and 869.30 mg/kg, respec-
tively. On the whole, each single metal of river sediments manifested a significant spatial
variation among different regions, which might be attributed to the natural weathering
and anthropogenic activity that caused pollutants to enter into aquatic systems, eventually
accumulating in sediments.
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Figure 3. Spatial distribution of metals in river sediments in this study.

3.2. Contamination Assessment of Metals

The Igeo values and proportions of Igeo classifications of the metals of the river sedi-
ments in this study were presented in Figure 4. As illustrated in Figure 4, the Igeo values
of the metals ranged as follows: As ranged from −1.99 to 5.93, with the mean value of
0.23; Hg ranged from −1.73 to 7.29, with the mean value of 1.45; Cd ranged from −4.48
to 8.10, with the mean value of 2.65; Co varied from −4.83 to 3.73, with the average being
−0.27; Cr varied from −4.78 to 2.25, with the average being −0.30; Cu varied from −4.43
to 4.86, with the average being 0.51; Mn ranged between −4.75 and 1.45, with a mean
value of −0.57; Ni ranged between −4.87 and 2.92, with a mean value of −0.24; Pb ranged
between −4.46 and 5.48, with a mean value of 0.14; Zn ranged between −3.30 and 4.30,
with a mean value of 0.67. The mean Igeo values of the metals presented decreasing trends
in the order: Cd > Hg > Zn > Cu > As > Pb > Ni >Co > Cr > Mn. The mean Igeo values
of Ni, Co, Cr and Mn were below 0, belonging to class 0 and indicating uncontaminated
grade; most sites of these metals exhibited uncontaminated levels, while some sites of these
metals showed certain proportions of pollution, such as Cr and Ni. The proportions of
uncontaminated to moderately contaminated, moderately contaminated and moderately
to heavily contaminated sites were 23.86%, 5.68% and 4.55% for Cr, and 21.21%, 9.09% and
4.55% for Ni, respectively. The mean Igeo value of Cd reached 2.65, which was the highest
among the metals and belonged to class 3, suggesting moderately to heavily contaminated
grade, which presented 11.90% uncontaminated sites, 13.10% uncontaminated to moder-
ately contaminated sites, 19.05% moderately contaminated sites, 11.90% moderately to
heavily contaminated sites, 17.86% heavily contaminated sites, 8.33% heavily contaminated
to extremely contaminated sites and 17.86% extremely contaminated sites, respectively.
Hg contamination reached moderately contaminated level ranking class 2, with the sites
of uncontaminated, uncontaminated to moderately contaminated, moderately contami-
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nated, moderately to heavily contaminated, heavily contaminated, heavily contaminated
to extremely contaminated and extremely contaminated attributing for 30.77%, 25.64%,
10.26%, 5.12%, 12.82%, 7.69% and 7.69%, respectively. The mean contamination of As, Cu,
Pb and Zn were ranked as class 1, indicating uncontaminated to moderately contaminated
grade, while parts of sites were extremely contaminated by As and Pb; the proportions
were 1.82% in As and 2.04% in Pb, respectively. Cu and Zn showed heavily contaminated
to extremely contaminated sites, constituting 2.08% and 2.04%, respectively. In general, Cd
and Hg manifested higher proportions of heavily contaminated to extremely contaminated
and extremely contaminated sites, which could be regarded as dominant pollutants among
the metals in river sediments in this study.
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Figure 4. Box plots of Igeo values (a) and proportions of Igeo classifications of the metals (b).

As illustrated in Figure 5a, the average Ei
r values showed the following trend: Cd(910.76) >

Hg(750.41) > As(40.14) > Cu(18.57) > Pb(18.38) > Co(12.59) > Ni(8.94) > Zn(4.05) > Cr(3.25) >
Mn(1.39). Cd and Hg contributed most to the RI (Figure 5b), the mean contribution
proportions of which were 69.78% and 38.88%, respectively. It could be speculated that
although the contents of Cd and Hg were not very high, they posed a relatively higher
potential ecological risk among the metals in river sediments in this study, which might
be related with the low background values and strong toxicity coefficient of these metals,
which resulted from the existing form of the metals in the sediments such as the easy
dissolution and transport of a major chemical form of Cd in the sediments [85], which
should be paid much more attention. On the contrary, the contents of Mn and Zn were
very high, while they posed very low ecological risks, and Mn showed the lowest potential
ecological risk. In comparison, the Ei

r values of As, Cu, Pb, Co, Ni, Zn, Cr and Mn were
below 150, which posed lower ecological risks, and the mean contribution rates of these
metals to RI were below 10%. However, the Ei

r values of As in Jiaozhou Bay Catchment
reached 916.67. Pb in the river in the Baiyinnuoer lead–zinc Mining Area was 302.17; in
addition, due to the accumulation and toxicity of the metals, these metals should also be
given certain attention.

As illustrated in Figures 5a and 6, the RI values ranged from 7.53 to 12,388.05, with
the mean value being 1110.63, suggesting a very high ecological risk level. According to
the RI classification standard, 32 sites were in the low ecological risk, 18 sites belonged to
moderate ecological risk, 16 sites were classified into considerable ecological risk, and 36
sites were classified into very high ecological risk, the proportions of which being 31.37%,
17.65%, 15.69% and 35.29%, respectively.
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The spatial distribution of Ei
r of Cd and Hg and RI in different river sediments in this

study was shown in Figure 6. The high Cd ecological risks sites (Figure 7a) were mainly
distributed in Hengyang segment of Xiangjiang River Basin, Tuo River of Suzhou, Lianshui
River, Tuohe River, Lianshan River, Quannan Section of Taojiang River, Shiqiao River,
Shawan River, Nanfei River in Chaohu Basin, Shuangqiao River, Longjiang River, Xiashan
Stream, Xiangjiang River, Wenruitang River, Wuli River, Xiaoqinghe Watershed and the
river in the Baiyinnuoer lead–zinc Mining Area. For Hg (Figure 7b), the high ecological
risks sites were mainly located in Hengyang Segment of Xiangjiang River Basin, Nanfei
River in Chaohu Basin, Xiashan Stream, Wuli River, Lianshan River, Rivers of Chaohu
City, Quannan Section of Taojiang River, Shuangqiao River, Songhua River Harbin Region,
Yarlung Tsangpo River, Rivers in Beijing Central District and Songhua River. In general, the
river sites such as Hengyang Segment of Xiangjiang River Basin, Nanfei River in Chaohu
Basin, Xiashan Stream, Wuli River, Lianshan River, Quannan Section of Taojiang River and
Shuangqiao River should be paid special concern, as these sites manifested both Cd and
Hg, indicating high ecological risks.

From Figure 7c, the RI values in some river sediments exceeded 600, which presented
very high ecological risks, such as Hengyang Segment of Xiangjiang River Basin, Shaying
River, Lianshui River, Tuohe River, Nanfei River in Chaohu Basin, Xiashan Stream, Wuli
River, Lianshan River, Quannan Section of Taojiang River, Shiqiao River, Shawan River,
Shuangqiao River, Longjiang River, Xiangjiang River, Yarlung Tsangpo River, Wenruitang
River, Xiaoqinghe Watershed, the river in the Baiyinnuoer lead–zinc Mining Area and
Songhua River, etc., which were mainly distributed in the eastern regions. The eastern
coastal cities of China have high population densities, relatively developed economies and
active industrial activities, such as chemical, electronic processing, metal equipment manu-
facturing, prevention, leather and other industrial waste emissions, which are associated
with heavy metal emission and may be the main causes of heavy metal pollution in eastern
Chinese rivers [117]. The high risks of the metals in river sediments might be primarily
caused by the anthropogenic activities brought about by the economic development, such
as the sewage discharged by industrial and domestic activities, and the agrochemical usage
including fertilizers and herbicides [10]. For example, the high Cd and Hg in Quannan
section of the Taojiang River were mainly affected by aquaculture, mining and smelting [94].
The severe potential ecological risk in the Xiangjiang River was associated with long-term
mining and smelting nonferrous metals activities [15].
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Figure 6. Values of the potential ecological risk index (RI) for metals in the river sediments.
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3.3. Pollution Assessment in Different River Basins

The box plots of Igeo and RI values in different river basins were presented in Figure 8.
From Figure 8, the mean Igeo values of Hg and Cd were higher than other metals in Hei-
longjiang River Basin, Liaohe River Basin, Haihe River Basin and Yellow River Basin,
which were 2.86 and 2.11, 4.09 and 2.73, 1.91 and 1.02, and 2.75 and 1.79 in these river
basins, respectively, indicating different degrees of pollution. The mean Igeo values of Cd in
Huaihe River Basin, Pearl River Basin, Southeast Coastal River Basin and Yangtze River
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Basin were highest among the metals, which were 2.29, 2.86, 3.62 and 3.51, respectively,
belonging to moderately to heavily contaminated, moderately to heavily contaminated,
heavily contaminated and heavily contaminated levels, respectively. In the Southwest
River Basin, the mean Igeo values of Hg and As were higher than other metals, which
were 3.85 and 0.99, respectively, and could be classified into heavily contaminated and
uncontaminated to moderately contaminated levels, respectively. In addition, all the mean
Igeo values of the metals in the Northwest River Basin were below 0, manifesting uncon-
taminated levels. It could be speculated that Hg and Cd were the most important pollutant
in the sediments of river basins in China in this study, and should be listed as priority
pollutants for future contamination control. Additionally, the sample points selected in
each basin were unbalanced; for example, the points in Southeast Coastal River Basin,
Southwest River Basin and Northwest River Basin were too few; therefore, it may not well
reflect the pollution status in these basins.

As shown in Figure 8, the mean RI values in the Heilongjiang River Basin, Haihe River
Basin and Northwest River Basin were 489.24, 246.90 and 71.06, respectively, suggesting
considerable ecological risk, moderate ecological risk and low ecological risk, respectively.
The mean RI values in other basins were above 600, indicating very high ecological risk,
and the higher RI values were mainly located in the Southwest River Basin (1947.56),
Liaohe River Basin (1940.05) and Huaihe River Basin (1365.69).
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4. Conclusions

In this study, the concentrations, spatial distribution and pollution assessment of
metals including As, Hg, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in river sediments in
China were analyzed and reviewed. The concentrations of the 10 metals manifested
that anthropogenic activities exert great influences on the river sediments. It showed a
significant spatial variation among metals in different regions. The Igeo values suggested
that most sites of As, Co, Cr, Mn, Ni and Pb were uncontaminated, while the highest
proportions of contamination were Hg, Cd, Cu, and Zn. Among these metals, Cd and Hg
contributed most to the potential ecological risk in the river sediments, which could be
regarded as dominant pollutants among the metals in this study.

The mean RI values suggested a very high ecological risk level of the river sediments;
the proportions of very high ecological risk reached 35.29% in the river sediments sites.
Southwest River Basin, Liaohe River Basin and Huaihe River Basin manifested higher
ecological risk than other basins. The study provided certain theoretical basis to strengthen
the management of pollutant discharge in the river basins, in particular for the control of
toxic and harmful metals such as Hg, Cd, and As. Furthermore, detailed investigation and
research on pollution sources in different river basins should be carried out and pollution
control measures formulated according to different basins in future studies.
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