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Abstract: In this paper, we develop a forecasting model for the spread of COVID-19 infection at a
provincial (i.e., EU NUTS-3) level in Italy by using official data from the Italian Ministry of Health
integrated with data extracted from daily official press conferences of regional authorities and local
newspaper websites. This data integration is needed as COVID-19 death data are not available at the
NUTS-3 level from official open data channels. An adjusted time-dependent SIRD model is used
to predict the behavior of the epidemic; specifically, the number of susceptible, infected, deceased,
recovered people and epidemiological parameters. Predictive model performance is evaluated using
comparison with real data.

Keywords: COVID-19; SIRD-derived models; Italy; EU NUTS-3 regions; epidemic data

1. Introduction

The outbreak of the COVID-19 pandemic in early 2020 has caused an unprecedented
effort of the scientific community to produce models that could monitor and predict the
evolution of the epidemics in a reliable way, also to advise governments, in order to take
prompt action which could mitigate the burden on hospitals for the treatment of infected
patients, and reduce the infection mortality rate.

The first Italian COVID-19 case dates back to 20 February 2020 [1] and is reported in the
city of Codogno, southern Lombardy. The epidemic spread particularly in northern Italian
regions, i.e., those regions with more trading ties with China, where the pandemic had
its origin. The Italian government took subsequent measures to contain the pandemic [2],
ending soon with a full national lockdown on 11 March 2020, to drastically reduce the
mobility of citizens and the probability of infectious contact.

The COVID-19 outbreak in Italy has not been homogeneously spreading within EU
NUTS-2 regions, with many differences from province to province within the same region,
and therefore it was reasonable to focus on Italian provinces (i.e., EU NUTS-3 regions),
rather than on Italian regions. Differences between provinces in the same region have
been noted, even in the management of the health crisis as the experience of the Lombardy
region, i.e., the first Italian region hit by the pandemic, clearly shows [3–5].

According to the characteristics of the virus spreading, it is not suited to think of a
uniform virus propagation behavior at the regional level. Even the timing of the initial
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stages of the infection and its dynamics seem to have been very different, even among
contiguous provinces, as clusters of COVID-19 contagion have often been located in very
restricted areas. One of the proofs of this lack of spread homogeneity is in the initial stage
of the virus outbreak, which was located at the border between the Lombardy and Emilia-
Romagna regions, namely in the Lodi province (Lombardy) and in the Piacenza province
(Emilia-Romagna). The provinces of Varese in Lombardy and Ravenna in Emilia-Romagna
were not comparable with the provinces of Lodi and Piacenza in terms of contagion
intensity. Moreover, viral RNA swab tests had been initially conducted depending on the
choices of the local health authorities, and hospital admissions in the early stages of the
emergency depended on the management and absorption capacity of the local health units,
resulting in many differences in practicing hospital care at a local level. Furthermore, the
management of the residents of care homes was quite different locally, causing, in some
cases, the development of local surges of the infection and an increase in mortality, since
the illness is particularly severe for the elderly.

Compartmental deterministic models often model the spread of an epidemic [6,7],
where a population of susceptible individuals evolves into other categories representing
the different stages of the infection. We consider here a model consisting of 4 compart-
ments: susceptible (S), infected (I), recovered (R), and deaths (D), which were the only
compartments for which we could find available data at the NUTS-3 level in Italy.

In the case of the SARS-CoV-2 virus, it has been proven that the infection has an
incubation period of about five days and that a significant percentage of the infected
people are asymptomatic [8–10]. Thus, actually, more compartments should and have been
considered, both in deterministic and stochastic models (see, e.g., [2,11–16]). Unfortunately,
the data unavailability at the NUTS-3 level would cause problems in the identification
of the model parameters [17]. Furthermore, we decided to keep the model as simple as
possible in order to make it more accountable and, at the same time, robust to the parameter
variation over time, as the infection rate depends implicitly on: (i) the citizens’ mobility and
in general their social behavior; (ii) the measures of protection of the healthcare personnel
and the workers who kept on doing jobs which were considered essential services to
the community; (iii) the number of swab tests performed locally to detect the infected
subjects in order to put them in strict quarantine. Moreover, the recovery rate and the
death rate are changing in time and space because of the different burdens of the local
healthcare systems, new insights into the pulmonary illness caused by the SARS-CoV-2
virus, and the evolution of its possible pharmacological and medical treatment. Finally, an
adequate vaccination campaign would contribute to slowing down the pandemic. We thus
implemented an adjusted the susceptible-infectious-recovered-deceased (SIRD) model, of
which the parameters are evolving in time and automatically adapt to the factors which
are implicitly causing changes. This variation in the parameters makes our model able to
predict the short term evolution of the epidemics with good reliability, particularly in the
absence of sudden oversized changes in population behavior or health policy. We leave the
detection of significant change points in the parameters behavior to subsequent papers,
using time series or stochastic processes techniques like the one described in [18]. For the
reasons described above about the need for modeling the virus spread locally, we also
implement a spatial model to allow for correlation between contiguous provinces.

Our approach belongs to the time-varying parameter SIRD models, which have been
frequently used in the COVID-19 pandemic modeling literature, allowing for capturing
sudden variations in the pandemic trend. For example, ref. [19] used linear combinations
of basis functions to estimate pandemic parameters, using sparse identification techniques
and optimizing the estimates with the Lasso technique. They applied their model to
regional data; we use provincial data in an autoregressive approach, reinforced by ridge
regression optimization and time series clustering techniques to reinforce the model’s
training. Moreover, a STARMA spatial modeling (see Section 3.4 for details) is then used
to capture the spatial correlation within the parameters. Ref. [20] integrated the classical
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SIRD model with artificial neural network modeling, but again using large-area data and
not considering the spatial factors influencing the spread of the virus.

The rest of the paper is organized as follows. Section 2 describes the data extraction
that we performed, including the extra data on deaths not available at a province-level
from official authorities, together with a short discussion on issues in the data collection. It
presents the model used and describes an adjusted training process that we adopted to
improve the estimates. Section 3 focuses on the prediction performance of the model and
an analysis of the spatial association between provinces. Section 4 discusses the paper’s
main findings, while Section 5 outlines some possible future work based on the limitation
of the model presented. The analyses presented in this paper were carried out using the
R software.

2. Materials and Methods
2.1. Data on COVID-19 in Italy

Data on daily new cases of COVID-19 for each province have been made available by
the Italian Presidency of the Council of Ministers-Department of Civil Protection Agency
(CPA), since the very beginning of the outbreak in Italy (Official data are available at
https://github.com/pcm-dpc/COVID-19, accessed on 31 May 2021). No data about
deaths and recovered patients were provided at the provincial level. Therefore, we decided
to integrate the official data on new cases with data on new provincial deaths derived from
press conferences and reports published online by regional authorities or local newspapers.
Data on deaths have been acquired using the daily press conferences and COVID-19
bulletins from regional authorities for many Italian provinces.

Regions for which we could not obtain provincial death data from official bulletins
or press conferences were Lombardia and Campania. However, we obtained data on
COVID-19 deaths from local newspapers for the Cremona province in Lombardy. Table 1
contains all the sources that we used to retrieve provincial COVID-19 death data.

Table 1. Main data sources for provincial COVID-19 deaths.

Region Main Source

Valle d’Aosta https://github.com/pcm-dpc/COVID-19 (accessed on 31 May 2021)
Pedmont https://www.regione.piemonte.it (accessed on 31 May 2021)
Lombardy https://www.laprovinciacr.it (only for Cremona province) (accessed on 31 May 2021)
Veneto https://www.ilgiornaledivicenza.it (accessed on 31 May 2021)
Friuli-Venezia-Giulia https://www.regione.fvg.it (accessed on 31 May 2021)
Trentino-Alto-Adige https://github.com/pcm-dpc/COVID-19 (accessed on 31 May 2021)
Emilia-Romagna https://www.regione.emilia-romagna.it (accessed on 31 May 2021)
Liguria https://www.regione.liguria.it (accessed on 31 May 2021)
Tuscany https://www.toscana-notizie.it (accessed on 31 May 2021)
Marche http://www.regione.marche.it (accessed on 31 May 2021)

Umbria https://public.tableau.com/ (accessed on 31 May 2021)
https://regione.umbria.it (accessed on 31 May 2021)

Lazio https://www.romatoday.it (accessed on 31 May 2021)
https://www.facebook.com/SaluteLazio (accessed on 31 May 2021)

Abruzzo https://www.regione.abruzzo.it (accessed on 31 May 2021)
Molise https://www.molisenews24.it/regione (accessed on 31 May 2021)
Puglia http://www.regione.puglia.it (accessed on 31 May 2021)
Basilicata https://www.regione.basilicata.it (accessed on 31 May 2021)
Calabria https://www.regione.calabria.it (accessed on 31 May 2021)
Sicily https://www.regione.sicilia.it (accessed on 31 May 2021)
Sardinia https://www.regione.sardegna.it (accessed on 31 May 2021)

Another time series not available from official repositories at a provincial level was
the number of recovered people at time t. Therefore, the series was estimated using the
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recovery rate at the regional level, computed as the ratio of recovered people and the total
number of new cases each day. The regional recovery rate at time t was then multiplied by
the number of total cases in the province within the region:

Rprov,t = Tprov,t
Rreg,t

Treg,t

R is the total number of recovered individuals, and T represents the total number of
cases. We estimated this number proportionally to the regional ones because the patient
treatment for the illness due to COVID-19 could be considered more uniform across the
provinces (with almost the same recovery rate across provinces within the region) for the
number of deaths. Protocols on treatment were adopted uniformly in each province within
each region.

Another data issue that researchers have faced in dealing with COVID-19 forecasting
in Italy is that official data often present flaws, mainly related to delays in reporting new
cases and deaths, missing data, and negative values in the series of new cases post-event
recounts, and missing data. Menchetti and Noirjean [21] reported widely on the biases of
these official data. Bartoszek et al. [22] highlighted that reporting statistics at a specific
spatial level (national, regional, etc.) in Italy do not say much about the dynamics of the
disease at lower levels. The problem of unreliable data becomes even more cogent with
epidemiological models, both deterministic and stochastic, when many parameters should
be estimated based on unreliable data, especially for long-range estimates, which are even
more critical for an outbreak with such dramatic consequences that the whole world is
experiencing. This inevitably results in less robust estimates.

Figure 1 reports on the differences between the sum of provincial COVID-19 cause-
specific deaths and the related total regional deaths for each region, for which we have
retrieved the data from regional authorities from 10 September 2020 to 28 February 2021.
For a few regions, differences are often related to a delay between the publication in
press conferences and the reporting in the official CPA data repository. This is an issue
also experienced in other countries during the pandemic (see [23] for the number of death

adjustments in the United Kingdom). Figure 1 clearly shows that for four regions out of 15,
there were some discrepancies concerning the official CPA data, but these are mainly due
to recounting and counting deaths “from other regions” occurring for people deceased in
other regions than that of their residence, as reported by the CPA data.

Figure 1. Official and retrieved data comparison.

However, our choice to work on death data published on regional authorities and local
newspapers improved the quality of data, as the reporting was more up to date than the
regional data published by CPA and avoiding the “recounting problem”, which sometimes
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affected the time series with peaks due to reporting delay, not present in the provincial
time series. Tables 2 and 3 better explain the two problems.

Table 2. Differences between CPA death counts and regional bulletins and local newspapers death counts—Marche region,
period 1 April 2020–4 April 2020.

Province 1 April 2020 2 April 2020 3 April 2020 4 April 2020

Ancona 7 10 6 7
Pesaro-Urbino 10 20 7 14

Fermo 0 0 2 3
Ascoli Piceno 0 1 1 0

Macerata 9 0 1 1
“From other regions” 0 0 0 0

Marche (from provincial deaths) 26 31 17 25
Marche (from CPA reporting) 25 26 54 17

Table 3. Differences between CPA death counts and regional bulletins and local newspapers death counts—Emilia-Romagna
region, period 1 April 2020–4 April 2020.

Province 1 April 2020 2 April 2020 3 April 2020 4 April 2020

Piacenza 25 19 18 12
Parma 24 11 9 25

Reggio-Emilia 9 9 14 15
Modena 10 18 9 6
Bologna 3 7 31 10
Ferrara 1 3 3 1

Ravenna 4 1 0 2
Forlì.Cesena 4 3 2 1

Rimini 5 4 4 2
“From other regions” 3 4 1 1

Emilia-Romagna (from provincial deaths) 85 75 90 74
Emilia-Romagna (from CPA reporting) 88 79 91 75

In Table 2, the numbers of daily deaths for each province in the Marche region are
displayed from 1 April 2021 to 4 April 2021. At the bottom of the table, the total deaths
from provincial deaths and the deaths reported from the CPA data set are displayed. This
is a typical case of a region where there is no “from other regions” issue present, but the
daily CPA underreporting of deaths and the huge death recounts done from time to time
are of great magnitude. Note, in fact, that on April 1st, 2nd and 4th, deaths were always
underreported, whereas on April 3rd, a huge recount from previous days was done. On
the other hand, Table 3 is an example of a reverse issue: differences between the sum of
provincial deaths and the number of regional deaths from the CPA data set are always
due to the “from other regions” reporting. From these two examples, it is clear that the
regional death time series is strongly affected by this recounting or delay in reporting,
with unjustified peaks created from time to time, and therefore an approach taking into
consideration provincial data acquired from regional bulletins and local newspapers is
more appropriate, at least in the case of the Italian COVID-19 data.

2.2. An Adjusted Time-Dependent SIRD Model

The SIRD model is a compartmental model used in epidemiology to design the spread
of a disease [6,24,25]. The model divides the population into four different groups: sus-
ceptible, infected, recovered, and deceased. This kind of design is appropriate when the
disease of interest respects the following two assumptions: infected individuals can propa-
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gate the infection; recovered individuals receive longstanding immunity. The COVID-19
pandemic respects the first assumption, and some preliminary studies show that recovered
individuals receive at least short-term immunity. There are other essential assumptions
concerning the population (and therefore the number of susceptible people). First, its size
is considered fixed (in our case, we considered Italy, which was affected by movement
restrictions, sometimes with people not leaving their region). Second, individuals are
identical to one another (i.e., demographic factors or different health conditions are not
considered). Finally, we do not consider the effect of the vaccination campaign, as, for the
period considered, it was still at the first stages in Italy. In Figure 2, a schematic of the
compartments and flows forming the model is shown.

Figure 2. SIRD model compartments and flows.

The SIRD model is based on four variables S(t), I(t), R(t), and D(t), that are re-
spectively the number of susceptible people at the beginning of the period considered
for the time series (taken from the Italian National Statistical Institute data warehouse:
http://dati.istat.it/, accessed on 30 April 2020), currently infected, recovered and deaths
at time t. The size of the population, n, is given by the sum of these four variables. The
model’s parameters are the transmission rate, the recovery rate, and the mortality rate,
respectively represented by β, γR, γD. Being rates, these parameters can also be seen

respectively as the average time between effective contagious contact (β−1) and the average
time before removal from the infectious class ((γR + γD)

−1).
Another important parameter that summarizes the spread of an outbreak is the basic

reproduction number, R0, which is computed as the ratio between the transmission rate
and the sum of the recovery and mortality rate. Furthermore, R0 represents the expected
number of individuals directly infected by one infected individual, in a population where
everyone is susceptible to infection. If R0 is less than 1, the epidemic will eventually
be controlled. If it is larger than 1, the transmission of the disease will increase in the
population. The formula for R0 is given by:

R0 =
β

γR + γD

Building on Chen et al.’s work [26], in this paper, a time-dependent model is proposed
in order to let the parameters be free to change over time. This kind of model is chosen
because, in Italy and various other countries facing the virus, containment measures
have been adopted and incremented over time. In particular, a national lockdown was
introduced in Italy on 11 March 2020, and lasted until 4 May 2020. Other pandemic
containment measures were taken later on. By allowing the parameters, especially the
effective transmission rate, to vary over time, control measures can be somewhat included
in the model. On the other hand, recovery and mortality rate are likely to depend on
the pressure under which hospitals and, in particular, intensive care units are in, which
increases sharply at the beginning of a pandemic (i.e., when a high mortality rate is
reported) and then relaxes after the health system capacity is enhanced.

http://dati.istat.it/
http://dati.istat.it/
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The differential equations governing the standard deterministic SIRD model are
the following:

dS
dt

= − β(t)S(t)I(t)
n

dI
dt

=

(
β(t)S(t)

n
− γR(t)− γD(t)

)
I(t)

dR
dt

= γR(t)I(t)

dD
dt

= γD(t)I(t)

subject to the constraint S(t) + I(t) + R(t) + D(t) = n, since we are neglecting the effects
of new births and of people dying for causes not related to COVID-19. Note that, because
of this constraint, one of the previous equations in the SIRD model can be derived from the
other ones, and can be omitted.

We consider the day as a unit of time, and we transform the previous system of
ordinary differential equations into a discrete-time difference system of equations, using
∆t = 1 and applying a forward finite differences scheme, which results in the following:

S(t + 1)− S(t) = − β(t)S(t)I(t)
n

I(t + 1)− I(t) =
(

β(t)S(t)
n

− γR(t)− γD(t)
)

I(t)

R(t + 1)− R(t) = γR(t)I(t)

D(t + 1)− D(t) = γD(t)I(t)

(1)

From the records of the four variables of interest in a specific province, the evolution
of each parameter can be retrieved using the equations above, as follows:

β(t) =
n(S(t + 1)− S(t))

S(t)I(t)

γR(t) =
R(t + 1)− R(t)

I(t)

γD(t) =
D(t + 1)− D(t)

I(t)

The observed time series of S, I, R, D is then used to estimate the daily values of
transmission rate, recovery rate, and mortality rate and predict future values. Because of
the stochasticity of the time series, the daily estimate of the three driving parameters is
itself stochastic, and we need then to smooth or filter out the noise of the estimates in order
to obtain robust predictions.

We do not assume any specific underlying model for the noise, and, in order to make
our predictions more robust, we decided to apply a finite impulse response (FIR) filter. The
following equations describe the regression model used in the FIR filter for each parameter
and the cost function to be minimized in order to find the optimal coefficients:
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β̂(t) = c0 +
J

∑
j=1

cjβ(t− j) + csst−14

γ̂R(t) = c0 +
J

∑
j=1

cjγR(t− j)

γ̂D(t) = c0 +
J

∑
j=1

cjγD(t− j)

minc

(
T

∑
t=J

(Y(t)− Ŷ(t))2 − λ‖c‖
)

where c0 and cj are the usual intercept and regression coefficient parameters. J was set to
14, since the estimated period change in the pandemic is likely to become visible in the
data after 14 days, as this is also the quarantine time used in Italy.

The FIR filter requires a single hyper-parameter (J in the above formula) which
represents the maximum number of lag days to include in the regression. The cost function
consists of a regularized least-squares method in which the penalty (λ) is applied to the
sum of squares of the regression coefficients (Ridge regression regularization, based on
a `2 norm [27]). Different penalty functions λ have been used in the ridge regression to
estimate each parameter, i.e., transmission, recovery, and death rates. The value of λ for
each parameter has been obtained using cross-validation. Therefore, the resulting overall
model is such that its parameters are time-dependent, and the lags of these are modeled via
loss functions, whereby parameters at a time are regressed on previous lagged parameters.

The SIRD models suffer from some drawbacks in periods of fast pandemic spread or
contraction (they tend to overestimate when there is a rapid increase of the infections and to
underestimate when there is a sudden decrease, see [28,29]). In order to consider the effect
of the social distancing policy adopted in Italy, the transmission parameters are multiplied
day to day by a parameter ψt = 1− st, where st is the national COVID-19 stringency index
in that period as computed according to [30]. We present model evaluation results with
and without considering the stringency index in Section 3.1.

Once the model has been trained using historical data, future predictions can be
made on the parameters and, therefore, estimates for the evolution of S, I, R, and D can be
computed using the SIRD model equations.

2.3. Adjusted Training Process

Our model aims to make predictions about the evolution of the COVID-19 outbreak
in Italy at the local level, particularly using historical data on each province. The model
presented here differs from [26], in that the hyperparameters are not considered fixed, but
optimized using multiple approaches, and it is composed of three different autoregressions
based each on a SIRD model’s parameter. Each of the regressions requires the choice of
the penalty value for the regularization process (λ). In our approach, the regularization
parameters were free to vary (within a range from −10−5 to 105 with step 0.1 for the
powers), and cross-validation was employed to find their optimal values [31].

However, the deterministic model described above might struggle to produce reliable
estimates in contexts where the number of cases or deaths is meager. There is considerable
fluctuation or inconsistency in the data, as happens in some provinces where the outbreak
is not so intense (see Figure 3, where the heterogeneity of the outbreak is clearly shown at
a provincial level, at least in the first-medium stages of its evolution). In contrast, it seems
to give more robust results when data are aggregated at a higher level, as in the entire
country’s time series. This happens because the model is based on smoothing the sequential
values of the variables that become less precise as the numbers decrease. Therefore, an
aggregation approach was used to train the three models, based on the assumption that
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provinces which ’behaved’ similarly in recent history are more likely to behave similarly in
the future.

Figure 3. Comparison of R0 index values on 10 September 2020, 10 October, 10 November, 10
December, for provinces where the number of deaths is available. Green pins are for 0 ≤ R0 < 0.5,
orange pins for 0.5 ≤ R0 < 1, red pins for 1 ≤ R0 < 2 and black pins for R0 ≥ 2.

For a given province and a given forecast origin, three sets containing the most similar
provinces concerning the different parameters β, γR, and γD were retrieved. The distance
between the two series was computed using dynamic time warping (DTW) with Itakura
constraint to allow for some small temporal shifts between the series [32]. The similarity
was considered only in the last 30 days before the origin, assuming that only the most
recent past was of interest. The number of provinces to select for each set was chosen using
cross-validation: the first decile, corresponding to 9 provinces, resulted in the minimum
prediction error. Such a choice is also reasonable in terms of the problem that we are trying
to solve, since it appears to be a good compromise between the overfitting and extreme
generalization of the series.

In Figure 4, an example on applying this model to parameter I, R and D for the
Catania province is shown.

Figure 4. Adjusted SIRD model for Catania province—Forecast origin: 20 December 2020.

The predicted values for these parameters are derived from the predicted hyperpa-
rameters β, γR, and γD. Together with these estimates, the estimates for the total cases and
the new daily cases are also obtained algebraically and displayed in the figures.

Predictions for the hyperparameters and other provinces, together with other model
settings like the number of lags to be chosen for prediction, can be seen on a dashboard
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developed for this model, available at https://ceeds.unimi.it/covid-19-in-italy/ (accessed
on 31 May 2021, see also [33] for a detailed description of this dashboard).

2.4. Bootstrap Prediction Intervals

Because of the numerous issues causing inconsistency in the reported daily data, it is
necessary to accompany the point estimates with reasonable confidence intervals. Since
the model starts with predicting the disease parameters, the intervals are also computed
first on the parameters and later derived for I, R, and D.

In order to build prediction intervals for the model parameters, a block bootstrap
algorithm using a stationary version of the time series with blocks of 30 observations
was used [34]. Zero lower bound was imposed for all the parameters to avoid results
that contradict the compartmental logic of the SIRD model. The same procedure could
be applied to the three regressions of the model, respectively used for β, γR, and γD.
However, each of the model’s variables depends on the whole set of parameters, so that
the obtained error range for a parameter must be combined with the other two parameters’
intervals. Thus, the intervals for the variables are subject to the uncertainty of three different
parameters and can be composed in different ways. Combining lower and upper bounds
of the parameters can be misleading, since the variables of the SIRD model develop in
different directions and, mainly, each variable depends on the past value of I(t), which in
turn depends on S(t− 1), R(t− 1), and D(t− 1). Nevertheless, combinations of interest
can be used to describe the epidemic development in particular scenarios. The method
proposed here is to use the prediction interval for the parameter of interest and use point
estimates for the other two parameters. Thus, the effects of the variability of the parameter
can be easily displayed on each variable. Accordingly, when the parameter of interest is β,
the following equations are used to compute the prediction intervals for the variables S, R,
D and I, following Equation (1):

S(t + 1)low/up = S(t)low/up

(
1−

β(t)up/low I(t)up/low

n

)
R(t + 1)low/up = R(t)low/up + γD(t)I(t)low/up

D(t + 1)low/up = D(t)low/up + γR(t)I(t)low/up

I(t + 1)low/up = n− S(t + 1)up/low − R(t + 1)low/up − D(t + 1)low/up

where low and up stand respectively for lower and upper bounds.
Bootstrap intervals for each variable are shown in Figure 5 for the province of Torino.

Note that real values in the prediction windows are always within the confidence bands.

2.5. Model Evaluation

The model performance was evaluated using two commonly employed accuracy
metrics. The mean absolute percentage error (MAPE) is a popular error measure used
to assess the reliability of model prediction and is widely used in medical research (see,
for example, [35,36] or [37]). In this application, the MAPE was employed to estimate the
average absolute error of the model on the different forecasting horizons:

MAPEh =
100
PD

P

∑
p=1

D

∑
d=1

∣∣∣∣∣Yhpd − Ŷhpd

Yhpd

∣∣∣∣∣
where h is the forecast horizon, P is the number of provinces in the sample, D is the number
of days in the sample, Ŷh is the resulting prediction, and Yh is the real value for the variable.

https://ceeds.unimi.it/covid-19-in-italy/
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Figure 5. Variables’ prediction intervals based on β interval—Torino province starting from
12 October 2020. The shaded region represents the 90% confidence bands, while the dots repre-
sent the point predictions. Real values are always within the confidence bands.

The mean percentage error is also commonly employed in the literature ([37]), and
it helps in the understanding of the distribution of the errors over the different units
under investigation. Thus, it was explicitly computed for every combination of province
and horizon.

MPEhp =
100
D

D

∑
d=1

Yhpd − Ŷhpd

Yhpd

2.6. Model Extensions

In the previous sections, each province had its specific model trained using a cluster
formed by the most similar provinces in terms of the parameters. The distance between
provinces was used assuming that provinces with similar behavior in the near past will
continue to have that behavior in the future, despite the geographical distance. The spatial
structure was not considered, as it was assumed that neighboring provinces did not affect
one another.

Indeed, neighboring provinces are likely to influence one another in many ways.
Movements between bordering provinces are more likely to happen than between non-
bordering ones. For example, commuters (i.e., potential spreaders) are more likely to work
or study in a neighboring province, thus increasing the probability of exporting (or import-
ing) the virus in nearby territories. Moreover, during the period of emergency, residents
of different provinces shared medical resources, such as hospitals, health care workforce,
equipment, and test capacity, thus affecting several different parameters regarding the
spread of the epidemic, such as the reported rate of transmission and the reported number
of COVID-19-related deaths.

Given these considerations, a spatial model is also implemented. Its results are
presented in Section 3 as a possible alternative to the original strategy for spatial effects.
The model performance is not considered in detail, as the focus of this article is the
methodology presented in Sections 2.2 and 2.3, while the spatial model only represents
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one of the possible extensions to the original model that could be developed when less
restrictive assumptions are made. Other potential models may consider the hierarchical
structure of the national, regional, and provincial levels, or could drop the assumption of
independence between the three parameters βt, γR, and γD.

3. Results
3.1. Model Accuracy Evaluation: Day-By-Day Forecasting Evaluation

The model accuracy was evaluated on the training approach presented above. In order
to calculate the MAPE for different values of h, we applied the model to all the provinces
within a sample period, lasting from 2 October 2020 to 25 February 2021 (D = 146),
corresponding to the second wave of the epidemic in Italy. For each day of the period, the
model predicts the values of the various pandemic variables, using a time horizon from 1
to 14 days ahead in the future.

The regularization parameter λ is free to vary across provinces and days. Model
predictions are then compared with the real values. Results are shown in Table 4 , where
we present MAPE values, both with and without considering the daily national stringency
index presented in Section 2.2.

Table 4. MAPE values-DTW aggregation training with and without stringency index.

Horizon Days I I R R D D
without s.i. with s.i. without s.i. with s.i. without s.i. with s.i.

1 2.78 2.79 1.46 1.46 1.08 1.07
2 5.19 5.24 2.69 2.70 1.96 1.95
3 7.79 7.88 4.00 4.01 2.82 2.81
4 10.48 10.64 5.39 5.42 3.67 3.67
5 13.18 13.48 6.88 6.94 4.52 4.53
6 15.73 16.30 8.54 8.61 5.33 5.34
7 17.55 18.48 9.90 10.07 6.00 6.03
8 19.64 20.64 11.00 11.37 6.69 6.73
9 21.97 22.98 11.90 12.41 7.37 7.43

10 24.35 25.39 12.80 13.39 8.04 8.10
11 26.72 27.85 13.64 14.27 8.71 8.77
12 29.09 30.36 14.40 15.05 9.36 9.45
13 31.33 32.80 15.12 15.78 10.02 10.13
14 33.55 35.37 15.88 16.53 10.64 10.77

MAPE values are relatively low for all of the variables in the short term. As is usual in
time series forecasting, the error increases as the horizon for the prediction becomes larger:
nevertheless, our model performance remains acceptable, even in the longer term. The
estimate whose MAPE is the highest is for I, whereas the MAPE for the deaths (‘MAPE D’)
is always the lowest, whatever the horizon. Finally, the MAPE for the recovered (‘MAPE R’)
is always in the middle. Note that MAPE D has a MAPE under 10% until day 12. MAPE R
is under 10% until day 7 and MAPE I until day 3.

For horizon days 10–14, MAPE values could appear relatively high. This is because
the time window that we considered included the second COVID-19 wave (October 2020–
December 2020), which has been the worst since the beginning of the pandemic. When
infection dynamics change and the numbers become more considerable, SIRD models,
in general, tend to lead to an increase in prediction errors. Our results on medium-
term forecasts are in line with other results in the recent COVID-19 forecast literature,
like in [38–40].

MAPE values computed considering the national daily stringency index are generally
larger than those computed without it. This could be since we are taking into account the
national stringency index, whereas we should have considered the provincial, which is
not currently available. However, the maximum relative change in MAPE between those
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with and without stringency index (considering the latter as reference) is around 5%. For
the number of deaths D, until the 4th horizon day, the MAPE with the stringency index is
lower or equal than the MAPE without stringency index. For this parameter, the relative
change is always under 1%.

As a sensitivity analysis, we have also run the model without the four regions hav-
ing more data discrepancies in terms of comparison between retrieved and official data
highlighted in Figure 1. Table 5 shows the MAPE D relative to the subset of data without
these four regions for provincial aggregating, revealing only tiny differences for column
‘MAPE D’ in Table 4. However, for each horizon, there is a slight improvement for the
MAPE values in Table 4, hinting at an even better performance with high-quality data.

Table 5. MAPE D-Aggregation training without Abruzzo, Basilicata, Lazio and Molise without
stringency index.

Horizon Days MAPE D

1 0.987
2 1.785
3 2.560
4 3.346
5 4.115
6 4.846
7 5.458
8 6.073
9 6.706

10 7.342
11 7.986
12 8.609
13 9.245
14 9.881

Therefore, this model training can be considered optimal, and the analysis of its
forecasting reliability is further developed.

3.2. Model Accuracy Evaluation: Error Distribution across Provinces

The distribution of the mean percentage error (MPE) [41] was also analysed for each
province to understand more about the prediction reliability of our model, given different
time horizons.

The mean is computed over the period considered, so that each value represents the
average error that the model makes in the specific context of a province; Figure 6 shows
box plots of the distributions of provincial forecasts, given the forecast horizon.

For a time horizon lower than five days, 75% of the provinces are accurately predicted
with percentage errors lower than 10%. A time horizon equal to 6 days still shows an
acceptable level of error with almost all provinces below the 20% threshold. Even when
the time horizon covers 13 days, half of the provinces show errors below 25%, meaning
that although the overall accuracy decreases, the model still performs pretty well in
some provinces.
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Figure 6. Boxplots of MPE on currently infected.

3.3. Clustering the Provinces by One-Week Errors on I

Based on the error distribution analysis conclusions, weekly predictions are considered
the optimal context of an application for our model. In this section, the MAPE on currently
infected people is analyzed using a one-week horizon. Figure 7 shows how the one-week
prediction error varies when we start to forecast those currently infected on different
days. We can see that there are no alarming shifts in the model accuracy and that a large
majority of the provinces are even below the 20% threshold. Although this happens in the
sample period of our choice, the model accuracy had likely improved since the beginning
of the epidemic, when most provinces reported very low numbers of cases, making the
predictions harder.

Figure 7. MAPE on weekly predictions over time. The dates on the horizontal axis represent the
time window limit on which the training was done. The vertical axis displays the absolute error
between real and predicted on the seventh day after that date for each province.

3.4. Spatial Model

The presence of a spatial autocorrelation structure across the provinces appears evident
in the analysis of the Moran’s index [42], which is a measure of association between
geographical units and their neighbors on the number of infected individuals. In the
computation of the statistic, first-order neighbors, (i.e., adjacent provinces) were considered
to design a spatial weight matrix with each row and column representing a province: if the
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provinces do not share a border, then a weight of 0 is assigned; the weight for the neighbor
provinces is assigned so that the row-wise sum is equal to 1. Moran’s index (Formula 2)
is computed for each day using I as the variable of interest: p stands for the number of
provinces; Iit is the reported number of active cases at time t in province i:

It =
p

∑
p
i=1 ∑

p
j=1 wij

∑
p
i=1 ∑

p
j=1 wij(Iit − Īt)(Ijt − Īt)

∑
p
i=1(Iit − Īt)

(2)

The spatial association is significantly different from 0 , particularly in periods of severe
outbreaks (Figure 8). In the first days of the epidemic, the spatial autocorrelation shows
a substantial significance, and its inclusion in the model might improve the forecasting
process. In the period in which the pandemic situation is improving, i.e., from late April–
early May 2020, the association between provinces and their neighbors tends to decrease,
thus suggesting that the spread of the virus might have become more homogeneous within
the national territory. The steep long-lasting decrease in Moran’s index value from late
April–early May 2020 might be due to the ease of restrictions and the fast decrease in the
number of new cases reported throughout Italy in that period. It was expected that the
spatial autocorrelation grew again in the autumn, as the long-distance mobility imputable
to vacation traffic decreases and local outbreaks become more likely than extended ones.

Figure 8. Moran’s index computed on I using a row-standardized spatial weight matrix. The lower
panel gives the significance levels corresponding to each day of the time window considered, and
the horizontal dotted line is the 0.05 p-value level.

The spatial association between bordering provinces can be considered in the model
by including spatial lags and temporal ones. Such models, including both temporal and
spatial lags, are space-time autoregressive moving average (STARMA) models ([43,44]).
STARMA models are helpful when there is dependence between contiguous regions, and
therefore are effective to model pandemic situations—like the one of COVID-19 in Italy—
thus in line with our approach of modeling the virus spread more locally, and have been
adopted in many spatial contexts [45]. Moreover, considering the current situation in other
provinces, predicting the epidemic evolution in a particular region can be an alternative
to the aggregation training approach presented in the article. Including time lags for all
the neighbor provinces is costly in terms of the number of coefficients to estimate, so
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that the regularization technique (Ridge) used in the first model becomes increasingly
valuable for the spatial model, to perform the shrinkage of the coefficients and enhance the
generalization ability of the model, needed to make robust predictions.

The STARMA model, including both temporal and spatial lag, can be summarized in
the following equation that models the vector of parameters Yp,tcontaining βt, γR, γD:

Yp,t =
J

∑
j=1

φp,jYp,t−j + ∑
i∈neighs(p)

J

∑
j=1

φi,jYi,t−j + εt (3)

where neighs(p) returns the neighbour provinces of p, J is the number of lags to use that was
set to 14, φi,j represents the coefficient for each combination of lags i, j. The regularization
is performed independently for each of the three parameters using cross-validation to find
an optimal value for λ.

The specified model can be trained for all of the parameters, and it can be used to
predict their future values. Once the forecasting is done for β(t), γR(t), and γD(t), the
SIRD variables can be computed in the usual way using Equation (1) and Equation (3). An
example of the outcomes from the implementation of this autoregressive space-time model
can be seen in Figure 9 for the province of Turin.

(a)
(b)

Figure 9. SIRD model predictions for Turin province using the STARMA model based on data up to
September 10th and November 30th, 2020. (a) September 10th; (b) November 30th.

Like in the case of the MAPE values, also, in this case, forecasts seem satisfactory in
the short term, whereas in the medium–long term, the STARMA model does not seem to
anticipate changes in the slope of the number of infected people series (and consequently of
the total cases which are derived from them), whereas for new cases, deaths and recovered
people, the model fits well. However, in November 2020 (which is the case displayed
in Figure 9b), many measures to contain the spread of the virus have been adopted by
the Italian government, which we did not consider in this application. However, when
considering a mild increase of the virus spread (Figure 9a), the STARMA model seems to
perform better.

4. Discussion

The COVID-19 outbreak has made it necessary to impose strong containment mea-
sures. The spread of the disease in Italy involved the whole Italian territory heteroge-
neously, see [12]. The total lockdown of industrial and other productive activities (from
22th March) and other restriction measures adopted later on were legitimized by few
municipalities with an ever-increasing number of cases (and deaths), by the inability to
stop the contagion by the emergence of new outbreaks. It is also true that the lockdown
also stopped municipalities barely touched from the COVID-19 spread.

The analysis presented in this paper can be applied at the NUTS-3 region level in
Italy to predict the future development of the epidemic in the specific provincial context.
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This choice is aimed at tackling the heterogenei0y of the COVID-19 pandemic on the
territory. Furthermore, as expected in an emergency, some information may be temporarily
incomplete. In particular, during the first virus outbreak, especially in provinces where
there have been a high number of infections, patients, and hospitalized patients, there was
the possibility of a delay of a few days between the time of the swab for diagnosis and data
reported on the dedicated platform (https://www.epicentro.iss.it/en/coronavirus/sars-c
ov-2-integrated-surveillance, accessed on 31 May 2021).

The DTW training approach presented in this paper has been proven to be accurate,
and it is therefore recommended.

The main issue found during our model building was the lack of detailed and consis-
tent data about the epidemic at the provincial level . However, the procedure adopted by
the Italian central government and the regional authorities was standardized in order to
obtain similar aggregated data across regions. A full trustfulness of these aggregated data
is put in doubt by the fact that some of them (deaths, recovered and a number of tests) are
not publicly available at a provincial level in the official daily releases by the Italian Civil
Protection Agency, and therefore, as in our case, they must be estimated or found in some
ways. If more variables had been available, the model could have been extended to include
other compartments, such as the hospitalized cases or the number of tested individuals, or,
again, the possibility to consider a percentage of recovered people as susceptible, or the
asymptomatic cases, or the underreporting of deaths. Indeed, we choose to implement
the simplest (with the lowest number of parameters) model, which allows us to overlook
strong and unlikely assumptions. Indeed, it is known that compartmental models are
not identifiable when the parameters (more than one) cannot be directly estimated by the
observed evolving compartments (see, e.g., [17]). As a consequence, one might not detect
hidden variables. However, the observed positive cases likely present a severe clinical
situation, and, in force of this, they more likely present the highest number of neutralizing
antibodies, see [46]. The recovered individuals ’ data were also not available and, therefore,
an estimate using regional data was necessary. Finally, the state of emergency in which
the data was collected is likely to affect its quality and consistency. However, for the
kind of modeling that we chose, relying on aggregate official data, retrieved directly or
indirectly, was the only way to have reliable results. Nevertheless, the model seems to
perform relatively well in the short-term horizon, and with the deaths data, we were able
to acquire from regional authorities and local newspaper websites.

5. Conclusions

The analysis presented in this paper can be helpful to gain a general understanding
of the epidemic development in the short term at the local level. Notably, it could be
implemented to monitor and signal local areas at greater risk.

Along with the forecasting of the SIRD variables, the model offers other insights
into the epidemic development. The computation of the parameters provides informative
time series evolution of the disease in each specific context. Future work will be about
considering an extended stochastic version of the adjusted SIRD model presented in this
paper (for example, building on the work by Zimmer et al. [47]), the Bayesian framework,
multiple-source models as in [48] and the vaccination campaigns.
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