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Abstract: The lack of an efficient approach in managing pharmaceutical prices in the procurement
system led to a substantial burden on government budgets. In Thailand, although the reference
price policy was implemented to contain the drug expenditure, there have been some challenges
with the price dispersion of medicines and pricing information transparency. This phenomenon
calls for the development of a potential algorithm to estimate appropriate prices for medical prod-
ucts. To serve this purpose, in this paper, we first developed the model by the sequential minimal
optimization (SMO) algorithm for predicting the range of the prices for each medicine, using the
Waikato environment for knowledge analysis software, and applying feature selection techniques
also to examine improving predictive accuracy. We used the dataset comprised of 2424 records
listed on the procurement system in Thailand from January to March 2019 in the application and
used a 10-fold cross-validation test to validate the model. The results demonstrated that the model
derived by the SMO algorithm with the gain ratio selection method provided good performance at an
accuracy of approximately 92.62%, with high sensitivity and precision. Additionally, we found that
the model can distinguish the differences in the prices of medicines in the pharmaceutical market by
using eight major features—the segmented buyers, the generic product groups, trade product names,
procurement methods, dosage forms, pack sizes, manufacturers, and total purchase budgets—that
provided the highest predictive accuracy. Our findings are useful to health policymakers who could
employ our proposed model in monitoring the situation of medicine prices and providing feedback
directly to suggest the best possible price for hospital purchasing managers based on the feature
inputs in their procurement system.

Keywords: sequential minimal optimization; prediction model; feature selection; medicine price

1. Introduction

The cost of pharmaceutical products is one of a considerable proportion of total health-
care expenditure in many countries, resulting in between 20% and 60% [1]. Additionally,
achieving a data analysis technique for purchasing medicine remains a challenge in the
pharmaceutical procurement system because the market is inefficient. In the pharmaceuti-
cal market, many economic market structures could face imperfect competition and become
a challenge to control the price of medicines, for instance, in monopoly and oligopoly mar-
kets. In both cases, they can be significant barriers to entry for other firms. Furthermore,
drug pricing can vary for many features, such as the differences in formulations, designs,
packaging, or sale volumes. Some buyers might pay above the lowest available price for
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the same product because of information asymmetry, single vendor, inelastic demand,
and among other reasons [2]. Due to these complexities, it is difficult to determine the
appropriate intervention for managing the prices of medicines. One of the typical require-
ments to control medicine prices of the Food and Drug Administration in many countries
is that identical pharmaceutical products should have little price dispersion; however, in
the current market, the products of various brands typically have seen the dispersion of
pricing [3]. Pharmaceutical procurement in differing environments was classified into
different price ranges [4].

The limitations of procurement procedures in the pharmaceutical market could be
different from country to country. In Thailand, pharmaceutical procurement is a complex
system that relates to several agencies, organizations, and manufacturers. The pharma-
ceutical procurement data are gathered to estimate a reference price of each medicine.
The reference price is determined as the maximum price that hospitals can procure their
product. However, this strategy has not been successful in controlling the price dispersion
for pharmaceuticals which have been routinely encountered [5]. As described by Ngor-
suraches and Chayakan [6], although the reference price policy is a relatively simple tool
used in drug procurement, there are some limitations in pricing information transparency.
There are many features associated with pricing in the pharmaceutical market in Thai-
land, such as the characteristics of medicine products, the conditions of both the local and
international dealing, and the bargaining powers of different buyers. More specifically,
the inadequate monitoring process and the lack of access to sufficient information and
technology can result in purchasing unnecessarily high prices and also lead to facilitate
improper influence on the procurement procedure by special interest groups [7]. Among
hospitals in Thailand, identical medical products were procured at different prices, even
buying from the same vendor and distributor [8]. One of the important reasons is that using
a reference price method is still difficult for identifying the same medicine exactly due to
the difference in trade names, manufacturers, strength, dosage form, and packaging. These
factors have a significant impact on how well users can effectively select the target price on
the various combination features. Furthermore, the hospitals are still limited to understand
the current market price. This engenders difficulty in calculating the optimal price of
their product. Therefore, policymakers still need to find effective measures or new tools
which have high separating power and high sensitivity to monitor the situation of each
drug price. Moreover, determining the range of the prices over setting the reference prices
should be considered because it can develop human interpretation and be compatible with
heterogeneous data [9].

Accordingly, a model that can effectively predict the range of the prices for each
medicine should be explored. The choice between the statistical and machine learning (ML)
methods may seem fuzzy but it can be considered on the primary objective [10]. In some
medical data, the relationships of variables are reasonably straightforward, for example,
those between diabetes risk and body mass index. This can be well presented using
relatively simple models of statistical inference to understand the relationships between
factors. Conversely, in pharmaceutical data, the prices of medicines can vary according to
several factors, and many relationships could not reasonably explain, for instance, those
between packaging and price setting. In this case, the ML technique might be a good choice
as the relationship between several inputs that are complex and usually non-linear. The
primary consideration in the ML field is an accurate prediction. The individual features
and the outcome can have a little relationship if the prediction is accurate. More specifically,
a technique of sequential minimal optimization (SMO) [11] which is an effective algorithm
in support vector machine learning, is widely used to classify several datasets based on the
features given [12].

To assist policymakers to monitor the prices of medicines, in this study, we focused
on investigating the performance of the model of the SMO algorithm for predicting the
range of the prices for each medicine. We expected that our findings can be useful to health
policymakers who could employ this model as an application in monitoring the situation
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of medicine prices and providing feedback directly to suggest the best possible price for
hospital purchasing managers based on their feature inputs in the procurement system.

2. Literature Review
2.1. Pharmaceutical Procurement

Pharmaceutical procurement represents a considerable part of the expenditure of the
healthcare sector. It is important for operational performance [13]. The main aspect of
procurement in all countries is the same, that is, to make available the right medicines
of assured quality in the right quantities from reliable suppliers at the lowest possible
prices [1]. The appropriate procurement processes have been considered essential to
develop competition between drug suppliers through the transparent selection process to
develop the system efficiency by enhancing economies of scale. In public procurement,
governments are responsible to guarantee that procurement is carried out efficiently, the
quality of public service delivery, and protecting the public interest. Additionally, the
government and decision-makers have usually relied on empirical procurement data
to identify effective patterns, test theories, and analyze the medication use, cost, and
price in pharmaceuticals. Poor processing in procurement often creates an easy target
for corruption. Pharmaceutical procurement is even more susceptible to corruption than
conducting in other sectors [14]. This is because drug procurement, involving many
influential factors such as the practices in determining the brand of medicine or sale
volume, is often subjective; the monitoring quality standards in drug procurement of each
unit level are difficult; suppliers set different prices for the same medicine product and can
make unreasonable prices; some marketing strategies by pharmaceutical companies try
to convince demand for their products; and another challenge is presented by emergency
conditions, which call for the acute intervention.

One of the policies used to control drug expenditure in many countries is price
regulation policy through reference prices. Reference drug pricing can be applied to
different levels of medicine groups [15], as drugs can involve in the same Anatomical
Therapeutic Chemical (ATC) classification system group. This policy can have various
evidence of its impact. In European countries and Canada, for example, they can save a
lot of government budget from this intervention [16]. Similarly, in Colombia, the price
regulation policy through reference prices represented in reducing approximately 41% in
the medicine prices [17]. Despite this revealed positive outcome, the reference price strategy
has led to a reduction of transparency and accessibility of medicine price information such
as pharmaceutical suppliers try to prevent buyers from knowing that the same medicine
products are sold at a lower price in another area but claim that same price [18]. Accordingly,
price dispersion in the same type of medicine has been encountered. Furthermore, using
different procurement methods also has an impact on the purchase prices of medicines, for
example, using centralized drug procurement has significantly associated with a reduction
of pharmaceutical prices [19] when comparing with a decentralized system managed by
local levels. However, the procurement structures also depend on the country’s economy.
Currently, with the integration of information technology and new algorithms, developing
an efficient application that can build up an information circle between the government
procurement data center and hospital purchasing managers would be useful for managing
medicine prices.

2.2. John Platt’s Sequential Minimal Optimization (SMO)

While there have been various implementations of support vector machine (SVM)
algorithms in the past years [20,21], in this study, we focus on the sequential minimal
optimization (SMO) algorithm, an effective algorithm in SVM learning introduced by
Platt [11]. The key feature of the SMO algorithm is that it iteratively selects subsets only of
size two to put chunking to the extreme and then optimize the target function with features
given. This algorithm can solve analytically better than other support vector learnings
because it does not require using a quadratic optimizer. SMO has greatly performed
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on scaling for all datasets. This technique is simple, dependable, and easy to be used.
In comparison, the speed of executing the SMO algorithm is much faster than all SVM
algorithms [22].

The SMO algorithm has been used in many fields [12,23,24] and demonstrated to get
very good performance with sparse data inputs, even which imbalanced data, because it
requires much shorter kernel computation time. It has also been demonstrated to have a
high predictive capability to find out optimal values and unknown patterns. For example,
Pham et al. [23] have demonstrated that the SMO algorithm outperforms both vote feature
intervals and logistic regression on landslide prediction. Sunarya et al. [25] have shown
that the SMO algorithm has higher predictive accuracy than the principal component
analysis method in predicting commodity prices. Additionally, Ince and Trafalis [26] have
found that the SMO algorithm outperforms the multi-layer perceptron networks in terms
of the mean square error evaluation on the stock price prediction. The SMO is a state-of-
the-art technique for classification but, as far as we know, it has not been applied for the
pharmaceutical sector that consists of complex feature inputs of products, and its processes
are related to several agencies, organizations, types of medicines, and manufacturers. In
this work, we aimed to investigate the performance of the model of the SMO algorithm on
predicting the prices of each medicine.

3. Data, Variables, and Methodology
3.1. Data and Variables

According to the recent literature, there are several factors related to the pricing of
each medicine [27]. In the pharmaceutical markets, the price of the same medicine can be
different among hospitals in different regions [28]. The distributions of the prices of drugs
depend on the characteristics of medical products including the type of medicine, trade
name, dosage form, and package [29]. Additionally, procurement methods could have an
impact on purchase prices. For example, using public bidding practices can drive down the
procurement prices of medicines [30]. On the other hand, using specific selection methods
without competition could reduce the power of negotiating lower prices. We exhibit all the
relevant features that could influence the medicine pricing in Table 1. The study datasets
comprised pharmaceutical procurement data in Thailand from January to March 2019. The
dataset contained 2424 records without missing values. We hypothesized that eight features
(the segmented buyers, the generic product groups, trade product names, procurement
methods, dosage forms, pack sizes, manufacturers, and total purchase budgets) could be
used in developing the model to predict the prices for each medicine effectively. These
features will be examined by using the feature selection method, a process of selecting a
subset of relevant features for the classifier.

Table 1. The features and the definitions of the dataset in our study.

Features Descriptions

DEPT Purchasing departments who purchase the medicines for hospitals

GPU The name of generic product use in the database which involves the virtual
therapeutic moiety and strength (e.g., Omeprazole 40 mg)

TPU The name of trade product use or brand (e.g., Losec®, Omezole®)
METHOD Procurement method (e.g., bidding method, specific selection method)
WINNER Supplier who sells the medical product

UNIT The dosage form of the drug product (e.g., powder for solution for injection)
SIZE The number of units per pack (e.g., 14 or 28 tablets per box)

TOTAL Purchase budget for each medical product (Thai Baht)
PRICE a Procurement price per unit (Thai Baht)

a Output variable corresponding to the range of prices for pharmaceutical products.

We now define all the variables used in our paper. The output variable used in our
paper is PRICE which is the price per unit of medicine that discretized into eight class labels
of price ranges for medicine, as shown in Figure 1: “(−inf–8.26]” for medicine product
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pricing less than or equal 8.26; “(8.26–16.08]” for medicine product pricing interval from
more than 8.26 to 16.08; “(16.08–23.9]” for medicine product pricing interval from more
than 16.08 to 23.90; “(23.9–31.72]” for medicine product pricing interval from more than
23.90 to 31.72; “(31.72–39.54]” for medicine product pricing interval from more than 31.72
to 39.54; “(39.54–47.36]” for medicine product pricing interval from more than 39.54 to
47.36; “(47.36–55.18]” for medicine product pricing interval from more than 47.36 to 55.18;
and “(55.18–inf)” for medicine product pricing more than 55.18.
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We use other eight procurement features as the input variables, including DEPT, GPU,
TPU, METHOD, UNIT, SIZE, WINNER, and TOTAL. DEPT is variable of purchasing de-
partment that consists of thirteen departments to make the decision to purchase medicines
for hospitals, GPU is the name of the generic product used in this study under Anatom-
ical Therapeutic Chemical Classification (ATC) code A02BC01 (omeprazole, parenteral
form) which involves two different labels: omeprazole 40 mg and omeprazole 20 mg, TPU
is the trade product name that includes twenty-two different names, METHOD is the
procurement method that includes two different methods: bidding method and specific
selection method, UNIT is the dosage form that includes two different forms, SIZE is the
pack size that has seven different sizes; WINNER is the variable of winning supplier that
consists of six different firms who are selected to sell the medical product to hospitals, and
TOTAL is the total purchase budget that discretized into eighty-four different labels. These
eight features are used in developing the model to predict the price ranges for medicine.

3.2. Conceptual Framework

The study procedures are listed in the conceptual framework exhibited in Figure 2.
In this study, we use the software of the Waikato environment for knowledge analysis

(WEKA, University of Waikato, Hamilton, New Zealand) [31] which is an open-source Java-
based software, and is facilitated the implementation of several machine learning algorithms,
including sequential minimal optimization (SMO) algorithm. SMO in WEKA is dependable
and has shown good performance for either binary or non-binary input data [32]. WEKA is a
user-friendly software supporting various data mining tasks, including data preprocessing,
classification, feature selection, and visualization. We employ the data preprocessing function
in WEKA for discretizing the price data to the range of the prices before developing the model
to reduce a large amount of data and reduce the levels of data complexity [9]. We then develop
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the model by using SMO for predicting the prices of medicines and applying feature selection
techniques to obtain improving predictive accuracy.
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3.3. Classifier

Sequential minimal optimization (SMO) is developed by employing the principle that
the original quadratic programming problem produced when using the support vector
machines (SVM) algorithm that can be decomposed into a series of the smallest possible
sub-problems [11]. In our study, we suppose (x, y) is a vector of training dataset such that
during the training process, a nonlinear classification problem with a dataset {(xi, yi)} in
which xi is the ith input pattern of the selected input variables (the segmented buyers, the
generic product groups, trade product names, procurement methods, dosage forms, pack
sizes, manufacturers, or total purchase budgets), and yi = {i =1, 2, ···, 8} is a class label of
the output variable (as shown in Figure 1), where there are eight class labels for the range of
drug prices; for example, yi = 1 means xi is in class 1. This multiclass classification problem
is normally solved by decomposition to several binary problems for which the standard
SVM can be used. However, as described by Platt [11], a quadratic programming problem,
where the objective function Q depends on a set of Lagrange multipliers α = { αi} as shown
in the following maximization problem:

Max Q(α) = ∑n
i=1 αi −

1
2 ∑n

i=1 ∑n
j=1 yiyjαiαjk

(
xi, xj

)
(1)

subject to:
0 ≤ αi ≤ C, f or i = 1, 2, . . . , n (2)

n

∑
i=1

αiyi = 0 (3)

in which α = { αi} denotes a set of Lagrange multipliers of the sample, C represents the
hyperparameter of SVM that manages the trade-off between allowance and maximizing
margin for misclassification, and k

(
xi, xj

)
is a kernel function [33]. This problem described

above can be solved by using the SMO algorithm. When choosing a pair of multipliers α1
and α2, we reduce the constraints to be:

0 ≤ α1, α2 ≤ C (4)

Considering the Lagrange multipliers α1 and α2 to be optimized and keeping all other
multipliers (i = 3, 4, . . . , n) to be constants, we rewrite Equation (3) to be:

y1α1 + y2α2 = −
n

∑
i=3

αiyi (5)
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Replacing −∑n
i=3 αiyi by a constant k, Equation (5) becomes

y1α1 + y2α2 = constant (k) (6)

The SMO first optimizes the quadratic programming problem by determining a
Lagrange multiplier α1. The optimal value of α1 is obtained by finding α

new,unclipped
1 by

restricting it with the following upper bound U and lower bound L limits, as mentioned in
Platt [33]:

α1 =


U i f α

new,unclipped
1 > U

α
new,unclipped
1 i f L < α

new,unclipped
1 ≤ U

L i f α
new,unclipped
1 ≤ L

. (7)

A similar procedure can be used to find other optimal Lagrange multipliers αi for
i = 2, 3, 4, . . . , n. The selection of these variables is guided by some heuristics, including
choosing the variable with the maximum step size ∆αn = αnew

n − αold
n . This iterative process

is repeated until it converges and the Karush–Kuhn–Tucker (KKT) conditions [33] are
satisfied by all α1, α2, . . . , αn variables. In this situation, the objective function is minimized.

In the study, we employ the SMO classifier implemented in the Waikato environ-
ment for knowledge analysis (WEKA) software, as shown in Figure 3. The 10-fold cross-
validation is used as a test option, and the test result shows that the model provides the
highest accuracy when the value of the punishment factor (C) is 1, the value of the tolerance
parameter (L) is 0.001, roundoff error is set to 1.0E−12, and the polynomial kernel is chosen
as the kernel function of SMO.
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However, the SMO algorithm still cannot handle large amounts of irrelevant features.
To circumvent the limitation, efficient feature selection, the process of selecting a subset of
essential features for the algorithm used, is recommended to circumventing the difficulty.

3.4. Feature Selection

In our analysis, we assumed that eight features, namely, the segmented buyers, the
generic product groups, trade product names, procurement methods, dosage forms, pack
sizes, manufacturers, and total purchase budgets can be used in developing the model to
predict the prices for each medicine effectively. These features were examined by using
the feature selection method [34], the process to remove all irrelevant features and choose
only important features associated with the prediction of the prices for each medicine. We
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expected that drugs grouped in the same set of such feature inputs should be classified
together and then used to validate the classification of drug prices. Roobaert et al. [35]
indicated that feature selection can help the generalization performance of support vector
learning techniques. Currently, several feature selection methods have been developed and
implemented in the Waikato environment for knowledge analysis software. We applied
the following four widely-used feature selection techniques: correlation-based feature
subset selection (CFS), gain ratio, information gain, and wrapper subset evaluation in our
study. The significant features selected by these methods were identified and compared to
determine the solution with the best predictive accuracy. Among these feature selection
methods, we hypothesized that using a sequential minimal optimization algorithm with a
suitable feature selection method could improve the predictive accuracy.

3.5. Test Options

This study applied the option of 10-fold cross-validation, which was widely adopted
to test the prediction accuracy and error of a model. Cross-validation has been extensively
used for estimating the performances of different classification models [21,36]. In this
approach, given data were split into 10-fold sub-samples with similar sample sizes and
distributions. Nine of the subsets were applied to train the model, and the remaining
subset was applied to test the model. This process was repeated ten times—that is to say,
every subset was used as the test set once. This task was implemented in the Waikato
environment for knowledge analysis software and it was easy to use.

3.6. Model Evaluation Metrics

After the model was developed and validated by a 10-fold cross-validation test, we
can obtain feedback from metrics that can explain the performance of the model. Generally,
accuracy constitutes the traditional metric for performance evaluation and comparison
among different prediction models; accuracy can be expressed as the difference between
the predicted class and the true class of data [37]. However, using accuracy alone to
evaluate algorithms under conditions of imbalanced distribution of class conditions might
produce misleading outcomes because algorithms are highly biased toward the majority
classes. Accordingly, this study evaluated model performance by using several relevant
metrics [20], including accuracy rate, precision, recall (sensitivity), F-measure, and an
area under the receiver operating characteristic curve (ROC) area. We also calculated
the Kappa coefficient that was a measure of the percentage of agreement and confusion
matrix that revealed the number of correct and incorrect predictions for each class. In this
process, we hypothesized that the sequential minimal optimization model could have good
performance for predicting medicine prices.

4. Empirical Analysis

This section discusses the empirical analysis of our study. We first present the descrip-
tive statistics of variables used in this study. We then discuss the results of the feature
analysis, followed by discussing the performance analysis, including accuracy, precision,
recall, F-measure, receiver operating characteristic (ROC) area, and the Kappa coefficient.
We also represent the results of the confusion matrix in this section.

4.1. Descriptive Statistics

All medications listed on the procurement system in Thailand were classified ac-
cording to the Anatomical Therapeutic Chemical Classification (ATC) system [38]. The
drugs were defined by the chemical substance at the lowest level of the ATC code (5th
level). In our analysis, we used medicine code A02BC01 (omeprazole, parenteral form)
that presented high price dispersions. The dataset comprised 2424 records from January
to March 2019. For this therapeutic category, we identified the mean, median, minimum,
and maximum of unit prices according to the description of medical products used in
the study. We also calculated the coefficient of variation (CV) to measure the relative
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dispersion of drug prices [39], as shown in Appendix A. We observed that there was high
price dispersion for some medicine products, presenting an average CV exceeding 30%,
which indicated that the purchasing process may out of control [40]. The price interval of
each brand product of this medicine was represented in Figure 4.
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The omeprazole 40 mg powder for solution for injection drug, resulting in a high
range of unit price from 8.05 to 62.06 Thai Baht (THB). If we classified by trade names
or brands of this drug as shown in Figure 4, the different product brands represented
different price intervals. Some brands had high price dispersions. Some purchasers also
bought it at high prices. This may vary in response to different other features, consisting of
different trade product names with various pack sizes from different suppliers purchased
by hospital purchasing managers in different health regions in Thailand with differing
purchased budget volumes and procurement methods. These features were examined
by using the feature selection method in the next section for removing irrelevant features
and selecting only important features associated with the prediction of the prices for each
medicine.

4.2. Feature Analysis

The choice of different methods of feature selections depends on both the algorithms
being used and the type of given data. To examine whether the method of feature selection
is suitable for the sequential minimal optimization (SMO) algorithm and pharmaceutical
price data, we examined four popular feature selection methods implemented in the
Waikato environment for knowledge analysis (WEKA) software, involving the correlation-
based feature subset selection (CFS), information gain, gain ratio, and wrapper subset
evaluation methods. Major features selected by these methods were ordered by the most
relevant and compared to determine which of them can provide the greatest predictive
accuracy. As presented in Table 2, the model’s accuracy rate was evaluated by using
10-fold cross-validation. The results indicated that the eight features selected by the gain
ratio method provided the highest accuracy rate (92.62%), followed by those selected by
the information gain, wrapper subset evaluation, and CFS methods (89.21%, 88.57%, and
84.15%, respectively). Accordingly, the model derived by using the SMO algorithm with the
gain ratio method selected all the eight features, namely, the generic product groups, trade
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product name, dosage forms, suppliers, the segmented buyers, procurement methods, pack
sizes, and total purchase budgets for predicting the range of drug prices and for providing
the result at the highest predictive accuracy.

Table 2. Selected features ordered by most relevant for different feature selection methods and corresponding accuracy.

Selection Methods Selected Features % Accuracy Measure

CFS (1) GPU, (2) UNIT (3) DEPT 84.15%
Wrapper Subset Evaluator (1) GPU, (2) UNIT (3) DEPT, (4) TOTAL, (5) SIZE 88.57%

Information Gain (1) GPU, (2) UNIT (3) DEPT, (4) TOTAL, (5) SIZE (6) TPU, (7) WINNER 89.21%
Gain Raito (1) GPU, (2) UNIT (3) DEPT, (4) TOTAL, (5) SIZE (6) TPU, (7) WINNER, (8) METHOD 92.62%

Note. CFS = Correlation-Based Feature Subset Selection, TPU = Trade Product Name, GPU = Generic Product Name, UNIT = Dosage Form,
DEPT = The Segmented Buyers, WINNER = Manufacturer/Vendor, TOTAL = Total Purchase Budget, METHOD = Procurement Method,
SIZE = The Number of Units Per Pack.

The work can be useful for health authorities or policymakers to estimate the prices
of each medicine based on their procurement conditions. As described in Figure 5, for
example, if it was necessary to predict the range of the prices for each vial of the omeprazole
(40 mg) powder for solution for injection drug, the proposed model can estimate the range
of the prices for a given set of the eight feature inputs. By comparison with previous price
data shown in Figure 4, our model can suggest the smaller range of the purchase price of
both brand A and brand B for hospital purchasing managers in the same health region in
Thailand. This can control the distribution of the procurement price for the drug product.
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Figure 5. Examples of price prediction by using the model derived by the SMO algorithm with selection technique of the
gain-ratio feature.

In another work of this analysis, we can compare the prices for different sets of feature
inputs such as comparing between brand A and brand B from different suppliers on the
same pack size at 10 vials/box that will be procured by hospitals in the public health region
1 by using the specific selection procedure under the budget of 50,000 THB. The proposed
model can predict the prices of both option inputs in a different range of prices. The price
of brand A was about 3 times less than that of brand B. Thus, policymakers can monitor
and analyze the prices of medicine from different options of feature inputs and provide
this information to suggest the best choice for hospital purchasing managers in order to get
the right medicine product at the optimal price.
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4.3. Performance Evaluation

In our feature analysis, we used all eight condition features in developing the model
for classifying the price of medicine corresponding to the eight class labels described in
Figure 1. Our model provided good performance at an accuracy of approximately 92.62%,
with high sensitivity and precision. Tables 3 and 4 presented the evaluation results obtained
after testing the algorithm using 10-fold cross-validation.

Table 3. Performance evaluation results.

Class Labels n (%) TP Rate FP Rate Precision Recall F-Measure ROC Area

class 1 = (−inf–8.26] 5(0.2) 1.000 0.000 1.000 1.000 1.000 1.000
class 2 = (8.26–16.08] 1238(51.1) 0.935 0.067 0.935 0.935 0.935 0.943
class 3 = (16.08–23.9] 802(33.1) 0.908 0.055 0.891 0.908 0.899 0.935
class 4 = (23.9–31.72] 127(5.2) 0.882 0.000 1.000 0.882 0.937 0.978
class 5 = (31.72–39.54] 28(1.2) 0.857 0.000 1.000 0.857 0.923 0.974
class 6 = (39.54–47.36] 98(4.0) 0.990 0.003 0.942 0.990 0.965 0.990
class 7 = (47.36–55.18] 48(2.0) 0.938 0.001 0.957 0.938 0.947 0.977

class 8 = (55.18–inf) 78(3.2) 0.974 0.001 0.974 0.974 0.974 0.987

Weighted Average 0.926 0.053 0.927 0.926 0.926 0.947

Note. TP Rate = True Positive Rate, FP Rate = False positive rate, ROC Area = Receiver operating characteristic area.

Table 4. Summary results.

Parameters Results

Correctly Classified Instances, n (%) 2245 (92.62%)
Incorrectly Classified Instances, n (%) 179 (7.38%)

Kappa statistic 0.8813
Mean absolute error 0.1883

Root mean squared error 0.2925
Total Number of Instances 2424

4.4. Confusion Matrix

The decisions made by the classification model over a set of input data could be
presented in the form of a confusion matrix, with each entry representing the numbers
of both correct and incorrect predictions. This study involved a classification problem
with eight classes, corresponding to an 8 × 8 confusion matrix, as shown in Figure 6. This
represented visualization of the model performance, resulting in the proportion of correct
predictions ranged from 0.857 to 1.
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5. Discussion and Concluding Remarks

It is important to control the prices of medicine products and expenditure in the
pharmaceutical sectors. Policymakers in many countries are currently considering and
discussing a range of approaches intended to reduce drug prices and enhance the best
options in the pharmaceutical marketplace. Pharmaceutical procurement data over time
contribute useful insights when evaluating the need for new approaches and planning
the policies [41]. However, measuring the change of the price for each medicine could be
difficult because the market for pharmaceuticals is inefficient and complex [42]. In order to
help policymakers to monitor the situations of medicine prices and provide feedbacks to
obtain the best option for hospital purchasing managers to get good medicines with good
prices effectively, this study aimed to investigate the performance of the model derived
by the sequential minimal optimization (SMO) algorithm for predicting the range of drug
prices on the procurement system.

SMO is one of the most widely used optimization algorithms among all effective
algorithms in supporting vector learnings [24]. Platt demonstrated that SMO has greatly
performed on scaling for multi-class classification [33]. It can perform with sparse data
inputs, and is good even for imbalanced data. Therefore, the SMO algorithms should be
explored for investigating their performance in predicting the range of the prices for each
medicine in pharmaceutical procurement tasks that consisted of enormous features and
different conditions. To do so, we considered three main hypotheses in this study. The first
was that, among various features on the drug procurement data, we hypothesized that there
were associations between the drug prices and the eight features of the procurement system,
including the generic product names, trade product names, procurement methods, dosage
forms, pack sizes, manufacturers, the segmented buyers, and total purchase budgets. These
features can be adequate relevant data inputs used in developing the model to effectively
predict the range of the prices for each medicine. The second hypothesis was that using
SMO with a suitable feature selection method could improve the accuracy of prediction.
This is because SMO is a classification approach that cannot obtain the relevant features
directly. It requires feature selection tools for improving the predictive accuracy [43,44].
Currently, there are many techniques for statistical feature selection that can be used with
SMO in many types of datasets; however, as far as we know, there is no study using this
approach in the field of pharmaceuticals. Thus, our study bridged the gap in the literature
to use feature selection techniques with the SMO algorithm and pharmaceutical data.
We explored four popular feature selection techniques: correlation-based feature subset
selection (CFS), information gain, gain ratio, and wrapper subset evaluator. The techniques
were used to determine which one could provide the best predictive accuracy for the SMO
model. Furthermore, in the context of developing a prediction model, the efficacy and
benefits of using the SMO algorithm are reported. Therefore, the last hypothesis was that
the model derived by the SMO algorithm could have a great performance for predicting the
range of the prices for each medicine. This model performance was measured in terms of
accuracy rate [45,46], Kappa coefficient, precision, recall (sensitivity), F-measure, receiver
operating characteristic (ROC) area [47], and confusion matrix [48]. In the validation, we
used the method of 10-fold cross-validation which was an extensive option for evaluating
the performance of the classification model [23]. The method can average the error esti-
mation over ten trials to receive the total model effectiveness, reduce the bias, and it has
significantly less variance because all the data were used in the validation set.

In this study, we employed the pharmaceutical price data listed on Thailand’s govern-
ment procurement system. Although some approaches have been developed to measure
the change of the price for each medicine in Thailand, there is still no proper technique to
determine the appropriate price and to control the distribution of the procurement price
for drug products. Presently, policymakers collect the procurement data of medicine and
estimate a reference price or benchmark for each medicine. This benchmark is set as the
maximum price of the medicine group which consists of the same generic name and dosage
form. For example, if the reference price of the omeprazole 40 mg drug, injection form, is
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estimated to be 62.06 Thai Baht (THB), inferring that all trade product names of this type
of medicine must be purchased at lower or equal 62.06 THB for each vial. However, in
our study, we found that under the price regulation policy through reference prices, drug
products of the same generic name can be procured at different prices and showed high
price dispersion. Meanwhile, different brands of the same chemical substance were also
purchased at different ranges of prices (see Figure 4). More importantly, we found that
using only two features of the generic name and dosage form for classifying the prices of
medicine cannot provide the best predictive accuracy. As illustrated in Table 2, the estima-
tion of medicine prices was more accurate when all the eight relevant features can be used
together. This fully supported our first hypothesis and pointed out that the drug pricing in
the current market could be different for different brands, pack sizes, suppliers, segmented
buyers, and purchase budgets. This can suggest that although the reference price policy
was implemented in Thailand, there was a problem of the price dispersion in the same
generic medications, which in turn generated some considerable effects on pharmaceutical
expenditure. Acosta et al. [18] also revealed this phenomenon and they suggested that the
reference price strategy has led to reduced transparency and accessibility of drug price
information, for example, pharmaceutical suppliers tried to prevent buyers from knowing
that the same drug product was sold at different prices in different areas but claimed to be
of the same price. There were higher differences in prices for medicine in markets with a
greater number of manufacturers, different trade names, different packaging, and different
procurement conditions. Another problem was that the health authorities did not have a
broad understanding of the current market prices. Some hospitals may choose the medicine
product with an expensive possible price in the market because they thought that the price
was not above the reference price given, and they had no incentive to find out the cheaper
one. These factors had significant impacts on how well hospitals can effectively select
the product price on various combination features. Accordingly, using the reference price
method alone engenders difficulty in monitoring and calculating the price of each medicine
product. Thus, determining the range of drug prices over setting the single reference price
can develop an interpretation and be compatible with heterogeneous data. The purchaser
can recognize the lowest possible price of each medicine in order to negotiate the price
with the suppliers.

To improve predictive accuracy, we incorporated the SMO algorithm with feature
selection tools. We found that our proposed model of SMO algorithm with gain ratio selec-
tion method outperforms other models by providing the highest accuracy rate, followed
by the information gain, wrapper subset evaluation, and CFS methods. This can explain
the second hypothesis; the gain ratio can be the best choice of feature selection method
that was suitable for the SMO algorithm and pharmaceutical price data in our study. For
measuring model performance for predicting the range of the prices for medicine products
presented in Tables 3 and 4, the proposed model has very good prediction accuracy, preci-
sion, sensitivity, and F-measure. Additionally, the model provided substantial agreement
for the Kappa coefficient as clarified with the results in the normalized confusion matrix.
Consequently, the excellent performance of the SMO algorithm was proved on the basis of
ROC analysis. The results fully supported our third hypothesis; the SMO algorithm is a
powerful optimization technique for classifying data and predicting the pharmaceutical
product prices. More specifically, we found that drug prices predicted by the proposed
model can be represented in a lower price range, and users can compare drug prices among
different options of feature inputs, as depicted in Figure 5, to find out the best solution
for their conditions. Applying this model enables a suitable approach to intervention
development by considering a range of relevant features corresponding to price dispersion
in the pharmaceutical procurement system.

Our proposed model has some limitations. First, our results were based on the
accuracy of the procurement data and the procurement prices of some types of medicines
procured in the given time period. Different types of medicines could yield different
findings. Thus, academics and practitioners can use more data and more types of products
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to examine the algorithms and compare the performance of our proposed model with
other algorithms. Moreover, there could be a challenge in class distribution when using
enormous differential types of medicines with complex purchasing conditions. Therefore,
future analysis could also investigate the relationship between class distributions and
classification effectiveness.

6. Conclusions

In conclusion, the model derived using the SMO algorithm is useful for enhancing
data analysis in pharmaceutical procurement tasks. This study explicitly demonstrated the
benefits of using this approach. One of them is that the model has useful analytics, and
is sensitive and dependable [49,50]. Another reason is that it can allow policymakers to
conduct analysis with their specific feature inputs or relevant procurement conditions [12].
The model can distinguish the differences in the prices of medicines in the pharmaceu-
tical market by using relevant features: the characteristics of medicine product [27], the
competitive potential of manufacturers or suppliers [8], the region-based health services
system [5], and the procurement conditions [29]. In this study, our proposed model can
be used to predict the range of medicine prices for any set of eight feature inputs in the
procurement system. The application can help policymakers to better understand the
situations of the pharmaceutical market and monitor the distributions of the prices for each
drug. Specifically, they can provide the price information to suggest hospital purchasing
managers in selecting greater choices to get the best possible price of medicine instead
of providing only the reference price. Developing an efficient application can increase
transparency in pharmaceutical purchasing, can reduce corruption risks, and can build up
the circle of sufficient information between the government data center and hospitals. This
could save a lot of money if the hospital can choose the right quality product at the lowest
price and can lead to a reduction in drug expenditure. This finding can also be used for
other countries that have been facing the challenge of using reference price policy.
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Appendix A

Table A1. Descriptive statistics of medicine code A02BC01 (omeprazole 40 mg, parenteral) used in
this study.

Trade Names n (%) Median Mean Minimum Maximum % CV

BRAND A 278.0 16.1 17.1 12.4 29.0 16.9
BRAND B 117.0 56.0 55.1 43.6 62.1 10.0
BRAND C 4.0 14.7 15.0 13.4 17.1 10.9
BRAND D 56.0 17.1 18.4 12.4 35.0 35.6
BRAND E 8.0 15.2 18.2 13.7 29.0 35.1
BRAND F 24.0 42.4 42.9 38.5 50.0 7.4
BRAND G 255.0 15.3 16.6 12.8 26.8 17.4
BRAND H 19.0 16.2 17.0 13.4 23.0 18.7
BRAND I 15.0 62.1 61.1 47.1 62.1 6.3
BRAND J 719.0 18.0 18.8 13.2 31.0 22.5
BRAND K 195.0 13.2 14.4 12.4 30.0 21.6
BRAND L 68.0 15.3 15.9 12.5 23.0 18.7
BRAND M 12.0 15.5 18.7 12.5 26.0 29.5
BRAND N 10.0 15.0 15.4 13.9 20.7 13.0
BRAND O 22.0 46.9 46.7 41.0 52.0 5.2
BRAND P 50.0 15.5 17.8 12.4 29.0 28.0
BRAND Q 12.0 15.5 17.6 12.5 29.0 32.5
BRAND R 9.0 15.5 15.9 13.2 21.5 16.2
BRAND S 58.0 43.2 42.3 35.0 50.3 10.1
BRAND T 463.0 13.6 14.5 8.1 25.0 17.8
BRAND U 4.0 14.0 14.2 13.4 15.5 6.4
BRAND V 26.0 16.6 20.9 13.2 38.0 42.7
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