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Abstract: The coastal tidal flats of the modern Radial Sand Ridges (RSRs) are typical silt-muddy
tidal flats in Central Jiangsu Province. These tidal flats play a critical role in coastline protection and
biodiversity conservation, and against storm surges, but have recently been displaying drastic changes
in geomorphic dynamics because of human activities. However, a comprehensive understanding of
spatiotemporal changes in tidal flats in RSRs remains lacking. Hence, we employed a novel remote
sensing method by obtaining the instantaneous high/low tide line positions from over 112 scenes
of Landsat satellite images of the study area from 1975 to 2017, which were used to track the recent
evolution of the coastal tidal flats in the modern RSRs over the past four decades. We found that
the shoreline of the tidal flats showed an advanced seaward trend, and the waterline of the tidal
flat presented a gradual process during different periods. The total tidal flat area in the study area
showed an obviously decreasing trend overall, and approximately 992 km2 of the tidal flat was lost.
We also found that the coastal tidal flats in the modern RSRs were generally undergoing erosion
in the low tidal flats, especially in the Northern Swing and Southern Swing areas, while the high
tidal flats showed a slowed accretionary change. Land reclamation was the main factor affecting the
reduction in the tidal flat area, as the reclamation area has increased by 1300 km2, with an average of
35.14 km2/year. In addition, the erosion of the tidal flats was associated with a reduced sediment
supply. Our findings will provide useful information for local managers and researchers to support
future environmental management because increasing demand for land and rising sea levels are
expected in the future.
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1. Introduction

Coastal zones are an important interface for the interaction between land and sea, and are also the
most rapid and sensitive zones in response to global changes and various land and sea dynamics [1].
Tidal flats, which are areas between the mean low tide and mean high tide [2,3], serve as the most
important coastal geomorphic systems in the coastal zone and are widely distributed in many coastal
zones across the world, including the coast of England [4], the Wadden coast in Northern Europe [5],
the Amazon River mud bank in French Guiana [6], the Gomso Bay in Korea [7], and the Chinese
coast [2,8,9]. They play an irreplaceable role in coastline protection and biodiversity conservation,
and against storm surges and other natural disasters [10–13]. Meanwhile, tidal flats provide habitats
for migrating birds and are reserved land resources for urban sprawl with exploding populations [14].
Because of this, tidal flats have received considerable attention from scientists in many parts of the
world [9,11,13,15–18]. However, tidal flats are among the most highly vulnerable areas on Earth and
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are particularly sensitive to global changes [19]. Recently, coastal tidal flats have experienced drastic
changes because of intensified natural factors, such as sea-level rise, and human activities, such as
coastal reclamation, reduction in river sediment and subsidence and compaction of coastal land, which
has led to land losses of more than 50% and as much as 80% of their original area in many regions of
the world’s coastal tidal wetlands [20]. Additionally, a 20%–45% loss of salt marsh is predicted for the
current century [21]. Hence, it is necessary and urgent to understand and predict the morphological
evolution of tidal flats, and the response to increasing anthropogenic activities and natural factors.

The coastal tidal flats of modern Radial Sand Ridges are one of the largest silt-muddy coastal
tidal flats in China and are distributed between the Sheyang River estuary and the Haozhi port in the
Jiangsu Province [9,22]. In the past, the Yellow River entered the Southern Yellow Sea between 1128
and 1855 AD, providing abundant sediment for the construction of sand ridges [8,23], and the tidal
flats of Jiangsu Province have advanced seaward, providing a favorable habitat for many migratory
birds and benthos. However, the tidal flats of the modern Radial Sand Ridges have been affected
by various factors over the past hundred years, which mainly include the following: (1) Change in
sediment supply conditions caused by fluvial changes. The enormous amount of sediment supply has
been lost in the study area due to the Yellow River returning to the Bohai Sea in 1855 [24]. In addition,
the sediment load was also dramatically decreased at the Datong station of the Changjiang River
after the completion of the Three Gorges Dam [25–28]. (2) The tidal flats of Radial Sand Ridges were
reclaimed for farming, fisheries, salt production, wind plants, and harbor construction [29]. (3) Relative
sea-level rise caused by global warming and land-based development (groundwater extraction and
urban construction). The geomorphologically dynamic conditions of tidal flats in the Radial Sand
Ridges have obviously shifted because of the combination of these factors, and the system state is
changing from deposition to erosion [22]. Therefore, accurately evaluating the spatial distribution and
geomorphological evolution of tidal flats is essential for the preservation and sustainability of tidal flat
resources. However, tidal flats are usually spatially complex and temporally dynamic environments
that are alternately submerged and exposed to air due to variations in tides, waves and sediment
transport, and it is extremely difficult to obtain sufficient data through conventional field survey
methods in a changing environment. Consequently, it is impossible to carry out continuous and
comprehensive assessments of tidal flats on a long time scale.

Remote sensing techniques provide a near-continuous monitoring of shorelines in tidal flats,
which is commonly applied on many global coasts [11,12,30,31]. The most representative methods are
based on airborne LiDAR and InSAR images [32–34]. LiDAR can achieve relatively high vertical and
planimetric accuracies, and InSAR is monitored across the full tidal range. However, terrain-based
approaches are not applicable to large-area tidal flat mapping due to the scarcity of coastal DEMs
with high resolution in spatial and temporal dominance, the spatial variation of water levels, rapidly
changing tidal flat topography, and the high cost of airborne acquisitions. Some recent studies used the
waterline method for generating topographic maps in the intertidal zone, which is currently considered
to be the most useful approach. Chen et al. [35] manually selected the images with the highest or
lowest shoreline to map the tidal flats of the Yangtze Estuary. Murray et al. [36] mapped the tidal
flats around the world using a machine learning classifier mainly based on features of statistics of the
Landsat-derived water indices on each individual pixel location. In addition, the waterline method
has been widely applied in many regions throughout the world, including the Holderness coast in
England, the Guiana coast in France, the Wadden coast in northern Europe, and the Yangtze estuary in
China [37–40]. Thus, many methods have been developed to establish the location of the waterline
and to map and monitor the status of tidal flats. It includes the following aspects: (1) a “same tide
level comparison method” that is employed by using low tide images [41], which mainly compares the
horizontal displacement of waterlines at low tide to study the trends in tidal flat evolution, (2) the
waterline detection method (WDM), which involves constructing a digital elevation model by using
a time series of satellite images [4,7,42,43], and (3) the tidal level correction method, which involves
correction of the waterline to the multiyear mean high/low tide line [44,45]. However, these methods
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simplify the spatial variations in tidal level by using a single tidal height value for a whole scene,
which will produce a significant error on a large scale since the tidal conditions differ in almost all
the images. Some recent studies have attempted to overcome this dependence on tidal information.
For example, the random forest classification algorithm and quantile synthesis method were used to
classify tidal flats. However, there are significant differences in tidal flat area calculated by different
algorithms [36,46]. Accurate evaluation of the change in tidal flats still faces great challenges on the
regional scale. By combining the multiple satellite data from different phases, the accuracy of the
obtained tidal flat extent was greatly improved, especially for studying the spatiotemporally dynamics
of tidal flats by considering the tidal level spatial variations [11,14].

In the present study, we attempt to analyze the trends of the long-term morphological evolution
of tidal flats in the Radial Sand Ridges over the period 1975–2017 based on a high-density time series
of satellite images, which is a total of 112 multisource and multitemporal satellite images. Our specific
objectives were (1) to study the long-term and continuous evolution of the tidal flat in the Radial
Sand Ridges (RSRs) and (2) to discuss the influence of tidal flat reclamation activities and the change
in sediment source. This study will aid in assessing the impacts of intensified human activities on
coastal tidal flats in the modern Radial Sand Ridges, support the planning and operation of future
environmental management, and provide a reference for sustainable tidal flat management.

2. Study Area

The modern Radial Sand Ridges (RSRs) (Figure 1), the largest tidal ridges on the Chinese
continental shelf, are distributed off the Jiangsu coast in the western part of the South Yellow Sea,
and the RSRs are situated from the Sheyang River estuary and extend south to the Haozhi Gang [9,47].
The RSRs consist of more than 70 sand ridges and tidal current channels with alternating grooves
and ridges and range up to approximately 25 m in depth, covering a total area of approximately
22,470 km2 [47]. It is dominated by a progressive Poincaré wave from the East China Sea and an
amphidromic system in the Yellow Sea, and all of the sand ridges are radially arranged, converging
near Jianggang Harbor [48,49]. The study area is controlled by an irregular semidiurnal tidal wave,
with the high tide lasting longer than the ebb tide and an average tidal range of 2.5–4.0 m. The tidal
range is the widest off Jianggang–Yangkou Gang, reaching 6.45 m in the middle section, but gradually
diminishing both northward and southward [9].

The coastal tidal flats of the RSRs are typical silt-muddy tidal flats, which are well-developed due
to active tidal processes and abundant sediment supply [50,51]. Historically, the RSR field sediments
were mostly derived from the old Yellow River and Yangtze River when the sediments were transported
from the northern and southern sides of the system, respectively [3]. Consequently, the coastline of
Jiangsu Province has advanced rapidly seaward. The Yellow River has been diverted to the Bohai Sea
since 1855 AD, and the sediment load has decreased dramatically in the Yangtze River in recent decades,
especially after the completion of the Three Gorges Dam [26,27,52]. Therefore, the geomorphology and
sedimentary environments of the tidal flats and offshore sand ridges have dramatically changed and
are undergoing a complex evolution in terms of scouring and siltation after losing a large sediment
supply, such as the Yellow River and Yangtze River. Additionally, some areas of the Jiangsu coastal
zone have been reclaimed.
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Figure 1. Geographical location map of the study area ((1) Northern Wing; (2) Inner part; (3) Southern 
Wing; (4) External part of the modern Radial Sand Ridges (RSRs)). (a), (b), (c), (d), (e) and (f) are typical 
cross sections in study area. 
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Figure 1. Geographical location map of the study area ((1) Northern Wing; (2) Inner part; (3) Southern
Wing; (4) External part of the modern Radial Sand Ridges (RSRs)). (a), (b), (c), (d), (e) and (f) are typical
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3. Materials and Methods

3.1. Data Resources

All available Landsat satellite images (including the Landsat Thematic Mapper (TM), Enhanced
Thematic Mapper (ETM+), and Operational Land Imager (OLI_TIRS) images with a spatial resolution
of 30 m and Landsat multispectral scanner (MSS) images with a spatial resolution of 80 m) from 1975
to 2017 were downloaded in this study (Figure 2). We selected the study area from the Sheyang River
estuary in the north to the Haozhi Gang in the south, and one scene image basically covered the
whole shoreline of the study area. A total of 112 multisource and multitemporal satellite images were
analyzed, and all datasets were provided by the Earth Resources Observation and Science (EROS)
center (http://glovis.usgs.gov/) and China Center for Resources Satellite Data and Application, CRESDA
(http://www.cresda.com). Tidal action can cause tidal flats to become periodically submerged and

http://glovis.usgs.gov/
http://www.cresda.com
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exposed; therefore, we chose images carefully based on three conditions to obtain an accurate range of
tidal flat resources: (1) all selected images were available within one year, except for those with cloudy
coverage; (2) the spatial resolution of the image should be able to extract tidal beach resources over
a small range and satisfy the study objectives on a larger spatial scale; and (3) the lowest available
tidal levels were selected for different regions every year. The preprocessing of the satellite images
(including image enhancement, haze deduction and geographic correction) was performed by using
ERDAS IMAGING 9.2 software (Hexagon Geospatial, Madison, AL, USA). The detailed preprocessing
procedures are presented in Zhang et al. [53].
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(MSS); Thematic Mapper (TM); Enhanced Thematic Mapper (ETM+); environment-1 and -2 satellite
(CCD1, CCD2); High-resolution satellite imagery (GF) and Operational Land Imager (OLI)).

3.2. Methods

The instantaneous water boundary line of the remote sensing image is the instantaneous junction
line of the sea and land under tidal fluctuation. Thus, it is necessary to obtain high and low tide
lines to study the tidal flats. The high tidal line was typically determined based on some identifiable
features, such as the wet-dry line, vegetation line, reclamation dikes, erosional scarps and the mean
high water line [54–56]. Coastal tidal flats in the modern RSRs are accretionary tidal flats, where rare
vegetation zones and heavily human reclaimed coasts are mainly distributed. Therefore, we chose
the vegetation line and reclamation dike to be used as the high tide waterline (coastline) in our study.
The extraction of the low tide waterline is more difficult due to the frequent occurrence of fluctuations
in the satellite images [57]. Instantaneous lower tidal level images were used for every year to interpret
low tide waterlines, e.g., first, the remote sensing images of different tidal levels were extracted
for every year; second, a vertical line was set every 100 m using Digital Shoreline Analysis System
(DSAS) software [8,58]; third, the Jenks Natural Breaks classification method was used to calculate
the points on each vertical line and connect all the low tide points [59] (Figure 3). The method of
combining visual interpretation and threshold segmentation was adopted to extract the waterline.
Visual interpretation can ensure the accuracy and reliability of waterline extraction by extracting target
objects from images through direct observations [60]. The threshold segmentation method selects the
appropriate characteristic parameters and sets different thresholds to divide the remote sensing images
into several categories of target regions and background regions with different gray levels according to
the reflection characteristics of the different ground objects. Characteristic parameter selection and
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threshold setting are the key techniques in threshold segmentation. The common methods of waterline
extraction include near infrared band density segmentation, the normalized differential vegetation
index (NDVI), the normalized differential water body index (NDWI), and the new water body index
(NWI) [61–64]. In this study, the NDWI proposed by Mcfeeters was used to extract the waterlines,
which are dimensionless parameters comprising the linear combination of the near-infrared band
and the green light band [62]. This method can effectively suppress the water impurity information
and extract the boundary between the water body and nonwater body area. At present, it has been
successfully applied in the waterline extraction of a high turbidity coastal zone [8,63]. The specific
formula of NDWI is as follows:

NDWI =
(Green − NIR)
(Green + NIR)

(1)

where Green and NIR represent the green light band and the near infrared band, respectively.
The threshold value was selected for binarization processing to extract the waterline by calculating the
NDWI image. The optimal threshold value of the image was between −0.3 and −0.15. A threshold
value of less than −0.3 could not distinguish the water body well, and an extraction result of greater
than −0.15 was too fragmented. A visual interpretation was then used to verify and modify the
automatically extracted waterline to ensure the accuracy of the waterline. The specific process is shown
in the Figure 4.
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Finally, the tidal flat data of a specific region were obtained for one year. Simultaneously,
the reclamation data of tidal flats were manually extracted from Landsat images during different
periods, and the flow chart of data processing and analysis is shown in Figure 5. Based on the
morphologic characteristics of RSRs in the Jiangsu coastal area, we divided the study area into four
parts: (1) the Northern Wing; (2) the Inner part; (3) the Southern Wing; and (4) the External part of the
modern RSRs (Figure 1).
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3.3. Accuracy Assessment

We used the confusion matrix to assess the accuracy of tidal flat retrieval results, which is one
of the most widely used accuracy evaluation methods in remote sensing and can simply summarize
the main classification accuracy information [64]. The confusion matrix is a matrix of n rows and n
columns, where each column represents the categories on the classification graph, and the total number
of columns represents the number of data predicted for that category. Each row represents the category
on the reference graph, the true category to which the data belong, and the total number of rows
represents the number of data instances for that category. For a detailed explanation, the reader can
refer to Powers and Zhao [65,66].

To ensure that the proportion of tidal flats and other features is appropriate, and ensure that
all the real tidal flats are included, first, a 5-km buffer zone was made with the extracted tidal flats
as the center, which could be used as the area for evaluating the accuracy of the extracted tidal flats.
Afterwards, using the simple random sampling method, 240 random sampling points were generated
by using the Create Random Points tool under the Data Management tool set in Arc GIS software
(ESRI, Redlands, CA, USA) [67]. Reference data were derived by an independent analyst who labeled
each sample point with tidal flats or other classes, based on the assessment of all available Landsat
bands of the low-tide images and other available information (such as Google Earth) [68].

4. Results

4.1. Spatial-Temporal Changes in the Shoreline and Waterline

In general, the shoreline of the tidal flat in the modern radial sand ridges shows an overall advance
toward the sea since 1975. Figures 6a and 7 show that the shoreline has a trend of slow seaward
sedimentation, and the sedimentation areas were mainly concentrated in the Sheyang estuary and
Wanggang estuary in the Northern Wing between 1975 and 1995, with an average seaward advance
of 91.15 m/year. In addition, the Tiaozini coast in the Inner part advanced seaward by 184.2 m/year,
while the Southern Wing area of the tidal flat in the RSRs showed little change during this period.
With the acceleration of coastal reclamation in Jiangsu Province during 1995–2005, the shoreline
sedimentation rapidly accelerated, with an average seaward deposition of 2787 m and a sedimentation
rate of 278.7 m/year; the most obvious increase occurred in the Northern Wing area, and the most rapid
growth occurred from the Doulong port to Dongtai River estuary, with an average siltation rate of
357.1 m/year, followed by the Inner part, with an average siltation rate of 269.8 m/year. The Southern
Wing had the slowest growth, and the average siltation rate was 171.5 m/year. In 2005–2017, the shoreline
was still advancing seaward compared to that from 1995 to 2005, with a siltation rate of 149 m/year, but it
showed a greater weakening trend. The siltation in the Northern Wing area was mainly concentrated
in the southern part of Doulong Port, with an average siltation rate of 909.5 m/year; the siltation was
the most obvious in the Inner part area during this period, which was dominated by the Tiaozini coast
between the Liangduo River estuary and Fangtang River estuary, with an average rate of 340 m/year
seaward and a maximum propulsion distance of 717 m/year from land to the sea. In the Southern Wing
area, the coastline is advancing seaward with an obvious velocity, and the siltation rate is 196.3 m/year.
In general, the coastline advanced seaward by an average of 6065 m between 1975 and 2017, with a
siltation rate of 144.4 m/year, and the total shoreline change rate increased from 90.6 m/year during
1975–1985 to 149 m/year during 2005–2017. The average speed of seaward advancement shows a trend
of “slow–fast–slow” trend.
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In the 40–50 years since 1975, the waterline of the tidal flats in the RSRs generally presents a
complex change characteristic (Figure 6b). This change is a gradual process in the remote sensing
images during different periods. The waterline in the Northern Wing area has an overall retreating
trend, with an overall retreat of approximately 2 km and an average annual retreat of approximately
47.6 m/year. Among them, the trend of retreat from north to south first decreased and then increased.
The low tide line from the Sheyang estuary to the Xinyang Port has retreated by approximately 2 km,
and the retreat of the scour from Xinyang Port toward the south has gradually declined, basically
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stabilizing near Doulong Port. The retreat of the waterline gradually increased from Wanggang to the
Liangduo estuary, and the maximum recession distance reached approximately 3 km. The waterline
in the Inner part of the area underwent a complex dynamic change during 1975–2017, and there
was an erosional trend to the south in the north, but showed a trend of seaward advance in general,
approximately 2–18 km seaward. The waterline of the Southern Wing in the RSRs shows fluctuation
change characteristics, and there is a slight landward retreat trend. The waterline in the external
sand ridge area shows a trend of retreat landward, and the erosional retreat is obvious in the west
and northwest, with an average retreat rate of approximately 3–5 km. The alternation of erosion and
siltation in the eastern and southeastern parts indicates that the areas are affected by the complex
external dynamic environment. Consequently, the waterline of the tidal flats in the RSRs has presented
complex variation characteristics in different regions since 1975. The distribution of erosion and
siltation changes along the coast corresponds to the location characteristics of the north tidal flat near
the erosive coast of the old Yellow River delta, the middle tidal flat near the inner margin area of the
RSRs, and the south tidal flat near the Yangtze River, which is where the material supply decreases.
That is, the Northern and Southern Wings retreated landward, the Inner part area advanced seaward,
and the external sand ridge area shows alternate changes in erosion and deposition in terms of complex
dynamic changes.

4.2. Intertidal Wetland Area Changes During 1980–2017

The changes in tidal wetlands in the modern RSRs during four different periods are displayed in
Table 1 and Figure 8. In general, the total area of the tidal flats showed an overall obviously decreasing
trend in the study area, which declined by 992 km2 from 1980 to 2017. The maximal tidal flat area was
3338 km2 in 1980 and then started to notably decrease rapidly in 2000. In these periods, approximately
29.7% of the wetland area retreated, and the decrease rates were 26.8 km2/year. However, the area
change in the tidal wetland presented obvious differences among the four subregions.

Table 1. Area change at different periods during 1980–2017 in the study area (unit: km2).

Period Reclamation
Area

I Region II Region III Region IV Region

Accretion Erosion Accretion Erosion Accretion Erosion Accretion Erosion

1980–1990 179.51 62.00 47.91 152.67 156.43 129.42 59.68 104.92 165.33
1990–2000 424.00 23.00 398.00 227.19 170.66 175.43 92.16 93.38 203.65
2000–2010 526.00 21.00 306.69 194.98 254.32 77.25 249.40 160.49 126.71
2010–2017 170.86 30.39 69.40 202.34 209.90 107.43 120.97 119.05 84.18
1980–2017 1300.37 36.15 828.34 370.43 397.49 230.29 302.33 155.42 257.45

The Northern Wing is an area that experienced a slight tidal flat decrease during 1980–1990 and
has decreased sharply since 2000. Overall, the tidal flat area showed a significant decreasing trend,
with a maximum area of 1175 km2 in 1980 and a minimum of 383 km2 in 2017, accounting for a
67.4% reduction. Moreover, erosion occurred in the Northern Wing region from the Sheyang estuary
to Xinyang Port and south of Doulong Port between 1980 and 2017, and slight deposition occurred
between Xinyang Port and Doulong Port.

The Inner part of the tidal flat wetland is relatively stable with some fluctuations and it shows a
trend of erosion in the north and deposition in the south during 1980–2017, with a maximum of 909 km2

in 2000 and a minimum of 842 km2 in 2017 (Table 1). Moreover, erosion mainly occurred in the northeast
and south between 1980 and 1990, with an erosion area of 156.43 km2, and deposition occurred in the
northwest and southeast, with a deposition area of 152.67 km2. Since 1990, the northern part of the
inner fringe area has been continuously eroding with an erosion area of 634.88 km2, and deposition
occurred in the east and south with a deposition area of 624.51 km2.

The tidal flat area in the Southern Wing region showed an increasing trend from 1980 to 2000 and
then decreasing after 2000. A maximum tidal flat area of 723 km2 occurred in 2000, a minimum of
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537 km2 occurred in 2017, and the tidal area decreased by 25.7% from 2000–2017. Spatially, the dynamics
of the tidal flat presented a complicated change, which is mainly manifested in the frequent change
in erosion and deposition. In general, the tidal flat in the south wing region was dominated by
deposition, with a mean depositional area of 152.43 km2 and a mean erosional area of 75.92 km2 from
1980–2000. During 2000–2017, the tidal flat was dominated by erosion, with an average depositional
area of 92.34 km2 and an erosion area of 185.2 km2, which was approximately two times as large as the
depositional area.

The area change of tidal flats in the external sand ridge region of the modern RSRs can be divided
into two periods, the decrease was obvious in the period 1980–2000, and indicated a slight growth
after 2000. The tidal flat area decreased from 685 km2 in 1980 to a minimum of 515 km2 in 2000, falling
by 24.8% compared with 1980. However, the area shows a slight increase of 11.8% from 2000 to 2007.
Spatially, the dynamics of tidal flats also presented a complicated change, where erosion occurred in the
western part of the outer fringe region and erosion/deposition occurred simultaneously in the eastern
part during 1980–2007. In addition, the tidal flat shows an overall trend of moving from northwest
to southeast.
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4.3. Evolution of the Typical Cross Sections in the Tidal Flats

To further study the dynamic evolution of the tidal flats in the RSRs, typical section measurements
of the tidal flats during different periods were compared and analyzed. Figure 9a shows the elevation
change in the section in the northern part of the Xinyang Port from 1954–1988. In 1954–1980, the section
of the tidal flat was in an obvious sedimentation state, with the sedimentation thickness of the tidal flat
being approximately 30 cm overall, and the low tide line advanced seaward for approximately 1 km.
However, there was almost no change in the tidal flats, and only localized siltation occurred near the
high tide line from 1980 to 1988. The parts below the high tide line had been scoured, among which
subtidal erosion was the most obvious. Figure 9b shows the elevation changes in the inner section
of the Yancheng Nature Reserve on the south side of Xinyang Port from 1954 to 2005. The tidal flat
shows an overall rapid continued deposition during 1954–1980, and the thickness and intensity of
the sedimentation area were significantly greater than those in the northern part. From 1980 to 1986,
the siltation of the tidal flat in the marsh grass and reed was relatively stable, the siltation of the tidal
flat in the salt artemisia was slow, and the siltation of the tidal flat in the Spartina alterniflora Loisel was
fast. However, scour was observed below the mean high water level and is most obvious near the
low tide line. Since 1986, the side of the Spartina alterniflora Loisel is basically in a stable state along
the shore, and the tidal flat near the high tide line shows further silting and advancement seaward
because of the planting and expansion of S. alterniflora. The scouring and recession near the low tide
line is obvious in the most recent 20 years, and the scouring recession range is approximately 800 m,
with an average recession of 40 m/year. Consequently, in the past few decades, the siltation rate of
the high tidal flats has decreased, erosion has occurred and the slope gradually becomes steepered
in the low tidal flats of the Northern Wing area. In addition, the distance between the high tide line
and the low tide line has been shortened, and the tidal area shows a decreasing trend. Figure 9c,d
show the elevation changes of the Tiaozini section in the Inner part area of the RSRs from 2012 to
2014. The northern section of the tidal flat (Figure 8c) is undergoing continuous accretion in the 600 m
range and shows scouring and siltation fluctuations from 600 m to the sea, which may be affected
by tidal creek fluctuations. The southern section (Figure 9d) of the tidal flat shows obvious siltation
within a range of 3000 m, while the scouring phenomenon occurred in the sea at 3000m. In general,
the tidal flat of the Inner part area shows obvious siltation along the nearshore area, and the offshore
area shows a state of scouring and siltation fluctuations that are affected by the tidal creeks. Moreover,
the northern tidal flat in the offshore part is constantly scouring. Figure 8e,f show the elevation changes
in the Southern Wing area of the RSRs from 2009 to 2014. The northern section (Figure 9e) shows the
siltation nearshore (within 1000 m), scouring from 1000 to 2600 m and relatively stable from 2600 m
and seaward. The southern section (Figure 9f) shows alternating changes in scouring and siltation,
with small changes in the tidal flat surface and is relatively stable overall. As a result, the scouring
and siltation changes in the south wing are complex, which is the dynamic variation of scouring and
deposition, and the variation range is small.
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5. Discussion

5.1. Influence of Sediment Source on the Tidal Flat

Several natural and anthropogenic factors have had obvious influences on the distribution and
evolution of tidal flats. Changes in sediment load were identified as the major driving factors that
influence tidal flats in China. The source of sediment material plays an important role in the scouring
and siltation evolution of tidal flats the RSRs. In 1128, the Yellow River captured the Huai River into the
sea from the northern part of Jiangsu Province, and the massive amount of sediment made the north
coast of the northern coast advance rapidly seaward [69,70]. Since the shift of the Yellow River into
the Bohai Sea in 1855 due to natural breaching [8,71,72], the sediment source of the Yellow River into
the south Yellow Sea was greatly reduced and the local energetic hydrodynamic conditions changed.
The coast of Jiangsu Province entered an unprecedented adjustment stage, which resulted in the
abandoned delta coast in Northern Jiangsu Province experiencing a severe marine erosion and shoreline
retreat [24,73–75]. Yu et al. (1986) estimated the total volume of coastal erosion, including nearshore
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areas, at 4.4 × 1010 m3 from 1855 to 1962 [73]; Wang and Aubrey (1987) indicated that an inland
shoreline retreat of approximately 17 km occurred between 1855 and the 1980s [24]. The erosional
range from the protuberant coast of the abandoned Yellow delta gradually expanded to both sides,
and the near coast of the Sheyang estuary became a transitional coast that was transformed from
siltation to erosion [22]. The tidal flats show a depositional trend in the high tide zone and erosion in
the low tide zone, which cause the tidal flat to steepen and narrow, and the tidal flat area was reduced.
In addition, the influence of runoff and sediment load entering the sea was gradually weakened since
the shift of the river into the Bohai Sea, and the tidal dynamics along the Jiangsu coast became the main
driving force affecting the sedimentary environment of the region. The Xiyang tidal channel extended
continuously to the south, resulting in the continuous erosion of the tidal front of the Northern Wing
area in the RSRs. Moreover, only a small part of the sediment from the Yangtze River diffuses along
with the runoff to the north during summer and autumn [75], but the transport distance is short and
the contribution to the southern part of the Southern Wing area is small. However, the sediment load of
the Yangtze River into the sea has significantly decreased since the 1950s. The sediment load decreased
from 500 million tons in the 1950s to 124 million tons during the impoundment of the Three Gorges
Dam in 2003 [26,76], which resulted in a further decline in the material supplied by the Yangtze River
to the coastal tidal plain of Jiangsu Province.

5.2. Influence of Reclamation Activity

Tidal flats are an important part of coastal wetlands in Jiangsu Province and are one of the
most important natural resources. The tidal flat reclamation project is the main way to alleviate the
contradiction between people and land in Jiangsu Province. Historically, the reclamation area of coastal
tidal flats in Jiangsu Province reached 2 × 106 hm2 [77]. Since 1949, large-scale reclamation in Jiangsu
has occupied a large number of tidal flat resources and become an important factor affecting the change
in tidal flat areas (Figure 10). During this period, the large-scale reclamation of tidal flats experienced
several stages: (1) in the 1950–1960s, the major reclamation pattern was the construction of tidal dikes,
the reclamation of wasteland and the development of agriculture; (2) in the 1970s, the agriculture, grain,
cotton and salt industries were mainly being developed; (3) since the 1980s, the area was mainly been
used for salt, grain and cotton, breeding and port construction; and (4) large-scale land reclamation
has promoted the rapid development of the regional economy since the beginning of the 21st century,
and the newly added land is mainly used for industrialization and port construction. According to
the reclamation development plan for coastal tidal flats in Jiangsu Province, the goal of reclamation
within a larger space will be realized. According to the reclamation situation of the Northern Jiangsu
Province coast in the RSRs since 1980, the total reclamation area shows an increasing trend, especially
the rapid increase from 1980 to 2010 and the slowing down from 2010 to 2017. Over the past 37 years,
the reclamation area of the RSR coast has increased by 1300 km2, with an average annual increase
of 35.14 km2. The reclamation area is distributed along all the coastline sections of the sand ridges,
and the reclamation area of the Northern Wing area and the Inner part area is larger than that of the
Southern Wing area. Specifically, the reclamation area of the study area was 179.51 km2 from 1980
to 1990, which was mainly distributed in the Northern Wing, the Inner part, and the Southern Wing,
while the reclamation area of the Northern Wing was larger than that of the Inner part and the Southern
Wing. The reclamation area of the study area was 424 km2 between 1990 and 2000, which was more
than twice the area during the 1990s, and the reclamation area was mainly distributed along the whole
coast of the Northern Wing area. From 2000 to 2010, the reclamation area reached a maximum value
of nearly 37 years in the study area, and the whole coast of the RSRs underwent different degrees of
reclamation, especially from Xinyang Port to Dongtai estuary in the Northern Wing area, with the
accumulated newly increased reclamation area reaching 526 km2 during this period. During 2010–2017,
the reclamation area showed a more significant decreasing trend than before 2010, with a cumulative
newly increased reclamation area of 170.86 km2. The reclamation area was mainly concentrated in the
Inner part of the coast of the RSRs, and a small amount of reclamation was mainly distributed in the
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south wing. In addition, from the reclamation distribution map of the RSRs, the reclamation activities
on the inner side of the natural coastline of the Northern Wing area have approached the coastline.
Therefore, the high-intensity reclamation and development of the tidal flats has resulted in the loss of
high-tide flat and occupied the tidal flat resources of the study area. Reclamation and development
have also resulted in fundamental changes in the tidal flat pattern and a further reduction in the tidal
flat area.
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5.3. Influence of other Factors

The change in sedimentary dynamics is an important factor in the evolution of coastal tidal flats [75].
The spatial and temporal scales of the RSRs have been greatly adjusted since 1855, the influence of
the runoff and sediment load into the sea on the coast has gradually weakened, and the leading role
of the offshore tidal current has gradually strengthened. The Xiyang water channel is a shoreland
tidal water channel in the Northern Wing area of the RSRs, which extends continuously to the south,
causing the low tidal flat to be eroded under the guidance of the nearshore hydrodynamic force,
and the eroded materials are transported southward under the action of the coastal current in Jiangsu
Province [22]. The Southern Wing area of the RSRs is adjacent to the Xiaomiaohong water channel,
which is a coastal tidal waterway in the south wing area. In recent decades, it has been moving to the
shore continuously seaward, which has damaged the balance of the tidal flat profile and caused bank
slope erosion. Moreover, the Inner part area of the RSRs belongs to the strong tidal current coast, which
results in the erosion of the tidal flats when strong currents strike the concave bank of the tidal flats.

Global warming will accelerate the rise in sea level and increase the intensity and frequency
of storm surges and waves, which will lead to greater intensity and a probability of coastal erosion.
The average sea-level rise rate in the coastal areas of Jiangsu is 2.2 mm/year, which is one of the most
obvious areas of relative sea level rise in China [78]. This rise will lead to a reduction in the sea dike
defense ability in the coastal areas of Jiangsu, the expansion of coastal erosion areas, and the loss of
coastal tidal flat resources.

A remote sensing method was used for generating topographic maps of the tidal flat by the
waterline method in this study. Some limitations that should be addressed. However, these uncertainties
in the results seem to be inevitable. First, this work was limited by the quality and quantity of the
Landsat images, which cannot resolve the rapidity of tidal variations. For example, the 16-day revisit
period of Landsat images includes cloudy coverage images. Second, the low tide boundary line
obtained at the low tide moments was used to determine whether the tidal flat range is more accidental.
Due to the influence of weather, terrain, and other factors, the tidal movement in different regions at
the same time is different. With the increasing number of satellite image sources, including Landsat
8, Sentinel-1 and 2, and Worldview satellite images in the future, more high-quality satellite images
are available, the temporal resolution of tidal flats is improved, and the potential for use in other
coastal areas around the world is improved. Furthermore, the final dataset of the tidal flat that was
obtained in this study has the potential to be applied widely (1) to estimate tidal topographic changes,
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(2) to investigate the mechanisms of water and sediment transport and exchange, and (3) to support
morphological evolution models in coastal areas.

6. Conclusions

It is crucial to understand the evolutionary trends of tidal flat development for local ecological
protection, environmental management, and regional sustainable development. In this study, we
present the detailed spatiotemporal dynamics of the geomorphological evolution of coastal tidal
flats in the modern RSRs based on a novel remote sensing method by obtaining the instantaneous
waterline positions from over 112 scenes of Landsat satellite images of the study area from 1975 to
2017. Our results suggest that the shoreline of the tidal flat shows an overall advancement seaward
over the last 42 years, whereas the tidal flat waterline presents a gradual process in remote sensing
images during different periods. According to statistics, approximately 29.7% of the wetland area
retreated in these periods, and the rate of decrease was 26.8 km2/year. In addition, the coastal tidal flats
of modern RSRs are generally undergoing erosion in the low tidal flats, especially in the Northern and
Southern Wings, while the high tidal flats are still in an accretionary phase, but the rate of deposition is
slowing. The geomorphological evolution of the coastal tidal flat in the modern RSRs has mainly been
controlled by land reclamation. The sediment supply, hydrodynamics, and sea-level rise have also
had a significant effect. Ultimately, our study may contribute to providing comprehensive knowledge
related to the evolution of tidal flats in the modern RSRs. The reduction in the tidal flat area will
seriously damage the habitats of migrating birds and the ecosystem in this study. Therefore, it is
necessary for better coastal protection and further environmental management in coastal tidal flats
in the future. This study used the waterline method to extract the tidal flat range of the RSRs in
Northern Jiangsu Province and will help assess the effect of well-known reclamation on Coastal Jiangsu
Province, identify the mechanisms underlying the evolution of tidal flats, and support the planning
and operation of future coastal development. In addition, we found that the waterline method has the
advantage of enabling the generation of an intertidal range over large areas, relatively rapidly and
inexpensively at a larger spatial scale, and the potential for use in other coastal areas around the world.
With the number of satellite image sources, more high-quality satellite images will be available in the
future, which can greatly improve the vertical accuracy and spatial resolution of tidal flats.
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