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Abstract: This study assesses the potential human health risks posed by six heavy metals (Hg, As, Pb,
Cd, Cu, and Zn) found in five of the most consumed fish species (Mugil incilis, Centropomus undecimalis,
Cathorops mapale, Eugerres plumieri, and Elops smithi) collected by the riverine population living in
Ciénaga Grande de Santa Marta (CGSM), the largest estuary in Colombia. Metal concentrations
were low compared with those reported in other regions around the world and the maximum value
established by international monitoring organizations. The estimation of the potential risk (HQ)
indicated that Cu and Hg could generate negative effects in groups of women of childbearing age
(WCA) and the remaining population (RP), because they exceeded their related reference doses,
with HQ values > 1; however, Cu and Hg concentrations were not high in fish and EWI, MFW, or
MeHgPSL values shows that there is no evidence of a potential health risk from MeHg exposure in
the study population. Therefore, the recommendations are to establish continuous monitoring of
heavy metals together with strategies that address the high fish consumption, as well as to implement
mechanisms for the mitigation of contamination of the watershed, to ensure the safety of organisms
in the ecosystem and human health, not only of populations who depend on aquatic resources in the
area but also of those that market and consume these resources in the Colombian Caribbean.
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1. Introduction

Contamination with heavy metals in aquatic ecosystems is considered a serious problem at the
global level due to the effects on ecosystems and their importance for human health. Heavy metals such
as copper (Cu) and zinc (Zn) play a vital role in the development of some specific metabolic functions
of biological systems and are considered essential because of their requirement in small concentrations
in living organisms [1]; however, their deficiency or excess can lead to health problems [2]. Several
authors agree in warning—from an environmental perspective—that it is necessary to be concerned
about the characteristics of some heavy metals, particularly regarding their non-degradability and
bioaccumulation through food chains [3,4]. Among the heavy metals that demand attention, cadmium
(Cd), lead (Pb), mercury (Hg), and arsenic (As) are highlighted. These are considered non-essential
and with toxic effects on the ecosystem and for humans, depending on their concentration, chemical
nature, or oxidation state [5].
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Ciénaga Grande de Santa Marta (CGSM) is the largest marsh complex in Colombia, directly
influenced by rivers from the western slopes of Sierra Nevada de Santa Marta (SNSM) and the
Magdalena River, which make it a strategic aquatic ecosystem [6]. However, in this important area
of the country, concentrations of some heavy metals have already been reported in water, sediments,
plant communities, and various organisms [7–9]. Furthermore, the values found have, in some cases,
exceed the permissible limits set by the United States Environmental Protection Agency (USEPA), the
Codex Alimentarius, and the Joint FAO/World Health Organization (WHO) Expert Committee on Food
Additives (JECFA). Previous reports of heavy metals in different environmental matrices show the
existence of risks to human health and the ecosystem, due to the bioaccumulation and biomagnification
processes that can occur in the food chain. For example, fish demand particular attention since
their intake constitutes one or perhaps the only source of protein of the population, being a vital
resource in the area of influence of this lagoon body; moreover, it is also one of the most important
commercialization lines of the region [4]. Accordingly, the aim of this study was to determine the
concentrations of essential (Cu, Zn) and toxic (As, Cd, Hg, Pb) heavy metals in muscle tissue in five (5)
fish species of high consumption and commercial interest: Mugil incilis (common, grey or Parassi mulet
(English); lisa rayada (Spanish)), Centropomus undecimalis (common snook (English); róbalo blanco
(Spanish)), Cathorops mapale (mapale sea catfish (English); chivo mapalé (Spanish)), Eugerres plumieri
(striped mojarra (English); mojarra rayada (Spanish)), and Elops smithi (malacho (English); macabí
(Spanish)), to assess their accumulation and the risk to human health through their consumption.

2. Materials and Methods

2.1. Study Area

Ciénaga Grande de Santa Marta (CGSM), Santa Marta-Colombia, is the largest estuarine coastal
lagoon in Colombia (1321 km2), located in the north of the country on the Caribbean coast, more
specifically in the department of Magdalena (10◦20′–11◦05′ N and 74◦06′–74◦52′ W) (Figure 1). It is
permanently connected to the Caribbean Sea through the mouth of La Barra, and indirectly to the
Magdalena River through natural and artificial channels. The estuary is surrounded by mangroves
(Rhizophora spp.), and its waters have an average annual depth of 1.5 m and a temperature of
30 ◦C [10,11]. It is a highly populated area (eight settlements) with high socio-economic interest; for
decades, its inhabitants have depended directly on artisanal fisheries.
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2.2. Fish Sampling and Chemical Analysis

Fish were collected during the fishing campaigns with local fishermen between January and
December 2018. The species sampled included those considered as the most important in the diet
of the population of the area (Table 1). The length and weight of the fish were measured; then,
the samples were individually packaged in labeled in polyethylene bags, refrigerated at 4 ◦C and
transported to the laboratory. Subsequently, fish samples were identified using the FishBase database
(http://www.fishbase.org) and the information provided by fishermen. Following the procedure
described by UNEP/IOC/IAEA/FAO, the pectoral fin of the left side next to the skin was removed, and
with a knife, a portion of 3 cm wide was cut out [12].

The following analytical method used to determine the total Hg concentration in tissue samples
was applied. A fish sample of 0.02 g (wet weight, ww) was collected and then introduced into the
direct mercury analyzer DMA 80 Tricell Milestone, according to the EPA method 7473 [13]. For
Cu, Zn, Cd, and Pb analyses, the AOAC Official Method 999.11 of dry ashing was followed for the
extraction of fish muscle samples [14]. For the analysis of As, 1 g of sample mixed with Mg(NO3)2 at
550 ◦C in a muffle furnace was calcined. Subsequently, 1 mL of concentrated HNO3 was added and
heated to dryness, and finally, it was redissolved with 4.5 N HCl, filtered through a 0.45 µm filter,
and refilled up to a volume of 25 mL with distilled water [15]. Analyses were performed using a
Thermo Scientific iCE™ 3500 AAS Atomic Absorption Spectrometer coupled to a VP100 Continuous
Flow Vapor Generator (Waltham, MA, USA) (As) (HGAAS; [16]) and a GFS35Z Integrated Zeeman
Graphite Furnace (Waltham, MA, USA) ((Cd, Pb, Cu, Zn) (GFAAS; [17]). The analytical quality control
of the method was evaluated in triplicate with the certified reference materials (CRM) IAEA 407 and
DORM-4. The different concentrations of metals established with the certified values and the recovery
percentage ranged between 92%–96%. The detection limits for the different metals were 0.006 µg/g for
Cd, 0.010 µg/g for Pb, 0.05 µg/g for Cu, 0.016 µg/g for Zn, 0.014 µg/g for Hg, and 0.016 µg/g for As.

2.3. Human Health Risk Assessment

The study to estimate the potential human health risk was based on data from a survey on fish
consumption in different locations in CGSM, as well as on calculations of the estimated dietary intake
(EDI), hazard quotient (HQ), maximum allowable fish consumption rate (CRlim), and metal pollution
index (MPI), as previously described in other studies [18,19].

In the current study, a dietary survey was conducted by interviewing 215 residents settled around
CGSM, indicating that on average, the frequency of fish consumption was six times or more per week,
and the species commonly consumed and marketed according to the survey were: Euguerres plumieri,
followed by Mugil incilis, Elop smithi, Cathorops mapale, and Centropomus undecimalis. The persons
surveyed were classified into three age groups: children (CHD: 1–15 years old), women of childbearing
age (WCA: 16–48 years old), and the remaining population (RP: men > 15 years old and women
≥ 49 years old).

Additionally, in this study, total arsenic (inorganic + organic) concentration was quantified in
fish samples. Several studies have shown that in fish, this metalloid is found mainly in the form of
arsenobetaine, a non-toxic organic form, and the rest is inorganic arsenic, which is highly toxic and
carcinogenic [20]. However, fish samples were not analyzed for inorganic arsenic, therefore, for all risk
assessment methods (EDI, HQ, and CRlim), 10% of total arsenic was assumed to be inorganic arsenic,
according to the worst-case scenario established by the USEPA for health risk assessment of As intake
due to fish consumption [21].

2.3.1. Estimated Daily Intake

The estimated daily intake (EDI) (µg/kg body weight/day) was calculated using the following
equation:

EDI =
Cm·DI

BW
(1)

http://www.fishbase.org
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where Cm is the mean heavy metal concentration in the fish muscle tissue (µg/g), DI is the fish intake
consumed per day (g/day), and BW is the mean body weight of the person (kg). In this study, body
weight averages of 37 kg for CHD, 69 kg for WCA, and 73 kg for RP were registered from the survey,
as well as a daily fish intake of 50 g for CHD, 279 g for WCA, and 243 g for RP. The reference doses (RfD,
µg/kg BW/day, defined as the maximum tolerable daily intake of a specific metal that does not result in
any deleterious health effects) employed for the heavy metals studied were those established by the
JECFA [22], the United States Environmental Protection Agency (EPA, Washington, DC, USA) [23],
and the Agency for Toxic Substances and Disease Registry (ATSDR, Atlanta, GA, USA) [24] (Table 2).

2.3.2. Hazard Quotient

The hazard quotient (HQ), defined as the relationship between the EDI of a heavy metal in relation
to its reference dose, was used to characterize the potential risk.

HQ =
EDI

R f D
(2)

There is no risk if HQ < 1; however, if HQ > 1, then there is a potential risk associated with the
heavy metal considered.

2.3.3. Maximum Allowable Fish Consumption

The Equation (3) below is used to calculate the maximum allowable fish consumption rate (CRlim,
in g/day) of contaminated fish with a non-carcinogenic effect [23].

CRlim =
R f D·BW

Cm
(3)

2.3.4. Risk Associated with Methylmercury

The potential risk of human exposure to Hg was assessed with the estimated weekly intake of
MeHg (EWIMeHg) per kg of body weight of the studied individual (µg/kg BW/week) using the equation
described by UNEP (Geneva, Switzerland) [25]:

EWIMeHg =
WFC·CMeHg

BW
(4)

where WFC is the weekly intake (g/week) of fish; CMeHg is the median concentration of MeHg (µg/kg)
in fish calculated considering that most of the Hg in fish is MeHg (higher than 80%), and most of the
MeHg ingested through fish consumption is quickly absorbed into the body [26,27]; BW is the body
weight of the person (kg).

Additionally, the permissible safety level (MeHgPSL), which is the concentration of MeHg that
the consumed fish species should contain to avoid exceeding the provisional tolerable weekly intake
(PTWI) of MeHg established by JECFA (1.6 µg/kg BW/week), was calculated using the following
equation [26]:

[MeHg]PSL =
Cm·PTWI
WIMeHg

(5)

Likewise, the maximum estimated amount of fish (in g) that people should eat weekly to avoid
Hg exposure (MFW) was calculated using the following equation:

MFW =
PTWI·WFC

WIMeHg
(6)
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2.4. Metal Pollution Index

The metal pollution index (MPI) was evaluated to compare the total content of metals in different
fish species. This index was obtained by calculating the geometrical mean of the metal levels analyzed
in fish [19,28].

MPI (µg/g) = (C f 1 x C f 2 x . . . C f n) 1/n (7)

where Cfn is the concentration of a metal in the sample.

2.5. Statistical Analysis

The results of the heavy metal concentrations for each fish species are presented as the mean ±
standard deviation of the samples analyzed. An exploratory analysis using the Kolmogorov–Smirnov
test to demonstrate the normality of the data showed a normal distribution. Differences between fish
species were evaluated using a Student’s-test. Pearson’s correlation analysis was used to establish the
relationships between the variables. Statistical analyses were performed with the SPSS 10.5 software,
establishing a confidence level of 95%.

3. Results

3.1. Heavy Metals Concentrations in Fish

Table 1 shows the different species of fish collected that are most commonly marketed and the
heavy metal concentrations found in CGSM. The species with the highest frequency were carnivores,
including Cathorops mapale, Centropomus undecimalis, and Elops smithi, which represent 60% of the
collected samples. On the other hand, the other 40% corresponds to the species Eugerres plumieri
(euryphagous diet) and Mugil incilis (detritivorous features). Conversely, in descending order according
to local fish consumption by the population in the area Euguerres plumieri (92%) is the most consumed
species, followed by Mugil incilis (77%), Elop smithi (64%), Cathorops mapale (54%), and Centropomus
undecimalis (35%). Individuals of the Cathorops mapale species showed the lowest total length and
weight averages. Elops smithi showed the highest average total length, and Centropomus undecimalis
had the highest average weight.

Except for Hg (r = 0.60; p < 0.05), the length and weight did not show a statistically significant
correlation with the concentration of the heavy metals assessed. As a function of average heavy metal
concentrations, in descending order we found Cu > Zn > As > Pb > Hg > Cd. The concentration
of heavy metals by species and according to the feeding habit does not show statistically significant
differences (p > 0.05). Elops shmiti is the only species that follows a food web pattern of carnivores >

non-carnivores, showing the highest concentrations of Cu, Hg, and Pb. This is different from what was
found in the species Eugerres plumieri that recorded the highest levels of Zn. On the other hand, the
species Mugil incilis showed higher levels of Cd and As.

3.2. Health Risk Assessment

The EDI results for the different population groups were found to be between 0.02–16.8 for CHD,
0.04–40.5 for WCA, and 0.04–37.4 for RP (Table 2). The EDI in descending order according to the
population group was RP > WCA > CHD. Cd contributed with the lowest daily intake, while Cu and
Zn contributed with the highest daily intake; the values obtained were between 600 to 900 times higher
than the lowest EDI value.

On the other hand, reports of the maximum allowable fish consumption rate (CRlim) are higher
for all evaluated age groups and close to the average daily fish consumption for the groups of WCA
(279 g/day) and RP (243 g/day) in the case of Cu (Table 2). Similarly, the HQ shows potential risk by Cu
for these two population groups by presenting values of HQ > 1 or very close to HQ = 1; WCA (Cu:
HQ = 1.01), and RP (Cu: HQ = 0.93) (Figure 2).
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Table 1. Concentrations of heavy metals (µg/kg) found in fish species assessed and values reported in other studies worldwide.

Scientific Name N Habit
Mean ± SD MPI

Total Length (cm) Weight (g) As Cd Hg Pb Zn * Cu *

This study
Cathorops mapale 35 C 24.3 ± 5.6 117.8 ± 26.1 108.7 ± 44.8 8.7 ± 6.2 18.1 ± 14.6 38.4 ± 32.8 6.3 ± 1.2 8.7 ± 1.6 0.13
Centropomus undecimalis 26 C 33.6 ± 3.9 330.0 ± 120.3 114.6 ± 48.0 13.6 ± 18.3 28.2 ± 10.1 31.4 ± 36.8 5.9 ± 0.9 9.8 ± 1.3 0.15
Elops smithi 33 C 36.8 ± 2.2 284.4 ± 40.9 108.3 ± 56.7 7.9 ± 7.9 36.6 ± 44.0 49.3 ± 40.5 7.1 ± 2.9 18.1 ± 3.1 0.18
Eugerres plumieri 33 E 27.0 ± 4.9 158.0 ± 37.9 94.2 ± 57.9 11.0 ± 6.8 13.1 ± 11.3 33.8 ± 16.4 9.2 ± 4.0 7.1 ± 1.5 0.12
Mugil incilis 33 D 25.5 ± 3.5 113.0 ± 77.4 141.5 ± 109.3 20.8 ± 29.8 16.1 ± 21.4 36.3 ± 22.4 7.4 ± 2.1 9.4 ± 3.2 0.16
Species, country or site/Reference
Ariopsis bonillai, CGSM, Colombia [29] C - - - 2000–4200 - - 18–109 -
Mugil incilis, CGSM, Colombia [7] D - - - - ND–51 - - -
Eugerres plumieri, CGSM, Colombia [7] E - - - - ND–68 - - -
Mugil incilis, Mallorquín swamp, Colombia [30] D - - - 60–160 - - 16.6–27.8 0.41–0.94
Mugil incilis, Mallorquín swamp, Colombia [31] D - - - - - 650–2030 13.8–21.3 0.09–0.8
Ariopsis felis, Southern Gulf of Mexico [32] C - - - - - 10–250 - -
Sardinella brasiliensis, Rio de Janeiro, Brazil [33] - - 700–1200 6–40 - 60–900 6.7–12 1.1–4.7
P. bifasciatus, San Pedrito Lagoon, Mexico [34] D 96.2 ± 12.7 - - 410 - 28.59 -
C. undecimalis, Mallorquín swamp,
Colombia [18] C 24.6 ± 4.1 119.0 ± 46 - 30–130 100–170 70–290 11.1–22.6 0.16–1

E. plumieris, Mallorquín swamp, Colombia [18] E 16.6 ± 0.9 57.3 ± 9.9 - 70–160 140–290 80–110 3–4.7 0.48–2.02
38 species of tropical marine fishes, Spratly
Islands, China [35] - - 20,850 - - 140 21.95 1.57

C. undecimalis, Colombian Caribbean [36] C - - ND ND 86 1472 - -
FAO/WHO a - 50 500 200 40 -

Permissible limit EU b - 50–100 - 300 - -
MHSP c - 100 - 300 - -

N: number of fish caught, MPI: metal pollution index, D: detritivorous, C: carnivorous, E: euryphagous, ND: no data. * µg/g; a [37], b [38], c [39]
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When considering the metal pollution index (MPI) per species in descending accumulation order, we
find Elops smithi > Mugil incilis > Centropomus undecimalis > Cathorops mapale > Eugerres plumieri (Table 1).

Table 2. Estimates of the potential risk in the different age groups.

Heavy Metals RfD a CHD WCA RP

EDI CRlim EDI CRlim EDI CRlim

As 0.3 0.02 99.5 0.04 196.4 0.04 185.6
Cd 1 0.02 3359.9 0.05 6629.0 0.04 6265.8
Hg 0.1 0.04 189.8 0.09 374.5 0.08 353.9
Pb 4 0.06 4005.1 0.14 7901.9 0.13 7468.9
Zn 300 11.4 1582.6 27.4 3122.5 25.3 2951.4
Cu 40 16.8 153.8 40.5 303.4 37.4 286.7
Potential risk by consumption of fish with methylmercury

EWI (µg/kg/week) MeHgPSL (µg/g) MFW (kg)
CHD 0.25 0.130 3.04
WCA 0.60 0.117 12.0
RP 0.55 0.108 11.3

CHD: children, WCA: women of childbearing age, RP: the remaining population, RfD: oral reference dose
(µg/kg BW/day), EDI: estimated daily intake (µg/kg BW/day), CRlim: consumption rate (g/day), EWI: estimated
weekly intake of MeHg (µg/kg BW/week), MeHgPSL: the permissible safety level for Hg (µg/g), and MFW (kg):
the maximum amount of fish that can be consumed weekly per person. a Obtained from the Integrated Risk
Information System, USEPA (2016), JECFA (http://apps.who.int/food-additives-contaminants-jecfa-database/Search.
aspx), and ATSDR (http://www.atsdr.cdc.gov/substances/index.asp; http://www.atsdr.cdc.gov/HAC/PHA/reports/
isladevieques_06272003pr/appendices1b.html).
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The main exposure route of MeHg is through fish consumption [40]; therefore, the potential risk in
the population was assessed based on the estimated weekly intake (EWI), the maximum amount of fish
that can be consumed weekly per person (MFW) without adverse health effects, and the permissible
safety level of MeHg (MeHgPSL) in fish for human consumption (Table 2). The EWI values found were
below the provisional tolerable weekly intake values for MeHg of 1.6 µg/kg BW/week (WCA and CHD)
and 3.2 µg/kg BW/week (RP). The amount of fish consumed weekly according to the population survey
was between 350 and 1953 g, which is less than the results obtained for the MFW estimate. The MeHgPSL

was far superior compared to what was obtained through the laboratory analysis of the harvested fish.

4. Discussion

Hg concentration showed a statistically significant correlation with the length and weight of the
fish, evidencing a mercury bioaccumulation process in the aquatic biota in the ecosystem, as reported
by Marrugo et al. for fish species in the large marshes of Achí and Ayapel in the Mojana region of
Colombia [41]. In all species, the concentrations of Zn and Cu were found to be the highest, explaining
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possibly why these metals play a fundamental role in the enzymatic and respiratory processes of
fish [42]. Moreover, the average concentration of heavy metals does not exceed the values established
by FAO/WHO [37], the European Union [38], and the Colombian maximum limits for heavy metals
in fish [39]. Hg, Pb, and Cu were the only metals to follow a food web pattern of carnivores >

non-carnivores. In the case of Hg, it is known that it accumulates in the aquatic food chain, with higher
concentrations in predatory fish [18,41,43,44]. For other metals, the concentration is mostly controlled
by the habitat, eating habits, metal accumulation capacity, and the type of organism [42,45].

Nonetheless, it is well known that Elops smithi feeds on a combination of fish and crabs (http:
//www.fishbase.org), which results in higher bioaccumulation of Cu, Hg, and Pb compared to the
specie Eugerres plumieri that has a lower trophic level. However, high levels of Zn in this species
may be associated with feeding on micro-bivalves and detritus found in the sediments. This is
dissimilar to the diet of Mugil incilis comprised of phytoplankton, zooplankton, and debris, where
the concentration of Cd and As may be associated with transfer factors in the aquatic environment.
In addition, species-specific characteristics in some fishes that present this type of food habitat may
result in the variation of the concentration of essential or toxic metals [46]. In general, heavy metals
have been determined in marine organisms other than fish in CGSM such as those found 30 years ago by
Campos [47], where high concentrations (µg/g) of Cd (2–11), Pb (0.86–6), and Zn (200–950) were found
in oysters; these results indicated a significant variation of the concentration depending on the sampling
points for the ecosystem [47]. Therefore, studies of the content and bioavailability of heavy metals
should be carried out according to spatial distribution in sediments as well as in different organisms.
This should be done to establish translocation and bioaccumulation factors, so contamination areas and
anthropogenic sources of contamination can be considered. When compared with other studies, we
observe that the Pb, Zn, and Cd values were lower than the ones registered in other studies (Table 1),
except for those reported by Fernández-Maestre et al. [9] on the Colombian Caribbean coast. Hg
concentrations were slightly lower than those reported in the Mallorquín swamp [18] and also in the
Atrato River in Colombia [36]. The concentrations of As were found to be much lower than those
reported by Li et al. [35] in the Spratly Islands in China, but similar to the ones found by Gallego
et al. [36] in the Atrato River Delta in Colombia. However, Cu concentrations were higher compared to
the results reported locally and internationally. Of the metals assessed in fish, the lowest concentration
was found for Cd, coinciding with different reports indicated in Table 1 and other studies in marine
organisms of the Mediterranean and Black Seas [35,48].

When comparing the content by species at a local level in ecosystems with similar geographical
characteristics or for the same study area, the Hg concentrations for the species Mugil incilis and
Eugerres plumieri were similar to a study reported for CGSM [7]. Besides, the concentrations of Cd, Pb,
Hg, and Zn were slightly lower in the species Eugerres plumieri and Centropomus undecimalis in contrast
to the Cu concentrations that showed higher values, compared to those reported for the Mallorquín
swamp located in the Colombian Caribbean area [18].

Fuentes et al. [18] reported similar results regarding the contribution of each metal in the EDI value
but differed in their order according to the population group, as follows: CHD > WCA > RP for the
consumption of fish species collected in the Mallorquín swamp in Colombia [18]. Cu in the WCA and RP
groups pose a risk to their health because the calculated EDI results are above the tolerable intake reference
levels established by the JECFA, the USEPA, and the ATSDR (Cu: 40 µg/kg/day). On the other hand, the
HQ shows potential risk by Cu for WCA and RP (Figure 2). Although Cu is considered an essential
micronutrient for humans, high levels of this metal easily lead to Fenton-type redox reactions, which
could, in turn, lead to oxidative damage and cell death [49]. In the case of As, to avoid overestimating
the health risk of As intake via the consumption of fish, an assumption about the percent of inorganic
As in fish (10%) had to be made [21,50]; HQ results (<1) for As suggested that non-carcinogenic health
effects from the intake of arsenic in the fish species are not expected for consumers.

HQ for Zn indicates no potential risk, although concentration levels are higher than the other
analyzed metals. It is also well known that Zn is considered in the literature as an essential element,

http://www.fishbase.org
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and its dietary excess, in general, is not considered a widespread health concern [51]. HQ for Hg in the
different population groups is very close to the reference value. However, the tendency of these metals
to bioaccumulate in aquatic organisms could have future adverse effects in the ecosystem and also on
the health of the surrounding populations [40,41,52]. Consequently, given that these values are above
or below the reference values depending on the variable studied (i.e., EWI, MFW, or MeHgPSL), this
shows that there is no evidence of a potential health risk from MeHg exposure in the population groups.

In general, the HQ results indicate that the WCA and the RP groups show a potential health risk
from the intake of Cu and Hg through fish consumption, however for Hg the values of EWI, MFW,
and MeHgPSL suggest a low risk to human health. Copper is an essential element for the formation of
hemoglobin and some enzymes in humans; however, high intake can damage the liver and kidneys [53].
That is why the chronic intake of small amounts of heavy metals can cause non-cancer risks, such as
neurological problems, headaches, and liver and kidney diseases [54].

Furthermore, this study is the first report on arsenic As and its risk assessment in fish in
Colombia, and knowing that about 90% of human exposure to As is due to the intake consumption
of fish, shellfish and/or other marine organisms [55], it should be considered in future evaluations of
environmental contaminants along with its speciation (organic and inorganic As), especially in different
aquatic organisms of commercial interest. The reason is that since this metalloid bioaccumulates and
biomagnifies through food chains, so the accumulation of As in tissues can cause chronic diseases and
potential health damage to the population [56].

This result indicates that the species Mugil incilis of a detritivorous feeding habit could have a direct
relationship between heavy metal accumulation and feeding habit, as there is no relationship pattern
with the trophic level concerning the carnivorous species. As it is a species with high consumption
(77%) based on the population survey, it can have significant adverse effects on human health due to
the bioaccumulation of heavy metals. Therefore, the consumption of species with a lower MPI, such as
Eugerres plumieri, is recommended. However, the rate of consumption of this species must be lower
compared to what was indicated by the population survey evaluation (92%) since this species of a
euryphagous food habit can become bioaccumulative with a higher proportion of heavy metals.

5. Conclusions

Concentrations of heavy metals in fish muscle in Ciénaga Grande de Santa Marta were low
compared to those reported in other regions of the world and the maximum levels established
by national and international monitoring organizations for fish consumption. Furthermore, these
vary according to the species with no statistically significant difference and do not maintain a clear
relationship with the trophic level and bioaccumulation. The hazard quotient for Cu exceeds the limit
(HQ > 1) for the groups of women of childbearing age and the remaining population, indicating a
potential risk for these two population groups from fish consumption. Lowering fish consumption
and changing the diet would be the ideal recommendation. However, limiting fish consumption and
promoting dietary replacement is not an option in most cases for populations that depend on this
resource for most of their diet. Therefore, the corresponding environmental and health authorities
are urged to take corrective action on behalf of these populations, which in most cases, have these
fish species as their only source of protein. Besides, monitoring different aquatic organisms should be
continued to establish relationships in the food chain and implement public education strategies to
address fish consumption.
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