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Abstract: Because it is possible to delay the progression of dementia if it is detected and treated
in an early stage, identifying mild cognitive impairment (MCI) is an important primary goal of
dementia treatment. The objectives of this study were to develop a random forest-based Parkinson’s
disease with mild cognitive impairment (PD-MCI) prediction model considering health behaviors,
environmental factors, medical history, physical functions, depression, and cognitive functions using
the Parkinson’s Dementia Clinical Epidemiology Data (a national survey conducted by the Korea
Centers for Disease Control and Prevention) and to compare the prediction accuracy of our model
with those of decision tree and multiple logistic regression models. We analyzed 96 subjects (PD-MCI
= 45; Parkinson’s disease with normal cognition (PD-NC) = 51 subjects). The prediction accuracy
of the model was calculated using the overall accuracy, sensitivity, and specificity. Based on the
random forest analysis, the major risk factors of PD-MCI were, in descending order of magnitude,
Clinical Dementia Rating (CDR) sum of boxes, Untitled Parkinson’s Disease Rating (UPDRS) motor
score, the Korean Mini Mental State Examination (K-MMSE) total score, and the K- Korean Montreal
Cognitive Assessment (K-MoCA) total score. The random forest method achieved a higher sensitivity
than the decision tree model. Thus, it is advisable to develop a protocol to easily identify early
stage PDD based on the PD-MCI prediction model developed in this study, in order to establish
individualized monitoring to track high-risk groups.

Keywords: cognitive function; data mining; Parkinson’s disease with mild cognitive impairment;
random forest; neuropsychological test

1. Introduction

Over the past decade, the field of geriatrics has experienced emerging interest in Parkinson’s
disease with mild cognitive impairment (PD-MCI) [1–4]. The Sydney cohort study [5], the most highly
representative epidemiology study on the subject, examined 136 patients diagnosed with Parkinson’s
disease (PD) over 20 years. The study reported that 84% of PD patients had cognitive impairment,
and 50% of them progressed to PD dementia (PDD). Likewise, PD is often accompanied by cognitive
dysfunction in addition to dyskinesia [2].

The mild cognitive impairment (MCI) stage is the earliest at which we can detect dementia [6].
Because it is possible to delay the progression of dementia when it is detected and treated in an
early stage, identifying MCI is an important primary goal of dementia treatment [6]. PD-MCI is
frequently found in patients with PD [7,8]. However, the sociodemographic and neuropsychological
characteristics of PD-MCI are less well-known than those of MCI and vascular mild cognitive
impairment (vascular-MCI) [7,8]. The distinctive neuropsychological characteristics found in early stage
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PD-MCI are caused by executive function damage due to prefrontal hypofunction or malfunction [9].
However, it is difficult to distinguish PD-MCI from MCI or vascular-MCI, because they show similar
symptoms [10]. Additionally, people with PD experience a slowly deteriorating cognitive deficit and
impaired motor function, which can be mistaken for cognitive frailty as part of the normal aging process.
As a result, it is difficult to diagnose early stage PD. MCI can be diagnosed based on interviewing,
cognitive function evaluation via a standardized neuropsychological test, and brain imaging such as
magnetic resonance imaging (MRI). It is possible to diagnose cerebrovascular diseases or to analyze
brain atrophy using brain imaging. However, this is unsuitable for early PD diagnosis, because brain
atrophy can be confirmed visually only at a very advanced stage. Therefore, neuropsychological testing
that also tests cognitive function has been used as an effective screening test for diagnosing MCI [11].

Recent studies have pointed to the necessity of considering mental health, such as depression,
while diagnosing MCI [12,13]. In particular, the development pattern and risk factors of cognitive
impairment are known to vary according to race. Therefore, it is necessary to develop an MCI
prediction model reflecting the characteristics of the neuropsychological indices and lifestyles of the
elderly in South Korea; however, South Korea has less systematic epidemiological data on cognitive
impairment in the elderly than other countries such as the United States and European countries.
In South Korea, previous community-based epidemiological studies on PD have been conducted
on patients living in a single city [14]. However, there has been no study to develop a prediction
model based on a nationwide epidemiological survey. Moreover, most of the previous studies [15,16]
evaluating the neuropsychological characteristics of patients with PD have used regression models.
Regression models are effective in exploring the neuropsychological characteristics of individual risk
factors but are limited in analyzing multiple risk factors simultaneously. It is also difficult to prioritize
risk factors with regression models. Linear regression models in particular require several assumptions,
including linearity, equal variance, and a normal distribution, but disease data have been known to
violate these assumptions.

In recent years, the medical field has applied data mining to predict the risk of diseases and
vulnerable groups [16,17]. Data mining is a type of big data analysis that examines the relationships
and rules within a dataset to extract valuable information [18]. The health science field has traditionally
used tree-based methods such as Classification and Regression Tree (CART) as data mining methods
for disease prediction [19]. Decision trees carry the risk of overfitting, and the accuracy of decision
trees can vary greatly depending on the training data (input variables). Random forests, a data mining
method developed in 2001, were designed to overcome these limitations. Random forests generate
multiple decision trees by conducting random sampling on the same dataset and combining them to
predict the target variable. Therefore, the accuracy of random forests is higher than that of decision
trees [20,21]. Moreover, random forests can be used to explore the relationship between explanatory
variables and diseases when many (types of) explanatory variables are applied to a random forest
model [22]. In addition, the prediction power of random forests outperforms the bagging model [22].

Several previous studies [23–25] have reported on Parkinson’s dementia predictors using
biomarkers such as cerebrospinal fluid (CSF) and electroencephalogram (EEG) data. However, we are
unaware of any study that identifies the predictors of PD-MCI for patients with PD and normal cognition
(PD-NC), taking into account sociodemographic factors, lifestyles, depression, and neuropsychological
characteristics. The objectives of this study were to develop a random forest-based PD-MCI prediction
model considering health behaviors, environmental factors, medical history, physical functions,
depression, and cognitive functions by using the Parkinson’s Dementia Clinical Epidemiology Data
(a national survey conducted by the Korea Centers for Disease Control and Prevention), and to compare
its prediction of accuracy with those of decision tree and multiple logistic regression models.
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2. Methods

2.1. Data Source

This study was conducted using the Parkinson’s Dementia Clinical Epidemiology Data obtained
from the National Biobank of Korea, the Center for Disease Control and Prevention, the Republic of
Korea (no. KBN-2019-005). We obtained the approval of the Research Ethics Review Board, the National
Biobank of Korea (no. KBN-2019-005), and the data use approval of the Korea Centers for Disease
Control and Prevention (no. KBN-2019-1327). The National Biobank of Korea was established in 2008
with the approval of the Ministry of Health and Welfare and is managed by the Korea Centers for
Disease Control and Prevention for the emerging necessity of managing bio-data systematically at
a national level. The ultimate goal of the National Biobank of Korea is to promote biomedical research
and public health. Please refer to Lee et al. [26] for the specific activities of the National Biobank of
Korea, including its quality control programs.

The Parkinson’s Dementia Clinical Epidemiology Data used in this study were collected under the
supervision of the Korea Centers for Disease Control and Prevention at 14 tertiary care organizations
(university hospitals) from January to December 2015. Health surveys, including health behavior
questions, were conducted using computer-assisted personal interviews. The data are composed
of sociodemographic factors (e.g., gender), environmental factors (e.g., exposure to pesticides),
health behaviors (e.g., smoking), disease history (e.g., hypertension), exercise characteristics related to
PD (e.g., tremor), sleep behavior disorders (e.g., rapid eye movement (REM)), and neuropsychological
characteristics (e.g., cognitive function). PD-MCI was diagnosed by neuropsychologists according to
the criteria of the International Working Group on MCI [27].

2.2. Subjects

Observational studies frequently utilize secondary data and these studies are more likely to
experience data imbalance while comparing patients and healthy subjects [28]. Propensity score
matching (PSM) was used to minimize selection bias and resolve the imbalance of case-control [29].
This study found an imbalance between PD-NC and PD-MCI. In order to solve this issue, this study
used PSM, balancing between populations using the nearest neighbor matching by controlling the age
of the case-control group [30]. Moreover, this study excluded individuals (subjects) that did not match
in both groups in common to ensure good data balance. Before matching, there were 274 subjects
(PD-MCI = 223; PD-NC = 51), and, after conducting PSM, it was matched to 96 subjects (PD-MCI = 45,
PD-NC = 51; Figure 1). This study finally analyzed 96 subjects.
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2.3. Measurement

The outcome variable is defined as the prevalence of PD-MCI classified by medical diagnosis.
The explanatory variables included age (60–74 years old or ≥75 years old), gender (male or
female), education (middle school graduate and below, or high school graduate and above),
handedness (left hand, right hand, or both hands), family dementia history (yes or no), family PD
history (yes or no), pack-years (non-smoking, 1–20, 21–40, 41–60, or ≥61 pack-years), coffee-drinking
(yes or no), mean coffee intake per day (no, ≤1, 2–3, or ≥4 cups), coffee drinking period (no, ≤5, 6–9,
or ≥10 years), pesticide exposure (never, currently not exposed but exposed previously, or currently
exposed to pesticide), disease history (carbon monoxide poisoning, manganese poisoning, encephalitis,
traumatic brain injury, stroke, alcoholism, diabetes, hypertension, hyperlipidemia, and/or atrial
fibrillation), PD related motor signs (tremor, akinesia/bradykinesia, postural instability, and/or late
motor complications), REM, sleep behavior disorders, neuropsychological characteristics such as
those outlined in the Korean Mini Mental State Examination (K-MMSE) [31], Korean Montreal
Cognitive Assessment (K-MoCA) [32], Geriatric Depression Score (GDS) [33], global Clinical Dementia
Rating (CDR) score [34], Korean Instrumental Activities of Daily Living (K-IADL) score [35],
Untitled Parkinson’s Disease Rating (UPDRS) total score [36], UPDRS motor score [37], Hoehn and
Yahr staging (H&Y staging) [38], and the Schwab and England Activities of Daily Living scale (Schwab
and England ADL) [39]. These variables are defined in Table 1.
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Table 1. Measurement and definition of variables.

Variable. Measurement Characteristics

Sociodemographic factors

Gender Male or female

Education Middle school graduate and below or high school
graduate and above

Mainly used hand Left hand, right hand, or both hands
Family dementia history Yes or no
Family PD history Yes or no
Pack-years Non-smoking, 1–20, 21–40, or ≥41 pack-years

Health behaviors

Coffee-drinking Yes or no
Mean coffee intake per day (cups/day) No, ≤1, 2–3, or ≥4 cups
Coffee drinking period (year) No, ≤5, 6–9, or ≥10 years

Exposure to pesticide Never, currently not exposed but exposed previously,
or currently exposed to pesticide

Environmental factors Carbon monoxide poisoning Yes or no

Disease history

Manganese poisoning Yes or no
Traumatic brain injury Yes or no
Stroke Yes or no
Diabetes Yes or no
Hypertension Yes or no
Hyperlipidemia Yes or no
Atrial fibrillation Yes or no
Tremor Yes or no

Exercise characteristics related to
PD (PD related motor signs)

Rigidity Yes or no
Bradykinesia Yes or no
Postural instability Yes or no
Rapid eye movement (REM) and sleep
behavior disorders (RBD) Yes or no

Sleep behavior disorders Total score of K-MMSE Continuous variable

Neuropsychological characteristics

Total score of K-MoCA

Continuous variable

CDR global score
CDR sum of boxes
K-IADL
Total score of UPDRS
Motor score of UPDRS
H&Y staging (Hoehn and Yahr staging)
Schwab and England ADL

Pack-years: Cumulative amount of smoking, based on one pack of smoking per day. For example, 30 pack-years
means smoking one pack of cigarettes per day for 30 years or two packs of cigarettes per day for 15 years.
CDR—Clinical Dementia Rating; K-IADL—Korean Instrumental Activities of Daily Living; UDPRS—Untitled
Parkinson’s Disease Rating; ADL—Schwab and England Activities of Daily Living scale.

2.4. Development and Evaluation of Prediction Models

The prediction model was developed using a random forest algorithm, and the results of the
developed prediction model were compared with those of a decision tree based on multiple logistic
regression and a classification and regression tree. The prediction accuracy of the model was calculated
using the recognition rate.

Random forests are ensemble classifiers that randomly learn multiple decision trees. The random
forest method consists of a training step that constructs several decision trees, and a test step that
classifies or predicts an outcome variable based on an input vector. The ensemble form of random
forest training data can be expressed as Forest F = {f1, ..., fn} (Figure 2). The distributions obtained
from the decision trees of each forest were first averaged by T (the number of the decision trees) and
then classification was conducted. The predictors of each sample were combined by using the mean
for continuous target variables and the majority vote for categorical target variables.

L(p) =
1
T

T∑
t=1

Pt(b
∣∣∣I, p) (1)
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Random forest is similar to the bagging technique, because both approaches combine decision
trees generated from multiple bootstrap samples using the majority vote principle in order to increase
stability. However, they are different, because the former uses a few explanatory variables that were
randomly selected from each bootstrap sample.

This study presented a partial dependence plot and variable importance to show the prediction
power of the main explanatory variables. The variable importance indicates the effect of an explanatory
variable on the accuracy of a model. Therefore, when an explanatory variable improves the performance
of a model, the importance of the variable increases. A partial dependence plot shows the changes in
response variables according to the continuous change of each explanatory variable. The contribution
of a dependent variable to an independent variable is expressed as a function of a variable. The function
of partial dependence is presented in Equation (2).(

p1(x, xic)

p0(x, xic)

)
(2)

RF can be free from overfitting theoretically, and is not affected by noise or outliers much [20].
Moreover, it can generate high accuracy results by reducing generalization errors [20]. However, RF is
more likely to have an elbow point, which means a steep drop in slope with more trees. Moreover, there is
a higher probability that each tree will be more complex when an unimportant explanatory variable is
selected. Therefore, this study improved the accuracy of the model by considering the number of mtry,
the number of candidate explanatory variables, in advance.

The prediction performance of a model was validated while considering the overall accuracy,
sensitivity, and specificity together. Sensitivity means the prediction accuracy of PD-MCI,
while specificity indicates that of PD-NC. As the objective of this study was to develop a model
that can predict PD-MCI, this study considered overall prediction accuracy and sensitivity as the
most important factors for evaluating prediction performance. When the overall prediction accuracies
and sensitivities of the two models were identical, their specificities were compared. This study
first established a random forest model and then compared the results and the accuracies of models
obtained from multiple logistic regression and CART. In this case, forward selection based on standard
likelihood ratio tests was used to select variables in the multiple logistic regression analysis. All of the
statistical analyses were conducted using the “RandomForest” package of R-version-3.6.1 (Foundation
for Statistical Computing, Vienna, Austria).
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3. Results

3.1. General Characteristics of the Subjects

The General characteristics of the subjects are presented in Table 2. Of the 96 subjects (after match),
47.9% were male, 52.1% were female, 38.5% had a high school or above level of education, 8.0% had
a family history of PD, and 6.8% had a family history of Alzheimer’s dementia. Additionally, 5.7%,
2.3%, 23.2%, and 40.0% of the subjects had a history of head injury (e.g., traumatic brain injury), stroke,
diabetes, and hypertension, respectively.

Table 2. General characteristics of the subjects, n (%).

Characteristics
After Match

PD-MCI (n = 45) PD-NC (n = 51) Total (n = 96)

Gender
Male 24 (53.3) 22 (43.1) 46 (47.9)
Female 21 (46.7) 29 (56.9) 50 (52.1)

Education
Middle school

graduate and below 27 (60.0) 32 (62.7) 59 (61.5)

High school
graduate and above 18 (40.0) 19 (37.3) 37 (38.5)

Mainly used hand
Right hand 44 (97.8) 47 (92.2) 91 (94.8)
Left hand 1 (2.2) 1 (2.0) 2 (2.1)
Both hands 0 3 (5.9) 3 (3.1)

Family PD history
No 36 (92.3) 33 (91.7) 69 (92.0)
Yes 3 (7.7) 3 (8.3) 6 (8.0)

Family dementia history
No 36 (94.7) 32 (91.4) 68 (93.2)
Yes 2 (5.3) 3 (8.6) 5 (6.8)

Pack year (Smoking)
1–20 6 (13.3) 3 (5.9) 9 (9.4)
21–40 3 (6.7) 2 (3.9) 5 (5.2)
41+ 36 (80.0) 46 (90.2) 82 (85.4)

Coffee-drinking
No 15 (33.3) 19 (37.3) 34 (35.4)
Yes 30 (66.7) 32 (62.7) 57 (64.6)

Carbon monoxide
poisoning

No 42 (97.7) 38 (86.4) 80 (92.0)
Yes 1 (2.3) 6 (13.6) 7 (8.0)

Traumatic brain injury
No 40 (93.0) 42 (95.5) 82 (94.3)
Yes 3 (7.0) 2 (4.5) 5 (5.7)

Stroke
No 41 (95.3) 44 (100) 85 (97.7)
Yes 2 (4.7) 0 2 (2.3)

Diabetes
No 36 (80.0) 37 (74.4) 73 (76.8)
Yes 9 (20.0) 13 (26.0) 22 (23.2)

Hypertension
No 32 (71.1) 25 (50.0) 57 (60.0)
Yes 13 (28.9) 25 (50.0) 38 (40.0)

Hyperlipidemia
No 41 (91.1) 43 (86.0) 84 (88.4)
Yes 4 (8.9) 7 (14.0) 11 (11.6)

Atrial fibrillation
No 44 (97.8) 47 (94.0) 91 (95.8)
Yes 1 (2.2) 3 (6.0) 4 (4.2)

Tremor
No 14 (33.3) 8 (17.4) 22 (25.0)
Yes 28 (66.7) 38 (82.6) 66 (75.0)
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Table 2. Cont.

Characteristics
After Match

PD-MCI (n = 45) PD-NC (n = 51) Total (n = 96)

Rigidity
No 3 (7.0) 8 (17.0) 11 (12.2)
Yes 40 (93.0) 39 (83.0) 79 (87.8)

Bradykinesia
No 2 (4.7) 6 (12.8) 8 (8.9)
Yes 41 (95.3) 41 (87.2) 82 (91.1)

Postural instability
No 22 (55.0) 28 (60.9) 50 (58.1)
Yes 18 (45.0) 18 (39.1) 36 (41.9)

REM sleep behavior
disorders

No 29 (67.4) 27 (56.3) 56 (61.5)
Yes 14 (32.6) 21 (43.7) 35 (38.5)

Depression (GDS)
No 22 (62.9) 22 (75.9) 44 (68.8)
Yes 13 (37.1) 7 (24.1) 20 (31.3)

K-MMSE, mean ± SD 25.8 ± 2.7 25.4 ± 4.7 25.6 ± 3.9
K-MoCA, mean ± SD 20.6 ± 4.0 20.5 ± 6.2 20.5 ± 5.3
Global CDR score, mean
± SD 0.5 ± 0.2 0.5 ± 0.6 0.5 ± 0.4

Sum of boxes in CDR,
mean ± SD 1.4 ± 1.4 0.8 ± 1.3 1.2 ± 1.4

K-IADL, mean ± SD 1.0 ± 2.6 0.7 ± 1.0 0.8 ± 2.0
Total UPDRS, mean ± SD 34.9 ± 18.9 29.9 ± 13.1 33.0 ± 16.9
Motor UPDRS, mean ±
SD 22.6 ± 11.6 17.9 ± 8.6 20.0 ± 10.3

H&Y staging score, mean
± SD 2.1 ± 0.8 1.8 ± 0.6 2.0 ± 0.7

Schwab and England
ADL, mean ± SD 80.0 ± 16.0 87.7 ± 8.1 83.6 ± 13.3

REM sleep behavior disorders—rapid eye movement sleep behavior disorders; PD-MCI—Parkinson’s Disease
with Mild Cognitive Impairment; PD-NC—Parkinson’s Disease with Normal Cognition; K-MMSE—Korean Mini
Mental State Examination; K-MoCA—Korean Montreal Cognitive Assessment; CDR—Clinical Dementia Rating;
K-IADL—Korean Instrumental Activities of Daily Living; UPDRS—Untitled Parkinson’s Disease Rating; H&Y
staging—Hoehn and Yahr staging; Schwab and England ADL—Schwab and England Activities of Daily Living scale.

3.2. Major Risk Factors of Random Forest-Based PD-MCI Prediction Model

A PD-MCI prediction model was established using random forests, and the results are presented
in Figure 3. Some of the random forest models estimated major risk factors using decreased in the GINI
coefficient. The major risk factors of PD-MCI were, in descending order of magnitude, CDR sum of
boxes, UPDRS motor score, the K-MMSE total score, and the K-MoCA total score. Among these factors,
the UPDRS motor score was the most important predictor of PD-MCI. In contrast, the importance of
atrial fibrillation and stroke was zero.
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The partial dependence plot regarding the CDR sum of boxes, the most important variable in the
predictive model, is presented in Figure 4. The results showed that, when other factors were constant,
the risk of PD-MCI increased with a higher CDR sum of boxes (Figure 4).
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3.3. Comparison of the Accuracy of the Developed Prediction Models

This study changed the mtry values (numbers), presenting the number of explanatory variables
to be used in the decision tree constituting RF, from 5 to 15, and selected the value with the smallest
error of Out-Of-Bag. The changes in the error of Out-Of-Bag are presented in Table 3. The optimal
mtry to be applied in this study was 5, showing the lowest error rate (34.4%).
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Table 3. Error of out-of-bag.

Numbers of mtry Error of Out-of-Bag

5 0.344
6 0.375
7 0.396
8 0.375
9 0.396

10 0.365
11 0.385
12 0.375
13 0.375
14 0.375
15 0.375

When ntree, the number of tree generation, and mtry were set as 500 and 5, respectively, the final
RF model of this study had an overall accuracy of 65.6%, a sensitivity of 70.6%, and a specificity of
60.0% (Table 4). On the other hand, the overall accuracy of CART was calculated as 67.7%, higher than
that of RF, but the sensitivity of it was the lowest (51.1%). In Figure 4, the black line indicates the
changes in each error rate against 500 bootstrap samples. Figure 5 shows that the changes in error rate
become relatively stable after the number of bootstrap samples exceeded 150.

Table 4. Comparison of accuracies developed prediction models, %.

Model Overall Accuracy Sensitivity Specificity

Multiple logistic
regression NA NA NA

Decision tree 67.7 51.1 82.4
Random Forest 65.6 70.6 60.0

NA—not available.
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4. Discussion

Diagnosing early stage PD-MCI is important in the health sciences, because it can delay the
cognitive decline associated with PDD. Previous studies [22,40] have reported that the impairment of
the executive function is a major cognitive feature of PDD. However, it is challenging to distinguish
PD-MCI from PD-NC solely based on executive function. Therefore, we explored the major differential
indicators of PD-MCI, taking into account sociodemographic variables, health habits, PD related motor
and non-motor symptoms, cognitive tests, and neuropsychological tests. We developed a PD-MIC
prediction model based on random forests, and confirmed that the CDR sum of boxes, UPDRS motor
score, K-MMSE total score, and the K-MoCA total score were major predictors of PD-MCI. Among all
of the neuropsychological screening tests, the CDR sum of boxes was the most important predictor
for distinguishing PD-MCI from PD-NC. Therefore, when a neuropsychological test is performed to
diagnose PD-MCI in patients with PD, the CDR (sum of boxes) scoring should be conducted first over
other cognitive-language screening tests so as to achieve higher sensitivity.

Previous studies [41,42] examining the sociodemographic and emotional characteristics of PDD
reported that depression is the main characteristic of PDD. For example, Aarsland et al. (2007) [41]
evaluated 537 patients with PDD and observed that 58% of the patients had depression. However, in the
present study, depression was not an important indicator for predicting PD-MCI. This might differ from
previous studies [41,42], because previous studies compared healthy elderly individuals versus those
with PD-MCI, while the present study only examined people with PD. In other words, depression is
potentially not a major differential indicator in this study, because both PD and PD-MCI have high
depression rates (31.3%). As only a few studies have tried to distinguish PD-MCI from PD-NC
considering neuropsychological characteristics, health habits, and depression, more observation
studies on PD-MCI are needed in order to verify the major predictors of PD-MCI.

Another meaningful finding of this study is that the sensitivity of random forests is higher than
that of the decision tree model. These results agree with the results of previous studies predicting
MCI [6] or cardiovascular disease in the elderly using random forests [43]. The prediction accuracy
of random forests is higher than that of regression models or decision trees, because random forests
are based on the bagging algorithm, which generates diverse decision trees using 500 bootstrap
samples. As outliers can form decision tree nodes, the effects of the parameters that determine nodes
are substantial, and, consequently, carry a risk of overfitting [44]. In contrast, random forests based
on the bagging algorithm can prevent overfitting, because they reduce variance while maintaining
tree bias. Moreover, random forests achieve a higher prediction accuracy than decision trees [45].
In addition, one advantage of random forests is their reduction of variance compared with the bagging
model, which is achieved by decreasing the correlation between trees [43]. Random forests show
a particularly better prediction accuracy than bagging models when there are many input variables [43].
Therefore, when selecting the key independent variables from a dataset containing many independent
variables, such as the disease data used in this study, or developing prediction models on big data,
random forests provide a higher accuracy than decision tree or multiple logistic regression models.

The merit of this study was the development of an MCI prediction model using examination
data from a national survey. The limitations of this study are the following: (1) The number of study
subjects was small. (2) The obsessive-compulsive symptoms commonly observed in patients with PD
were not examined. (3) The prediction model did not include a biomarker, such as CFS. (4) This study
adjusted the balance of the number of subjects between the groups by using age-matched PSM to
solve the problem of unbalanced data. However, as a result of the PSM, a number of samples were
excluded from the analysis, and the same size decreased. As a result, the overall accuracy, sensitivity,
and specificity of the multiple logistic regression analysis were not calculated. Moreover, the age used
for matching could not be used as an explanatory variable in the predictive model. Future studies
will require more advanced techniques that can reduce the probability of overfitting to minimize
imbalance, in addition to PSM. (5) Subjects taking PD medications (e.g., dopaminergics) were not
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evaluated. As PD medication particularly affects the expression of cognitive and behavioral symptoms,
future studies should consider whether or not a subject takes medication.

5. Conclusions

It is necessary to develop a protocol that can easily identify early stage PDD in order to establish
individualized monitoring for tracking high-risk groups based on the PD-MCI prediction model
developed in this study. Moreover, to further increase the prediction accuracy of the present method,
a random forest model using weighted voting is warranted. In addition, the development of
multi-modal data-based machine learning models that include biomarkers and brain imaging test
indicators, as well as sociodemographic factors, health habits, and neuropsychiatric indicators,
is needed.
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