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Abstract: Incorporating safety risk into the design process is one of the most effective design sciences to
enhance the safety of metro station construction. In such a case, the concept of Design for Safety (DFS)
has attracted much attention. However, most of the current research overlooks the risk-prediction
process in the application of DFS. Therefore, this paper proposes a hybrid risk-prediction framework
to enhance the effectiveness of DFS in practice. Firstly, 12 influencing factors related to the safety risk
of metro construction are identified by adopting the literature review method and code of construction
safety management analysis. Then, a structured interview is used to collect safety risk cases of metro
construction projects. Next, a developed support vector machine (SVM) model based on particle
swarm optimization (PSO) is presented to predict the safety risk in metro construction, in which
the multi-class SVM prediction model with an improved binary tree is designed. The results show
that the average accuracy of the test sets is 85.26%, and the PSO–SVM model has a high predictive
accuracy for non-linear relationship and small samples. The results show that the average accuracy
of the test sets is 85.26%, and the PSO–SVM model has a high predictive accuracy for non-linear
relationship and small samples. Finally, the proposed framework is applied to a case study of metro
station construction. The prediction results show the PSO–SVM model is applicable and reasonable
for safety risk prediction. This research also identifies the most important influencing factors to
reduce the safety risk of metro station construction, which provides a guideline for the safety risk
prediction of metro construction for design process.

Keywords: safety risk prediction; metro station construction; design for safety; support vector
machine; particle swarm optimization

1. Introduction

Urban rail transit construction is very significant in promoting urban economic development.
Urban metros are developing rapidly around the world since they are a fast, efficient, safe and
comfortable transportation mode [1]. At the end of 2018, 35 cities in mainland China had constructed
185 urban rail operation lines with a total length of 5761.4 km according to the Annual Urban Rail
Transit Statistical and Analysis Report [2]. The scale of lines planned and under construction has been
growing steadily. In addition, the annual completed construction investment has reached a new record.
However, with the rapid development of the metro, construction safety accidents occur frequently,
which cause a large number of casualties and economic losses [3]. According to statistics, during the
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period from 2002 to 2016 (statistics to March 2016), 246 accidents occurred in metro station construction
in China, of which metro station projects accounted for 57% [4].

Natural science is concerned with explicating and understanding natural phenomena, while design
science attempts to create things that serve human purposes [5]. Design science is accomplished through
knowledge-based pattern recognition and problem-solving search processes [6]. Meanwhile, building
and evaluating are design science research activities aimed at improving performance [7]. Such pattern
recognition activities are an important part of human cognition and are fairly central to scientific
reasoning as well [8]. The roots of the design science paradigm are in engineering and the sciences of
the artificial [7]. As mentioned above, design science is essentially a problem-solving process and a
key activity in fields of architecture, engineering and urban planning [9]. In the field of engineering,
the International Labor Organization pointed out that about 60% of engineering accidents were related
to design [10]. Gambatese [10] analyzed the causes of 100 construction accidents and found that in 47%
of cases, the probability of accidents can be reduced by improving the design scheme. In line with
this view, the National Institute for Occupational Safety and Health put forward Prevention through
Design [11], which considered the needs of occupational health and safety in the design process.
Moreover, Design for Safety (DFS) is one of the most effective ways to consider safety risks in the design
process [12], which is also considered as an important way to achieve social sustainable development.
This is because it can not only reduce the safety risk and improve the level of safety management,
but also can reduce the risk of construction-period extension and costs caused by safety accidents [12].
Thus, it is beneficial to utilize the DFS to enhance the safety of metro station construction.

DFS has different definitions and expressions in the existing literatures, such as Design for Safety [13],
Safety through Design [14], Prevention through Design [11], Design for Construction Safety [15] and
Construction Hazard Prevention through Design [16]. In summary, DFS is defined as eliminating or
avoiding dangerous sources through standardized design and improved design to achieve the purpose of
reducing safety accidents, which considers the safety and health of construction, operation and maintenance
personnel, and project end-users in the early design and planning process of a project. Many researchers
have found that design work has contributed to safety construction. By a comparison of the causes of
construction accidents with other factors, Suraji et al. [17] found that planning and design work are the
proximal factor resulting in improper site conditions and construction operations. Haslam et al. [18] put
forward the hierarchy of causal effects of construction accidents, and found that design work is the critical
factor causing accidents. Furthermore, designers can alleviate safety accidents by choosing alternative
technologies and improving project resilience [19]. Yuan et al. realized that integrating the DFS knowledge
base and Building Information Modelling (BIM) can evaluate safety risks during the design phase [20].
In addition, Szymberski [21] proposed the time-safety impact curve, and found that the ability to affect life
cycle safety will reduce as the project proceeds. Meanwhile, improving designers’ hazard identification
skills were thought to be an urgent need [22].

The existing research into DFS mainly focuses on three aspects: (1) research on the basic theory
of DFS, which includes the analysis of safety risk sources caused by design [23], the analysis of the
correlation between design and safety accidents [24] and the promotion of sustainable improvement
by DFS [25]; (2) the analysis of the obstacles and driving factors of the development of DFS, for which
the main obstacles include the lack of safety design-related tools and standards [26,27], insufficient
knowledge reserve of designers [28], increased design costs caused by DFS [27,29]; and (3) research on
the practical application of DFS; for instance, Gambatese et al. [30] built the first “design for construction
safety toolbox” based on the safety recommendation database in 1997. The toolbox links the design
and construction process to help designers identify the safety risks of specific project construction.
Subsequently, the safety design tool based on the matching relationship between safety risk and
design scheme was developed. Gambatese and Hinze [26] added safety manuals and safety guides
to the toolbox. Hadikusumo and Rowlinson [31] built similar safety design process tools. Seo and
Choi [32–43] evaluated and selected the design schemes of specific metro engineering projects by
establishing the matching relationship between design suggestions and safety risks.
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The risk prediction of metro station construction can provide a guideline for the implementation
of DFS. On one hand, the identification of safety risk influencing factors is one of the most significant
procedures in the risk-prediction process [44]. In such a case, the identification of safety risk influencing
factors for the metro construction process has attracted much attention. For example, Yu et al. [45]
analyzed the influencing factors of safety management in metro construction, and pointed out that safety
attitude, construction site safety, government supervision, market restrictions and the unpredictability
of tasks were the most important factors. Zhang et al. [46] classified the causes of construction accidents
in the Beijing metro and found that inadequate management was the biggest cause of accidents, but the
most serious accidents were caused by leaks or fractures in pipes and poor geological conditions.
Ghosh and Jintanapakanont [47] separated and evaluated the key risk factors in the Thailand metro
project, obtaining nine key factors and 35 sub-key factors by using the key factor analysis method.
On the other hand, the construction of a prediction model is another key procedure in the risk-prediction
process. Thus, many scholars have focused on the construction of prediction model. For instance, Wu
et al. [48] presented a systemic Bayesian network method for the dynamic risk analysis of adjacent
buildings in tunneling environments. Li et al. [49] proposed the safety risk identification system
and early warning system for China’s metro construction based on BIM. Zheng et al. [50] used the
fuzzy analytic hierarchy process (AHP) and the comprehensive evaluation method to assess the metro
construction risk of Changchun No.1 in China.

However, as mentioned above, there are some limitations in the existing literature: (1) few studies
have focused on the leading role of design in metro construction, and few researchers have incorporated
risk prediction into the DFS to enhance the safety of metro station construction. The design result is the
most important work basis for the field operator. If there are construction safety risks in the preliminary
design documents and these are not effectively dealt with, these defects will lead to an unsafe state
of objects (including the environment) and the unsafe behavior of field operators in the construction
process [51]; (2) some traditional risk-prediction methods, such as the neural network method, fuzzy
comprehensive evaluation method, Bayesian network, and so on, have some shortcomings, such as low
accuracy and low prediction efficiency [52]. In recent years, the support vector machine (SVM) model
based on particle swarm optimization (PSO–SVM) has been widely used in many fields, which can
overcome these problems [53,54]. For example, Zhou et al. [55] built the prediction model of PSO–SVM
to predict the landslide displacement, and demonstrated that the proposed PSO–SVM model can
better represent the response relationship between the factors and the periodic displacement. Chen et
al. [56] used the evaluation model of short-term atmospheric pollutant concentration forecasting
based on PSO-SVM, which demonstrated the superior performance of the proposed hybrid model.
However, little attention has been paid to developing a hybrid risk-prediction framework for metro
station construction by using the PSO–SVM model.

Design science is considered as practical knowledge used to support design activities, which seeks
various approaches to a real-world problem of interest to practice [57,58]. Improving the ability of
identifying safety risks is an available method to promote the implementation of DFS at the design
phase of engineering project [59]. Therefore, this paper aims to construct a safety risk-prediction
model to improve the performance of DFS in practice based on PSO–SVM. The PSO–SVM intelligent
prediction model is used to predict the safety risks of a specific metro station construction project.
The remainder of this paper is presented as follows. Section 2 introduces the basic principle and
analysis method of PSO–SVM. Section 3 constructs the framework for the safety risk prediction of
metro station construction. Section 4 applies the hybrid model to predict the safety risk of a case study
of metro station construction. Finally, conclusions are presented in Section 5.
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2. Methodology

2.1. Support Vector Machine

The SVM [60] is a machine learning method based on the extended development of statistical
learning theory [61,62]. The basic idea of the theory is to use non-linear mapping to project data
points from a low-dimensional space into a high-dimensional space and linearly regress them in the
high-dimensional feature space [53].

Machine learning is mainly divided into supervised learning and unsupervised learning [63].
Supervised learning usually requires a fully annotated training set to train a model which can be
generalized to other unseen data. Unsupervised learning applies to datasets which only have input
features but are missing annotations. In this research, feature attributes and annotations are both
provided, and a machine learning model of metro construction safety risk is trained by analyzing the
relationship between influencing factors and safety risks. Therefore, this paper addresses the problem of
prediction of safety risk of metro construction engineering from a novel machine-learning perspective.
Scholars have proposed some machine-learning methods, including neural network, artificial neural
network (ANN), back propagation (BP), decision tree and SVM, etc. Traditional neural networks
(NN) face some problems related to convergence and local optimization [56]. Moreover, the defects
of faulty theory foundation, local minimum and over fitting weakened the ability of prediction [64].
Meanwhile, ANN shows a promising performance in fitting non-linear variables, but the complex
relationships amongst some variables can affect its performance [65]. Back propagation (BP) is
widely used in neural network models, which are trained by the error back propagation algorithm.
The convergence speed of the back propagation neural network is slow, and it cannot guarantee the
convergence to the global optimum. To address these problems, SVM is used for machine learning
given its excellent performance in dealing with the statistical learning theory for small sample and in
addressing global optimization and the principle of structural risk minimization [56].

A successful supervising learning algorithm usually contains two stages: one is the training stage,
and the other is the practical application stage. The purpose of supervised learning training is to
analyze the dependency xi → yi between the input and target according to the given training sample
(x1, y1), (x2, y2), . . . , (xn, yn). Assuming the evaluation function is f : x→ f (x), y′ = f (x) , the output
y′ is the target classification based on the evaluation function, as shown in Figure 1.

Figure 1. The process of supervised learning algorithms.

Supposing there are N samples in the dataset space, (xi , yi)1≤i≤N as training samples. The input
variables are mapped into a high-dimensional linear feature space through a non-linear transformation.
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Then the optimal decision function is constructed. The dot product operation in the higher dimensional
feature space is replaced by the kernel function in original space, and the global optimal solution is
obtained by the training of the finite sample. Equation (1) represents the classification hyperplane.

yi(ω · xi + b) ≥ 1 (1)

where, ω is the weight vector; b is bias; “·” is the inner product; xi is a D-dimensional real input
vector; yi represents the corresponding annotation of xi, yi = ±1 which is represented as precipitation
occurrence or not here [66].

In order to maximize the interval, one only needs to calculate 1
2ω

Tω. The basic type of SVM is as
shown in Equation (2):  min

ω,b
1
2ω

Tω

subject to yi
(
ωT
· xi + b

)
− 1 ≥ 0

(2)

where i = 1, 2, · · · , N. The basic type of the above problem is a constrained convex quadratic
programming problem. In order to solve dual problems, the Lagrange function is used to fuse the
constraint into the objective function. It can be defined as Equation (4):

max
a

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

yiy jαiα j
(
xi · x j

)
(3)

subject to: 
N∑

i=1
αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, · · · , N
(4)

where αi is a Lagrange multiplier for each training sample, the sample is the support vector for which
αi = 0, lying on one of the two hyper-planes: (ω · x+)+b = +1; (ω · x−)+b = − 1.

According to the Karush–Kuhn–Tucker condition, the optimization problem must satisfy the last
one in Equation (4) [67]. When dealing with the non-linear SVM problem, SVM introduces a kernel
function to map relationship of the training samples from the original space to the high-dimensional
space:

max
α

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

yiy jαiα jK
(
xi, x j

)
(5)

The K
(
xi, x j

)
is the kernel function of SVM that represents the inner product of two vectors [68].

It is defined as K
(
xi, x j

)
= ϕ(xi) · ϕ

(
x j

)
. The radial basis function (RBF) is one of the most popular

kernel functions, and the RBF kernel function is accounted for in the non-linear problems in this paper:

K
(
xi, x j

)
= exp

{
−g ‖ x j − xi ‖

2
}

(6)

where g is the kernel parameter to measure the width of kernel function in RBF.
Therefore, there are two important parameters affecting the learning performance of SVM that

are the penalty parameter c and the kernel function parameter g, which can affect the classification
accuracy of the SVM. It is necessary to utilize optimization algorithm to optimize the parameters
of SVM.

2.2. The Multi-Classification Support Vector Machine (SVM) Prediction Model Based on Binary Tree

The classic SVM is mainly designed for binary classification problems and cannot be directly used
for multiclass classification problems. However, there are several levels of safety risk prediction for
metro construction, and the binary classifier cannot meet the requirements of prediction. Therefore, this
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study uses the binary tree to solve multiclass classification problem. The principle is to divide all
categories into two sub-classes by constructing a binary tree and using a single SVM to do binary
classification each time; then a sub-class is divided into two sub-sub classes, which continues until
all nodes contain only a single category. For N class classification problems, the method needs N − 1
binary classifiers to distinguish from the SVM of the root node in turn. According to the specific
classification problem, binary tree algorithms can be divided into complete binary trees and partial
binary trees [69], as shown in Figure 2. In Figure 2b, the sorting order of the classifier in the partial
binary tree is 1, 2, 3, and 4; since there are 4 categories, corresponding to 4 structures respectively.

Figure 2. Complete (a) and partial (b) support vector machines (SVMs).

In the partial binary tree structure, we assume that the correct rate of each layer is p1, p2, . . . , pk.
If the correct rate of class division is 1, the classification accuracy of all categories is:

SVM1 = p1

SVM2 = p2
...

SVMk−1 = SVMk = p1 × p2 × · · · × pk

(7)

From Equation (7):
SVM1 > SVM2 > · · · > SVMk−1 = SVMk (8)

It can be found from Equation (8) that the deeper the binary tree classifier is, the lower the
recognition accuracy. Only by making the shallow SVM recognize correctly can improve the
performance of the deep SVM. Therefore, in the binary tree structure, the classification nodes usually
play a more important role. According to this fact, a safety risk classification and prediction model
based on a binary tree SVM is designed, as shown in Figure 3.

Figure 3. The prediction model of the SVM metro construction safety risk classification binary tree.
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It can be found from Figure 3 that the safety risk level of metro construction is high and is in the
upper node. The structural design of this binary tree classifier is mainly based on two aspects: (1)
the higher the safety risk level of the metro construction, the greater the loss caused by an accident.
However, the recognition accuracy of the binary tree classifier decreases with the increase of depth;
therefore, it is a priority to identify the level I safety risk, which is the most critical and has the largest
loss, to ensure the accuracy of identification.

The prediction model of SVM metro construction for the safety risk classification of the binary tree
includes three binary classifiers of SVM, and each SVM classifier determines a category: (1) training
the predictive model—firstly, the collected construction safety risk samples of Class I are taken as
the positive class of the first sub-classifier, which are identified as 1. Then, the remaining three types
of sample sets are combined as the negative class of the first sub-classifier, which are identified as
–1, and the training classifier is SVM 1; (2) the second-level construction safety risk sample from the
remaining three types of samples is selected as the positive class of the second sub-classifier, whose
category is identified as 1, and the remaining class II and class III samples are combined as the negative
class of the second sub-classifier, which are identified as –1, and the training classifier is SVM 2; (3) the
third sub-classifier SVM 3 is established to complete the construction of the binary tree SVM.

2.3. Parameter Optimization of SVM Model Based on Particle Swarm Optimization (PSO)

The SVM model has a good ability to solve small-sample, high-dimensional and non-linear
problems. However, the choice of kernel function parameter g and the penalty parameters c of the
SVM model have important influences on the accuracy of the SVM model. The different types of
kernel functions determine the different properties of the SVM model. In the present work, kernel
functions, such as linear kernel, polynomial kernel, sigmoid function and RBF are commonly used for
SVM modeling [70]. With the wide convergence domain, the RBF has the advantage of being able to
approximate an arbitrary non-linear and high-dimensional computation function, so it is the most
widely used kernel function. Besides, RBF is a prior selection, since it effectively reduces complexity
for inputs by only adjusting c and g [71].

In the SVM–RBF model, the appropriate model parameter setting has a heavy impact on the
classification accuracy of the SVM model [72]. The penalty parameter c represents a “degree of
punishment” that controls the sampling error. If the value of c is large, model may suffer from
overfitting problem, that is model can fit training data well but perform poorly on other unseen data.
If the value of c is small, the complexity of the model is reduced, and the model’s generalization ability
may be improved but may also suffer from underfitting problems. The parameter g of the kernel
function represents the width of the RBF kernel function, and the larger value of g, the higher correlation
between the support vectors. Therefore, c and g affect the performance of SVM together. Only by
constantly adjusting the model parameters to achieve the best combination of model parameters can
the SVM machine-learning ability and regression prediction effect be improved. Therefore, the penalty
parameters c and kernel parameters g should be optimized.

The traditional methods of SVM parameter selection are generally the cross validation method and
grid search method. These two methods have some limitations of low efficiency, low precision, and the
search parameters cannot be optimized. PSO has the advantages of a simple algorithm structure,
such as high precision, fast convergence speed and strong global search ability. PSO is an algorithm
developed in recent years, and it was inspired from the feeding behavior characteristic of a bird flock,
which is used for solving optimization problem. PSO was first proposed by Kennedy and Eberhart [73].
In PSO, each particle represents a potential solution to the problem. The common feature of the particle
is represented by position, speed and fitness value. Each particle updates the position and speed in the
next iteration by tracking the fitness extreme value. The fitness extreme value mainly includes the
individual extreme value Pbest and the global extreme value gbest. The position of the particle’s previous
best performance in a vector called Pbest, and the gbest value is tracked by the particle swarm optimizer.
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The fitness value can be calculated through the fitness function, which can estimate the merit of the
particles. After discovering Pbest and gbest, PSO identifies the speed and distance of each particle [56].

PSO has the advantages of a simple algorithm structure, such as high precision, fast convergence
speed and a strong global search ability. It is widely used in data optimization and data mining.
This research adopts the PSO to search and optimize the kernel parameters and penalty factors of
the SVM model instead of the traditional parameter optimization method [74]. By constructing the
PSO–SVM prediction model, the learning ability and prediction effect of the safety risk-prediction
model of metro construction are improved.

In the D–dimensional space, the space vector Xi = (Xi1, Xi2, · · · , XiD)
T is represented as the i− th

particle, where i = 1, 2, · · · , n, Xi is the position of the ith particle and a possible solution.
The velocity and position of the particles are iterated to obtain the equation as follows [75]: Vk+1

id = ωVk
id + c1r1

(
Pk

id −Xk
id

)
+ c2r2

(
Pk

gd −Xk
id

)
Xk+1

id = Xk
id + Vk+1

id

(9)

where: k is the k − th iteration; Vi = (Vi1, Vi2, · · · , ViD) is the velocity of the i − th particle, and Pi =

(Pi1, Pi2, · · · , PiD) is the optimal position of this particle. The optimal swarm position is Pg =(
Pg1, Pg2, · · · , PgD

)
. Under the condition of the i− th particle at the k− th iteration, Xk+1

id and Vk+1
id are

the d− th location and speed component. Parameters c1, c1, r1, and r2 are the random number, the range
is 0 to 1, and ω is the inertial weight of the PSO algorithm.

The process of using PSO parameters for optimization is as follows:
(i) The population is initialized. The population size, the maximum number of iterations of

the population, the penalty factor c and the optimization range of the kernel parameter g are set.
The learning factors c1 and c2 are adopted by the linear learning strategy. The inertia weight ω is
adopted by the linear decreasing strategy.

(ii) The position x0
i and velocity v0

i of the initial particles within the allowed range are
generated randomly.

(iii) Fitness calculation: the fitness value is the mean squared error (MSE) when cross-checking
the training set.

(iv) The fitness value fi of the current position of each particle in the population with the individual
extreme value Pbest is compared; if fi < Pbest, then Pbest = fi, otherwise fi remains unchanged.

(v) The individual optimal value Pbest of each particle in the population with the population global
extremum is compared; if Pbest < gbest, then gbest = Pbest, otherwise gbest remains unchanged.

(vi) If the termination condition is satisfied, the iteration is stopped and the positional parameters
of the optimal particle are output, that is, the optimal penalty coefficient c of the SVM and the kernel
function parameter g are output, otherwise steps iii–vi are repeated.

3. Framework for Safety Risk Prediction of Metro Station Construction

In this section, a hybrid risk-prediction framework for metro station construction is presented
by using the PSO-SVM prediction model. The flowchart of this framework is presented in Figure 4.
First, the literature review and code of construction safety management analysis methods are used
to identify the influencing factors of safety risk in metro station construction. Second, a structured
interview is used to collect safety risk cases of metro construction projects. Then, the PSO–SVM model
is constructed to predict the safety risk. Finally, the proposed framework is applied to a case study of
metro station construction.
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Figure 4. The overall framework in this study.

3.1. Stage 1: Identify the Influencing Factors of Safety Risk in Metro Construction

In order to obtain the influencing factors of metro construction safety risk more comprehensively,
the relevant core influencing factors are selected from the existing construction safety management
standards, specifications and literature analysis.

3.2. Stage 2: Collection of Safety Risk Cases in Metro Construction

Due to the complexity of the metro construction process, the related safety risk influencing
factors frequently cannot be measured directly; the research data can only be obtained indirectly.
Therefore, an expert interview method is adopted to collect construction safety risk cases. The expert
interview is mainly divided into structured interviews and semi-structured interviews. The difference
mainly lies in the degree of the researcher’s control over the interview process. Structured interviews
usually use questionnaires which are uniformly designed and structured, while semi-structured
interviews can be adjusted in time according to the actual situation of the interview, and there is no
strict interview outline. The main purpose of the investigation is to sort out the evaluation of risk
events by experts in the process of metro station construction to form expert experience samples,
to analyze the relationship between risk events and identified influencing factors, and to provide case
samples for safety risk prediction of metro construction. Therefore, the structured interview method of
experts filling in the questionnaire is adopted in this research to carry out the investigation. In order
to ensure the reliability of the collection of safety risk cases in metro construction, experts (project
employers, contractors, and supervisors) who were engaged in long-term safety management works
in metro construction were invited to fill out the questionnaire. All of experts had over 10 years of
working experience and participated in more than five metro station construction projects. The above
research provides sample data for subsequent construction safety risk-prediction research.
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3.3. Stage 3: Construction of the PSO–SVM Prediction Model

The establishment of the safety risk-prediction model of metro construction mainly includes
training and testing. Firstly, safety risk cases are collected as sample data; then, the processed data
samples are selected randomly as training sets, and the remaining samples are used as test sets.
Secondly, the PSO algorithm is used to optimize the model parameters, which can be derived according
to Equation (9), and the training set is used to learn the SVM model. Finally, the accuracy of the
prediction ability of the model is tested by comparing the test results with the original data. The flow
chart of the safety risk intelligent prediction model of metro construction is shown in Figure 5.

Figure 5. The PSO–SVM prediction model flow of safety risk for metro construction.

3.4. Stage 4: The Safety Risk Prediction of Metro Station Construction

If the training sample classification accuracy of the constructed PSO–SVM prediction model is
relatively high, it shows that the PSO–SVM model has a relatively high accuracy for the training set
and the testing set model. The PSO–SVM model can make a more scientific prediction for the safety
risk of metro construction. According to the sample classification accuracy of Stage 3, it is determined
whether to use the PSO–SVM prediction model constructed in this paper to predict the safety risk of
the specific metro station construction project.

4. Case Study

4.1. Determination of Influencing Factors of Safety Risk in Metro Station Construction

The code of construction safety management is a summary of construction safety management
after years’ experience. Therefore, code reading and review is an effective way to acquire factors (see
Table 1). The main code of construction safety management issued by mainland China were mainly
used in this research, and the scope was appropriately expanded; meanwhile, the relevant laws and
regulations of Hong Kong, Singapore, Japan, and other regions or countries were referenced as shown
in Table 1. Then, based on the in-depth analysis of the relevant literature on the influencing factors of
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safety risk in construction (especially metro engineering), the influencing factors that were generally
considered to be more important in most studies were extracted, as shown in Table 2.

Table 1. Codes of construction safety management in different countries or regions.

Country/Region Code Abbreviation

Mainland China

Standard for Construction Safety Assessment of Metro Engineering
(GB50715-2011) GB 50715

Code for Risk Management of Underground Works in Urban Rail
Transit (GB50652-2011) GB 50652

Code for Construction Company Safety Management Criterion
(GB50656-2011) GB 50656

Standard for Construction Safety Inspection (JGJ59-2011)
Administrative Regulations on Safety in Construction Project

(Regulation No.393 of the State Council)

JGJ59
No.393

Hong Kong, China Factories and Industrial Undertakings Ordinance (FIUO-Cap.59) FIUO
Occupational Safety and Health Ordinance (OSHO-Cap.509) OSHO

Japan
Construction Occupational Health and Safety Management System

(COHSMS) COHSMS
Guidelines and COHSMS External System Evaluation

Singapore

The Factories (Building Operations and Work of Engineering
Construction) Regulations BOWES

Code of Practice for Safety Management System for Construction
Worksites (Singapore standard CP79:1999) CP79

Hydrogeology, engineering geology and surrounding environment are important basic data in
the process of metro construction. The uncertain factors such as complex surrounding environment,
hydrogeological conditions, and engineering geological conditions constitute the dangerous source
environment of the construction safety risk, which is the original factor impact of the safety risk of
metro construction [76]. Because the dangerous source environment provides technical parameters
for design scheme, the uncertainty of environment of dangerous sources will have an impact on
the engineering design and the construction scheme design. In addition, if the dangerous source
environment is handled improperly in the construction process, it will directly cause safety accidents.
The main basis of the metro construction process is the design scheme. It can be said that the safety
hazard is also designed [77]. Therefore, engineering design defects or errors will directly cause safety
risks. According to the process of engineering design→ construction scheme design→ implementation
scheme, engineering design is the basis of construction scheme design. Therefore, the engineering
design will have an impact on construction scheme design. The relationship between the factors
is shown in Figure 6. Accordingly, influencing factors were identified from the dangerous source
environment, project design scheme and construction scheme design in this research. According to
these three dimensions, the influencing factors of safety risk were identified. Therefore, the influencing
factors of metro construction safety risks are shown in Table 2.
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Table 2. Influencing factors of safety risk in metro station construction.

Dimensions Factors Descriptions Sources

Dangerous source
environment

C1
Distribution and water
enrichment of aquifers

The uncertainty of aquifer distribution and
water yield analysis brings hidden danger to

the safe construction of a metro station.

GB 50652
GB 50715
[49,78,79]

C2
Poor geological

distribution

During the metro construction, special soil and
poor geological conditions may be encountered,
which will have a great impact on the safety of

construction.

GB 50652,
GB 50715

[46,79]

C3
Soft soil thickness

The soft soil thickness is the internal cause of
deep foundation pit accidents, which will cause
the large deformation and displacement of the

deep foundation pit.

GB 50652
GB 50656

FIUO
[78,80–82]

Project design
scheme

C4
Engineering design

defects or errors

The quality of the designer determines the
rationality of the design scheme and thus

determines the size of the safety risk in the
design results.

GB 50652
OSHO
[83–85]

C5
Selection of construction

method

Different station types have different
construction methods. Improper selection of
construction methods will cause construction

safety risks.

GB 50652
GB 50715

CP79
[83,86–88]

C6
Excavation depth of

foundation pit

With the continuous increase of the excavation
depth of the foundation pit, the environment,

geology and hydrological conditions will
become increasingly complicated.

GB 50652
GB 50715

OSHO
[83,87]

C7
Enclosure structure

design

The design of the envelope structure is the
temporary or permanent structure to resist the

unfavorable external environment in the
process developing underground space.

GB 50652
GB 50656

[83,89]

C8
Support system design

The support system is the temporary structure
which resists the internal or external

deformation of the enclosure during the
excavation of the foundation pit, which is one

of the main causes of safety accidents.

GB 50652
JGJ59

[86,89,90]

C9
Safety design handover

To allow the parties to learn the engineering
design for the main idea, the design basis and

the construction difficulties, the designer
should submit the design documents.

GB 50652
GB 50656
[76,86,90]

Construction
scheme design

C10
Construction

precipitation design

Groundwater is the most prominent
influencing factor of engineering risk.
Water-free operation of underground

engineering is an important guarantee of
construction safety.

JGJ59
No.393

Regulations
GB50656
GB 50715
[83,86,90]

C11
Excavation scheme

design

The construction safety risks caused by
different excavation methods vary greatly.

GB 50656,
GB 50715
COHSMS

[83,86]

C12
Monitoring and

measuring scheme

Monitoring and measurement are performed to
observe and analyze the change of rock and soil
characters, the deformation of the supporting
structure and the surrounding environment in

excavation and underground construction.

GB 50656,
GB 50715
BOWES

[86,89,90]



Int. J. Environ. Res. Public Health 2020, 17, 1714 13 of 24

Figure 6. Association graph of research content of Design for Safety (DFS).

4.2. Collection of Safety Risk Cases in Metro Construction

During the interview process, in order to ensure that the experts can make more accurate
judgments on the content of the interviews, the content of the options were depicted and described
in the questionnaire, and an expert judgment reference was designed. For example, the respondent
can make a judgment on the construction safety risk level according to the risk-level standard in the
“Guidelines for Risk Management of Urban Rail Transit Underground Engineering Construction”
(GB50652-2011), as shown in Table 3.

Table 3. Risk-level standard of metro construction project.

Probability Class
Loss Level

Disastrous
(A)

Very Serious
(B)

Serious
(C)

Considerable
(D)

Ignorable
(E)

>0.1 Frequent I I I II III
0.01–0.1 Possible I I II III III

0.001–0.01 Unmeant I II III III IV
0.0001–0.001 Infrequent II III III IV IV

<0.0001 Impossible III III IV IV IV

A Likert five-point system was used to measure safety risk influencing factors, and a corresponding
judgment basis was designed. The corresponding judgment basis for the influencing factors that can
be quantitatively measured was referenced. According to the rules on the relationship between the
safety level of the foundation pit and the thickness of the soft soil layer [91,92], the measurement basis
of influencing factors on the soft soil layer thickness is shown in Table 4.

Table 4. The measurement criteria of soft soil layer’s thickness.

Measurement Score 1 2 3 4 5

Soft soil thickness >5 m 4 m < h ≤ 5 m 3 m < h ≤ 4 m 2 m < h ≤ 3 m h ≤ 2 m

For qualitative influencing factor indicators, the judgment basis can be formulated according to
the meaning of the indicators. For example, if the design scheme of monitoring and measurement fully
meets the monitoring layout, monitoring accuracy and design requirements, a score of 5 will be given;
otherwise, a score of 1 will be given, as shown in Table 5.
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Table 5. The measurement criteria for monitoring programs.

Measurement Score Monitoring and Measuring Design Scheme

1 No monitoring and measurement design or serious non-compliance
2 Inconformity
3 Basically consistent
4 More consistent
5 Fully consistent

Because the interviewees directly affect the reliability, comprehensiveness and effectiveness of
safety risk cases obtained for the metro construction, only interviewees who have at least 10 years of
safety management experience in metro construction projects were included when selecting interviewees.
The interview questionnaire was divided into three parts: the first part was the basic information of the
interviewees, including the work unit, present assignment, professional title, educational background,
years engaged in metro construction and project location, etc.; the second part was that interviewees who
had participated or interviewees who were participating made a judgment on safety risk events of the
metro station construction, such as risk type and risk level; and the third part was that interviewees made a
judgment on the related safety factors aimed at construction safety risk events—for example, whether the
hydrogeological condition and the selection of a support scheme were reasonable.

After the structured questionnaires of 70 experts were sorted, it was determined that there were
two questionnaires in which experts believed that the safety risk events had nothing to do with the
influencing factors identified. Excluding the two questionnaires, a total of 68 case samples were
obtained. The safety risk categories and grades in metro station construction are shown in Table 6.

Table 6. Classifications and grade statistics of safety risks in metro station construction.

Risk Category
Risk Level

I II III IV

Instability and failure of foundation pit 10 21 29 8

4.3. Construction of the PSO–SVM Model

As mentioned above, a total of 68 case samples were collected in the construction of the safety
risk-prediction model of the foundation pit instability damage of metro station engineering. In this
case study, 57 group samples were selected randomly as training samples and 11 group samples were
used as testing samples to train and test the PSO–SVM model. The sample data are shown in Table 7.

Table 7. The sample data for the instability failure of the foundation pit.

Sample Influence Factor
Risk Level

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1 4 3 5 3 4 4 5 3 3 4 4 4 III
2 2 1 2 2 4 1 3 3 2 3 3 3 II
3 5 4 4 4 5 4 5 5 4 5 5 5 IV
4 4 3 3 3 4 4 5 3 3 4 4 5 III
5 3 3 1 4 4 2 4 3 3 3 4 2 II
6 1 1 2 4 4 2 3 4 2 2 3 3 I
7 3 1 3 3 4 2 3 3 4 2 5 2 II
8 4 3 5 4 5 4 4 4 4 4 5 4 III
9 2 2 2 4 4 1 4 2 2 1 4 2 I

10 2 1 1 4 3 2 3 3 4 2 5 3 II
11 4 2 4 4 5 3 4 4 4 4 5 4 III
12 4 5 5 4 5 4 5 5 4 5 5 4 IV
13 4 1 1 2 3 3 3 4 2 1 3 3 II
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Table 7. Cont.

Sample Influence Factor
Risk Level

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

14 4 3 4 3 4 5 4 3 4 4 5 5 III

15 3 4 4 4 5 2 3 4 3 3 5 3 III
16 3 1 1 2 3 1 2 3 3 1 3 1 I
17 2 2 1 4 4 2 3 5 3 3 4 3 II
18 2 1 2 3 4 2 3 2 3 2 3 3 II
19 1 2 1 3 3 2 3 3 1 2 3 1 I
20 2 3 2 4 3 1 4 4 3 2 3 4 III
21 1 1 2 4 3 1 3 3 2 2 3 2 I
22 3 2 3 3 3 1 4 4 3 2 3 4 II
23 5 4 4 5 5 3 5 4 5 4 5 5 IV
24 3 3 4 5 5 3 4 3 4 5 5 4 III
25 2 2 1 3 4 2 4 4 3 3 4 3 II
26 2 1 1 4 4 3 4 3 3 3 4 3 II
27 2 4 3 4 5 4 5 5 4 4 5 5 III
28 3 4 4 4 5 4 3 4 5 3 4 5 III
29 3 1 2 3 3 1 4 4 3 2 5 4 II
30 3 4 3 5 5 3 3 4 3 4 5 4 III
31 2 1 2 2 4 1 3 4 3 2 3 3 I
32 3 1 3 3 3 1 4 4 4 1 3 4 II
33 5 5 5 4 5 4 5 5 4 5 5 4 IV
34 2 3 5 5 5 2 4 3 5 5 4 4 III
35 5 3 5 5 4 2 5 4 5 4 4 5 III
36 3 3 4 5 4 2 4 4 4 4 5 4 III
37 3 3 1 4 4 2 4 3 3 3 4 2 II
38 2 3 5 4 5 3 4 4 5 5 4 4 III
39 4 4 4 4 5 4 5 5 4 5 5 5 IV
40 2 2 1 3 4 2 4 4 3 3 4 3 II
41 3 3 4 4 4 2 5 4 4 3 5 5 III
42 2 2 1 4 4 3 4 3 3 2 4 2 II
43 2 3 5 4 5 3 5 3 5 5 4 4 III
44 2 1 2 4 4 1 3 4 2 2 3 2 I
45 3 2 2 4 3 1 4 4 3 2 3 4 II
46 4 5 5 4 5 4 5 5 5 5 4 4 IV
47 2 1 2 4 4 1 3 4 2 2 4 2 I
48 4 5 5 4 5 4 5 5 4 5 5 5 IV
49 3 1 1 4 4 2 3 4 2 1 4 3 II
50 1 1 2 3 3 1 5 4 3 2 3 2 II
51 3 3 4 3 4 4 5 3 4 4 5 5 III
52 2 2 3 3 4 2 4 3 3 2 4 3 I
53 4 1 1 3 3 1 3 4 4 2 3 3 II
54 4 3 4 3 4 4 5 3 3 4 4 5 III
55 5 2 5 5 4 4 5 5 5 4 4 5 III
56 4 4 4 4 5 4 5 5 5 5 5 5 IV
57 3 3 4 5 5 3 4 3 4 5 5 4 III
58 1 2 2 4 3 1 4 4 3 2 3 4 II
59 3 3 4 4 4 2 3 4 4 3 4 4 III
60 4 3 4 3 5 3 4 3 3 5 4 4 III
61 4 4 3 3 4 3 5 3 3 5 4 5 III
62 2 1 2 3 3 1 2 4 2 3 3 3 I
63 2 3 1 4 4 2 4 3 3 3 4 2 III
64 3 3 3 5 5 2 3 5 3 4 5 4 III
65 2 2 2 3 3 1 4 4 3 2 3 3 II
66 2 3 5 5 5 3 4 3 5 5 4 4 III
67 5 4 5 4 5 4 5 5 5 5 4 4 IV
68 4 3 4 5 4 3 4 4 5 4 5 5 III
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According to the sample data of the base pit instability and safety risk-prediction model in Table 8,
the MATLAB (2014b) (MathWorks, Natick, USA) and LIBSVM (Version 3.22) toolbox were used to
implement the SVM model according to the construction process. When the PSO–SVM algorithm
program was written, the initial parameters of the model were set. The 2011 Standard PSO with
20 particles and 50 iterations was used [93]. In this paper, the feasible range of value was extended,
and the value of particles was set as 20 and the maximum iteration number was kmax = 100. Because of
a lack of references of optimal g and c, the value range should be enlarged [94]. So the value range of
g was g ∈

[
2−8, 28

]
and c was [0.1, 100]. In PSO, the learning factor was a random number between

0 and 2. In this paper, the learning factors were c1 = 1.5,c2 = 1.7 [95]. In addition, the criterion for
parameter evaluation was the minimum root mean square error (MSE). The machine environment
was a i5-2430M central processing unit (CPU) 2.40 GHz, with 4.0 GHz memory and running on the
Windows 7 operating system. After initialization, the calculation program was processed to read the
sample data of the training set. The penalty parameter c = 26.70 and kernel parameter g = 0.039 of
SVM were obtained.

Table 8. The quantitative results of influencing factors on the safety risk of station D.

Factor C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Quantitative results 3 2 4 4 4 1 3 4 4 2 4 3

The sample data of the foundation pit instability failure category were put into the LIBSVM toolbox
in the MATLAB program; then, the optimal (c, g) parameter combination was searched by the PSO,
and 57 randomly selected sample data were trained to obtain a training model. The comparison between
the actual and predicted values in the training set is shown in Figure 7. In Figure 7, x-axis represents
the sample size of training set, and y-axis is the class value of safety risk level. Then, the regression
prediction was made for the test data of 11 groups of randomly selected test samples. The comparison
between the actual value and the predicted value is shown in Figure 8.

Figure 7. Comparisons of actual values and predicted values of the training set.
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Figure 8. Comparisons of actual values and predicted values of the test set.

From the results of the operation in Figure 7, it can be found that, among the 57 training samples,
three predicted values of samples do not overlap with the actual value. Therefore, the classification
accuracy of the training samples of the SVM prediction model after parameter optimization is 94.74%
(54/57). From the results of the operation in Figure 8, it can be found that in the 11 test samples,
the predicted value and the actual value of sample 8 do not overlap. Therefore, the classification
accuracy of the test sample is 90.91% (10/11). This shows that both the training set and the test set model
have high accuracy. The PSO–SVM model can make a scientific prediction on the safety risk level of
the foundation pit instability damage. On the other hand, the influencing factors in the model are all
from the statistical analysis of expert knowledge, which also verifies the rationality of the integration
of expert knowledge in the SVM prediction model.

4.4. Safety Risk Prediction of the Metro Station Construction

Station D was the transfer station of lines 1 and 2 of urban rail transit in a Chinese city. The main
length of the station was 683.1 m, the width of the standard section was 41.30 m, the maximum width
was 52 m, the buried depth of the structural floor was about 17.02 m, and the thickness of the roof was
about 3.0 m. It was a two-story double island station on the ground floor. The total construction area
of the station was 58,150 m2.

This study predicted the safety risk of the project in the construction preparation process of station
D. Five safety managers, including the project leader and the safety supervisor of the construction unit,
the chief project manager, the safety supervisor of construction enterprise and the safety director of
supervision enterprise, referred to the quantitative standard of the influencing factors to quantify the
two influencing factors of the metro station (the stability of the foundation pit and the safety risk of the
construction). According to the comprehensive expert opinions, the quantitative results of safety risk
influencing factors are shown in Table 8.

From the comparison of Figures 7 and 8, it can be found that the prediction accuracy of the
PSO–SVM model is high. In order to overcome the influence of SVM model random samples in this
research, the original case samples were repeated under random samplings. Then different random
training samples were constructed, and the SVM model was used to observe the difference of test
accuracy. In this paper, 57 case samples were selected randomly as training data, the remaining 11 case
samples were selected as verification data. The accuracy of test sets based on 10 random samplings are
shown in Table 9. It can be found that the accuracy of the training and test sets of the PSO–SVM model
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has a high predictive accuracy for non-linear relationship and small samples. Meanwhile, the relevant
safety risk influencing factors (Table 8) were loaded into the prediction model, and the calculation
results are shown in Table 9. From Table 9, it can be found that the prediction of instability and damage
of the foundation pit of station D is predicted to be a class II of safety risk, which is relatively high.

Table 9. Results of accuracy and predicted risk level.

Random
Number (RN) RN 1 RN 2 RN 3 RN 4 RN 5 RN 6 RN 7 RN 8 RN 9 RN 10

Training sets 92.98% 89.47% 94.74% 85.97% 89.47% 91.22% 94.74% 91.22% 89.47% 94.74%

Test sets 81.82% 90.91% 71.73% 90.91% 100.00% 81.82% 90.91% 71.73% 81.82% 90.91%

Risk level II II II II II II II III II II

4.5. Results and Discussion

4.5.1. Single-Factor Dynamic Adjustment Analysis

From the results of influencing factors of instability and failure safety of the engineering foundation
pit, it can be found that the quantitative results of poor geological distribution (C2) and construction
precipitation design (C10) are 2, and the quantitative result of the excavation depth of the foundation
pit (C6) is 1, which are relatively low. Under the condition that the results of other influencing
factors remain unchanged, the three factors with lower adjustment values were adjusted continuously.
Then, the PSO–SVM prediction model was used to calculate the change of safety risk-prediction
level. The complex coupling relationship between influencing factors and construction safety risk
was uncovered and the most important influence on construction safety risk factors was identified,
as shown in Table 10.

Table 10. Level changes of safety risk prediction by single factors.

Influence Factor Quantitative Result Adjustment The Risk Level of Foundation Pit
Instability and Failure

C2
3 (+1) II
4 (+2) III

C6
2 (+1) II
3 (+2) II

C10 3 (+1) III

From Table 10, it can be found that under the condition that the quantitative results of other
influencing factors remain unchanged, the safety risk of instability and failure of the foundation pit of
the station project does not change after the quantitative results of poor geological distribution (C2) are
adjusted from the original value 2 to 3. After the quantitative results are adjusted from the original
value of 2 to 4, the level is reduced from level II to level III. The quantitative result of the excavation
depth of the foundation pit (C6) is adjusted from the original value of 2 to 3 and 4, which does not
affect the safety risk of foundation pit instability and failure. The quantitative result of the construction
precipitation design (C10) is adjusted from 2 to 3, and the safety risk level of foundation pit instability
and failure is reduced from II to III.

4.5.2. Multi-Factor Dynamic Adjustment Analysis

In this study, the three influence factors of poor geological distribution (C2), excavation depth
of foundation pit (C6) and construction precipitation design (C10) are used to study the change of
construction safety risk-prediction level under different combinations. The calculation results are
shown in Table 11.
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Table 11. Level changes of safety risk prediction with multiple factors.

Influence Factor Quantitative Result Adjustment Foundation Pit Instability and
Failure Risk Level

C2 + C6
C2 (+1) = 3 + C6 (+1) = 2 II
C2 (+2) = 4 + C6 (+1) = 3 III

C2 + C10
C2 (+1) = 3 + C10 (+1) = 3 III
C2 (+2) = 4 + C10 (+2) = 4 III

C6 + C10
C6 (+1) = 2 + C10 (+1) = 3 III
C6 (+2) = 3 + C10 (+2) = 4 III

It can be seen from Table 11 that, in the C2 + C6 combination, adjusting the C2 quantification result
from the original value 2 to 3 and adjusting the C6 quantification result from the original value 1 to 2,
the foundation pit instability and failure safety risk of the station project do not change. If we adjust
the quantitative results to 4 and 2, respectively, the safety risk level of foundation pit instability and
failure is reduced from level II to level III. In the combination of C2 + C10, adjusting C2 and C10 from
the original value of 2 to 3, the safety risk level of foundation pit instability and failure is reduced from
the original level II to level III. In the C6 + C10 combination, adjusting the C6 quantification result
from the original value 1 to 2 and adjusting the C10 quantification result from the original value 2 to 3,
the safety risk level of foundation pit instability and failure is reduced from level II to level III. If we
adjust the quantitative results to 3 and 4, the safety risk level of foundation pit instability and failure is
reduced from the original level II to level III. Therefore, the combination of poor geological distribution
(C2) and construction precipitation design (C10) is most favorable to reduce the construction safety risk
level of the station, while the combination of poor geological distribution (C2) and excavation depth of
foundation pit (C6) is most unfavorable to reduce the construction safety risk. The most effective way
to reduce the construction safety risk is to design a reasonable construction precipitation scheme.

5. Conclusions

Design of Safety (DFS) is one of the most effective ways to consider safety risks in the design
process, which is regarded as a risk-prevention technique for metro station construction. In order
to improve the effectiveness of the application of DFS in metro station construction, it is useful to
incorporate the risk-prediction procedure into the DFS. Therefore, a comprehensive framework is
proposed by using the PSO–SVM model to predict the safety risk of metro station construction in this
study, which provides a valuable guideline for safety risk prediction in metro station construction and
provides a useful reference for engineers and managers in the design process. Firstly, 12 influencing
factors related to the safety risk of metro construction are identified by using the literature review and
code of construction safety management analysis. Then, the structural interview method is used to
collect the safety risk cases of metro construction. Next, the PSO–SVM model is presented to predict
safety risk in metro construction, in which the multi-class SVM prediction model with an improved
binary tree is designed. Finally, an illustrative example is used to demonstrate the efficiency of the
proposed PSO–SVM approach.

In this study, the classification accuracy of the training samples constructed by the PSO-SVM
prediction model is 94.74% (54/57), and the classification accuracy of the test samples is 90.91% (10/11),
which show that the training set and the test set models all had high accuracy. In order to overcome
the influence of SVM model random samples, the original case samples were repeated under random
samplings. Then different random training samples were constructed, and the SVM model was used
to observe the difference of test accuracy. The result of test sets based on 10 random samplings was
respectively: 81.82%, 90.91%, 71.73%, 90.91%, 100.00%, 81.82%, 90.91%, 71.73%, 81.82%, 90.91%. It can
be found that the accuracy of the test sets of the PSO–SVM model has a high predictive accuracy for a
non-linear relationship and small samples. In addition, the relevant safety risk-influencing factors were
loaded into the PSO–SVM model. The result shows that the foundation pit of station D is predicted to be
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a class II safety risk, which is relatively high. Meanwhile, after the computation of single and multiple
factor analyses, the complex coupling relationship between influencing factors and construction safety
risk was uncovered. According to the prediction results, the most important influencing factors to
reduce the safety risk of metro station construction were identified, which provides a guideline for the
safety risk prediction of metro construction for design process.

Further study will be focused on the following directions: (1) the safety risks of metro construction
were mainly focused on the instability of foundation pits in metro station projects in this study, which
cannot cover all possible accident types in the process of metro construction. Other types of safety
accidents should be investigated and analyzed in future research. (2) The intelligent safety risk
prediction of the metro construction in the design process is a relatively new area of research. It is
necessary to perform a more in-depth analysis of the influencing factors; for example, the technical
parameters in the design process.
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