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Abstract: Spending time outdoors is associated with increased physical activity; however,
high ambient temperature/humidity, together with built environment features in urban versus
rural environments, may influence physical activity. We conducted an intervention trial with 89
urban and 88 rural participants performing normal activities on Days 1–2 (baseline) and spending
an additional 30 min outdoors on Days 3–7 (intervention) in the summer. Participants wore a
pedometer with real-time visual feedback to track daily steps taken and a thermometer clipped
to their shoe to track temperatures experienced individually. Hygrometer–thermometers were
deployed in participants’ neighborhoods to collect finer resolution ambient heat indexes in addition to
regional weather station measurements. Using linear mixed effects models and adjusting for ambient
conditions and individual-level factors, participants on average walked 637 (95%CI (83, 1192)) more
steps and had a 0.59 ◦C (95%CI (0.30, 0.88)) lower daily mean individually experienced heat index
during intervention days compared to baseline days. The intervention benefit of increased physical
activity was greater in rural residents who were less active at baseline, compared to urban residents.
Our results suggest adding a small amount of additional time outdoors may improve physical activity
without increasing participants’ heat exposure, even during summer in a humid subtropical climate.

Keywords: time spent outdoors; daily steps; summer temperature; wearable thermometer;
physical activity

1. Introduction

Weather conditions, including high temperatures and precipitation levels, have been identified
as barriers to participation in physical activity [1,2]. While physical activity generally peaks in
summer [1,3], a lower level of physical activity in summer was noted in Texas residents when the
average temperature of the study month was 29 ◦C (84 ◦F) [4]. Another study showed a moist tropical
climate may be one of the strongest deterrents against physical activity in the U.S., reducing the percent
of adults meeting physical activity recommendations by ~20% [5]. Adults in southeastern U.S. had the
highest prevalence of physical inactivity (28.0%) based on Behavioral Risk Factor Surveillance System
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(BRFSS) data [6]. According to the World Health Organization, the prevalence of insufficient physical
activity among adults is as high as 40–50% in countries in the subtropical or tropical zones such as
Saudi Arabia, India, Brazil, etc. [7], where high temperatures may be a barrier to physical activity.

Different types of interventions (e.g., one-to-one counselling, self-directed physical activity,
supervised physical activity, etc.) have been conducted to promote physical activity among children,
adolescents, and older adults [8–11]. However, a review by Foster et al. (2014) suggested that the
effect of interventions on self-reported physical activity was mixed with significant heterogeneity in
reported effects [12]. New procedures are needed to meet perceived convenience, accessibility, safety,
and aesthetic requirements in a given climatic condition, especially in humid tropical conditions [5].

As some studies have suggested, initiating and maintaining strenuous exercise programs is
difficult [13,14]. Zimmerman et al. (2009) suggested the use of anchors such as social norms, habits and
a cultural frame to influence people’s preferences for action to promote physical activity [15]. Nudging,
which alters people’s behavior in a predictable way without forbidding any option, has been identified
as an effective approach to promote physical activity [16,17]. For example, Bellettiere et al. (2017) found
that stair use increased when placing signs at the bottom of stairs to encourage people to go up [18].

Evidence suggests that time spent outdoors is positively related to reduced sedentary time and
moderate and strenuous exercise in adults [19–23]. Harada et al. showed that time spent outdoors
was significantly and positively associated with physical activity measured as daily steps among
192 older adults, and suggested the health benefits of time spent outdoors were primarily mediated
by physical activity [24]. Higher frequency of going outdoors was associated with less likely decline
in the activity of daily living score among older adults [25]. Beyer et al. suggests the association
between time spent outdoors and increased physical activity could be an opportunity to promote
physical activity among youth [19]. However, the nudge approach related to time spent outdoors
combined with technology support providing visible feedback (e.g., pedometer) for increased physical
activity has largely been unexplored [17]. Encouraging even a small amount of additional time spent
outdoors, which is positively associated with increased physical activity and reduced sedentary time
from previous studies, could increase physical activity.

We hypothesized an intervention of spending an additional 30 min outdoors daily beyond
normal activity would provide physical activity benefits with minimal risk to increased heat exposure,
particularly when people are free to choose the time of day. Summers in Alabama (AL), U.S.,
are characterized by subtropical temperature and humidity, where the average high temperature is
~33 ◦C (91 ◦F), average low temperature is ~22 ◦C (71 ◦F), humidity is ~75% and there are ~12 days
with precipitation per month [26]. Participants could freely choose time of the day and activity to
spend an additional 30 min outdoors, and participants were instructed on methods to avoid heat stress
and safely carry out the intervention. Effectiveness may be different across urban and rural settings;
therefore, feasibility and compliance of this “nudge” intervention were estimated in both an urban and
a rural setting in AL.

2. Materials and Methods

2.1. Participant Recruitment and Individual Level Measurements Collection

We screened and recruited urban residents of Birmingham, AL (N = 90) and rural residents of
Wilcox County, AL (N = 90) in partnership with Friends of West End and West Central Alabama
Community Health Improvement League during spring and summer 2017. Eligibility criteria included
women aged 19–66 and availability to participate for seven consecutive days between 10 and 21
July 2017. We recruited women participants to reduce variability for the main outcomes of interest
and to improve participant recruitment and follow-up based on our previous community-academic
partnership research [27]. Additionally, women in AL are approximately 5% more likely than men to
not engage in leisure-time physical activity [28]. Exclusion criteria included having medical conditions
or taking medication that could prevent them from spending time outdoors or being out of town.
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Participants started participation on different days between 10 and 12 July 2017. Each participant
completed seven consecutive days of participation, with study participation concluding between 17
and 19 July 2017. Potential participants attended an informational enrollment session, provided written
consent, and filled out demographic questionnaires and a Physical Activity Neighborhood Environment
Survey (PANES) [29,30]. We asked participants to perform normal activities on Days 1–2 and spend an
additional 30 min outdoors beyond their normal activities on Days 3–7. We encouraged participants to
choose time, activity, and locations to spend additional time outdoors to avoid dehydration, sunburn,
or excessive exertion during the hot hours of the day. Participants kept a daily log of their outdoor
time and pedometer readings. Participants received three phone calls to address any challenges in
wearing the monitors and filling out the daily logs and they completed an exit survey. Data collection
instruments are available at https://www.enactalabama.org/summer-2017. PANES score results are
processed based on previously published methods, in which a valid score was assigned to participants
who completed at least five out of the seven items [31].

Each participant was instructed to wear an iButton® thermometer (DS1922L from Maxim
Integrated, San Jose, CA, USA) clipped on the shoe and a pedometer (Yamax Digi-Walker SW-200
from Yamax, San Antonio, TX, USA) clipped at the waist in all waking hours, and leave them by their
bedside during sleep. Participants clipped the thermometers facing down to avoid direct sunlight.
Thermometers recorded temperature every five minutes. Participants were instructed to record their
pedometer reading at night on each day without resetting. We collected the height and weight of
participants with a stadiometer and a scale (Model PS660 from Befour Inc., Saukville, WI, USA) and
body water, body fat, and muscle mass with a portable body composition scale (BC-553 from Tanita
Corporation of America, Inc., Arlington Heights, IL, USA) at the beginning and end of participation.
At turn-in sessions, we downloaded thermometer data and gave a printout of individual temperature
results to participants. We stored all data on password-protected computers. This study was registered
with www.clinicaltrials.gov (NCT 03614780) and approved by Virginia Tech Institutional Review
Board (15-761).

2.2. Weather Station and Neighborhood Measurements Collection

We deployed 43 iButton thermometer–hygrometers (DS1923 from Maxim Integrated, San Jose, CA,
USA) in participants’ neighborhoods. We placed each neighborhood thermometer–hygrometer
in a radiation shield to avoid direct sun exposure [32]. We deployed the neighborhood
thermometer–hygrometers at various locations (e.g., attached to trees in yards or along sidewalks)
and recorded their latitude/longitude with a global positioning system (GPS). Neighborhood
thermometer–hygrometers measured air temperature and relative humidity hourly. We accessed
meteorological data, including air temperature, relative humidity, wind speed, precipitation,
and location coordinates during the study from weather stations (WSs) in AL from the National Climate
Data Center Surface Data, Hourly Global dataset (DS3505) [33].

2.3. Data Analysis

We geocoded participants’ home addresses using the World Geocoding Service in Arc GIS
Pro desktop software (from Esri, Redlands, CA, USA). We matched each participant’s residence
to the nearest neighborhood thermometer–hygrometer and the nearest WS. Six WSs in AL were
matched to a participant home address (Supplemental File 1). We calculated the hourly WS heat
index (i.e., HI[WS]) from WS temperature and relative humidity, and then calculated a daily mean
and max HI[WS]. We calculated the hourly neighborhood heat index (i.e., HI[neighborhood]) from
neighborhood averaged temperatures and relative humidity, and then calculated a daily mean and
max HI[neighborhood].

A total of 178 participant thermometers (89 in Birmingham and 89 in Wilcox County) had valid
temperature measurements at turn-in. We removed upper outliers of hourly averaged temperatures
(646 out of 28,016 person-hours removed) which resulted in a dataset containing 27,470 person–hours
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of hourly averaged individually experienced HI (HI[individual]) (◦C) from participant thermometers
and matched WS relative humidity. We used “weathermetrics” packages for HI calculation in R [34].
We calculated daily mean and max of HI[individual]. The Intent-to-Treat (ITT) dataset contained
HI[individual] of 1046 person-days. Based on daily logs, we removed 120 person-days of potential
self-reported intervention-noncompliance (83 out of 522 person-days in rural participants, 27 out of
338 person-days in urban non-outdoor worker participants, and 10 out of 186 person-days in urban
outdoor worker participants) to obtain a Per-Protocol (PP) dataset. We also performed analysis using
the ITT dataset with no outlier removal.

An activity level was assigned to each participant based on reported weekly leisure activity levels
in the Godin Leisure-Time Exercise Questionnaire [35]. We summarized self-reported intervention
compliance (yes or no), reported difficulty in compliance, and reasons for non-compliance from
daily logs. We explored factors associated with the probability of intervention compliance in a
regression model accounting for ambient conditions and individual-level factors [36]. Unrealistic body
composition values from five participants were removed (Supplemental File 1).

We calculated daily pedometer steps by:

Steps(N + 1) = Pedometer reading(N + 1) − Pedometer reading(N) (1)

where N ≥ 0 was day number. We removed person-days with negative steps as a minimally processed
dataset. Building from our previous decision tree [37], we removed person-days with negative steps
based on daily log notes and extreme daily steps <1000 or ≥25,000 [38]. We used this decision tree to
further process steps as our primary pedometer dataset. We examined the differences between primary
and minimally processed datasets in sensitivity analysis. Data collection and processing flowcharts are
presented in Supplemental File 1.

We fitted linear mixed effects models to test whether steps changed, and whether participants
daily mean or max individually experienced HI changed on intervention days compared to baseline,
accounting for ambient conditions and other individual-level factors. Models included a random
effect term to account for multiple measurements from each participant. We used “lmer” function
from “lme4” package in R [39]. Primary analyses were Intent-to-Treat. Models include intervention,
daily mean and max HI[WS] (◦C), daily mean and max HI[neighborhood] (◦C), WS daily mean
wind speed (m/s), rain (yes or no), participant age, education (>high school vs. ≤high school),
annual household income (>USD 20,000 vs. ≤USD 20,000), employment (yes or no), measured body
fat (%), diabetic (yes or no), self-reported health condition (good, poor, fair), activity level (active
vs. inactive), and an interaction term between intervention and groups. We determined whether to
include HI[WS] or HI[neighborhood] or both to account for ambient conditions from model Akaike
Information Criterion (AIC). We computed AIC for three models (both HI[WS] and HI[neighborhood],
HI[neighborhood] only, HI[WS] only) and calculated the ∆i = AICi − AICminimal. The model best
estimated has the ∆i ≡ AICminimal ≡ 0 [40,41]. When ∆i ≤ 2, there is no substantial difference between
the two models [40,41]. If one model including HI[neighborhood] only and another model including
HI[WS] only had ∆i ≤ 2 with identical other fixed effects, the model including HI[neighborhood] only
was reported because neighborhood thermometers were closer to participants’ homes than WS [42].
We ran models in separate groups to examine the intervention effect across urban and rural settings,
and across occupationally and non-occupationally exposed groups. Measured body mass index (BMI)
and measured body fat (%) were highly correlated, we included only measured body fat (%) in final
models [27]. We dropped nine participants from the analysis because of missing measured body fat
(%), annual household income, education, and self-reported health conditions. We ran sensitivity
analysis models with intervention terms (intervention and weekday, intervention and weekend) to see
if weekend changed the intervention effect. We performed additional sensitivity analysis described
above using the ITT dataset with no outlier removal.
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3. Results

Participants’ characteristics are presented in Table 1. We excluded one participant due to
non-compliance with protocol (Consolidated Standards of Reporting Trials (CONSORT) flowchart in
Supplemental File 1). All participants were women and 173 out of 177 (98%) participants self-identified
as Black or African American. Thirty-two participants from Birmingham were outdoor workers
(i.e., Urban OutWor). Urban OutWor participants were significantly younger (p-value 0.03), had a
lower measured body fat (%) (p-value 0.04) and a higher measured body water (%) (p-value 0.02)
compared to urban non-outdoor worker participants (i.e., Urban residents). Prevalence of diabetes
was higher among Rural compared to Urban residents (35 out of 88 (40%) vs. 7 out of 57 (12%)).
Rural participants on average had a higher measured body fat (%) (p-value 0.04) and a lower measured
body water (%) (p-value 0.02) compared to Urban residents. We observed no significant differences in
education, annual household income levels, BMI and obesity prevalence when comparing Rural vs.
Urban residents, or Urban OutWor vs. Urban residents. When compared to the U.S. census data in
these two locations, a higher percent of the participants self-identified as African American (95% vs.
71% in Birmingham, 100% vs. 71% in Wilcox County), had high school and above education (91% vs.
86% in Birmingham, 88% vs. 77% in Wilcox County), and had lower median annual household income
(<USD 20,000 vs. USD 35,346 in Birmingham, <USD 20,000 vs. USD 27,237 in Wilcox County) [43].
A total of 166 out of 177 (94%) participants had a valid PANES score. Participants in the urban location
had a significantly higher PANES score compared to participants in the rural location (3.4 out of 7
(95%CI (3.0, 3.7)) among participants in the urban location vs. 1.6 out of 7 (95%CI (1.3, 1.9)) among
participants in the rural location).

Participants spent an additional 30 min outdoors on 736 (83%) intervention person-days. A total
of 104 (59%) participants spent an additional 30 min outdoors on every intervention day while only
four (2%) participants never carried out the intervention (Figure 1). There was a statistically significant
difference in the compliance days between Rural residents and Urban residents (Chi-Square = 7.99,
Degrees of Freedom = 3, p-value = 0.046), but no significant difference between Urban residents and
Urban OutWor (Chi-Square = 3.29, Degrees of Freedom = 3, p-value = 0.35).
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Figure 1. Intervention compliance days of participants. Participants (%) = number of participants/total
participants × 100% in each compliance days category. Compliance days were days that participants
carried out the intervention on Days 3–7 in the study. Pearson’s Chi-square tests showed the that there
was significant difference in the distribution of compliance of person-days between Rural residents
and Urban residents (Chi-Square = 7.99, Degrees of Freedom = 3, p-value = 0.046), but no significant
difference between Urban residents and Urban OutWor (Chi-Square = 3.29, Degrees of Freedom = 3,
p-value = 0.35).
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Table 1. Participant demographics and characteristics.

Parameters Urban OutWor p-Value(1) a Urban Residents p-Value(2) a Rural Residents

Participant number 32 NA 57 NA 88
Median age (range), years 39.5 (21–60) 0.03 * 45 (20–69) 0.17 54 (19–67)
Gender: Female 32 (100%) NA 57 (100%) NA 88 (100%)
% Black or African American 30 (94%) NA 55 (96%) NA 88 (100%)
Employed 32 (100%) NA 34 (60%) 0.04 * 37 (42%)
Central air conditioning at home 0.42 b 0.04 b,*

Yes 12 (38%) 36 (63%) 21 (24%)
No 6 (19%) 11 (19%) 17 (19%)
Missing data 14 (44%) 10 (18%) 50 (57%)

Education 0.52 b 0.61 b

≤High School Diploma (or
Equivalence) 14 (44%) 29 (51%) 40 (45%)

>High School Diploma (or
Equivalence) 18 (56%) 28 (49%) 46 (52%)

Missing data 0 (0%) 0 (0%) 2 (3%)
Annual household income 0.80 b 0.90 b

<USD 20,000 22 (69%) 37 (65%) 57 (65%)
≥USD 20,000 10 (31%) 19 (33%) 28 (32%)
Missing data 0 (0%) 1 (2%) 3 (3%)

Body mass index (BMI) (median,
range) from check-in session 34.3(19.3–52.3) 0.19 35.8 (24.7–60.3) 0.57 36.6 (19.5–64.8)

Obesity prevalence 0.85c 0.52 c

Overweight (BMI ≥25 and <30)
from check-in session 6 (19%) 11 (19%) 13 (15%)

Obese (BMI ≥30.0) from check-in
session 22 (69%) 45 (79%) 71 (81%)

Body fat % (median, range) from
check-in session 42.4 (22.9–52.8) 0.04 * 45.2 (25.7–54.7) 0.04 * 47.3 (25.3–70.6)

Body water % (median, range) from
check-in session 41.4 (35.0–52.5) 0.02 * 39.0 (33.3–52.8) 0.02 * 38.0 (19.4–51.8)

Godin activity level 0.20 0.29
Active 27 (38%) 53 (93%) 77(88%)
Insufficient active 5 (16%) 4 (7%) 11 (13%)

Diabetic 0.98 0.0004 *
Yes 4 (12%) 7 (12%) 35 (40%)
No 28 (88%) 50 (88%) 53 (60%)

Self-reported health condition 0.62 d 0.29 d

Good 25 (78%) 47 (82%) 63 (72%)
Fair 6 (19%) 9 (16%) 19 (22%)
Poor 1 (3%) 1 (2%) 2 (2%)
Missing 0 (0%) 0 (0%) 4 (5%)

Note: p-values were obtained from Welch two sample t-test for continuous variables or Pearson’s Chi-square test for
categorical variables. “*” denotes a statistically significant difference with p-values < 0.05. a p-value(1) was obtained
from comparison between Urban residents and Urban Outdoor Workers (Urban OutWor), p-value(2) was obtained
from comparison between Urban residents and Rural residents in the same category. b Chi-squared test for available
data only. c Chi-squared test for obese vs. non-obese. d Chi-square test for good vs. less than good.

The frequency of self-reported difficulty in intervention compliance is shown in Figure 2.
Participants reported difficulty in intervention compliance on 316 (36%) person-days, and Urban
residents reported more person-days with difficulty in intervention compliance compared to Rural
residents (126 out of 285 (44%) person-days vs. 128 out of 440 (29%) person-days). We observed
similar frequencies of reported difficulty between Urban residents and Urban OutWor (126 out of
285 (44%) person-days vs. 62 out of 160 (39%) person-days). The self-reported reasons for difficulty
in intervention compliance are shown in Figure 3. Rain, heat, and time conflicts were the leading
reasons for intervention compliance difficulties (Figure 3). We presented the factors associated with
the probability of intervention compliance in Supplemental File 2. The effect sizes of most fixed effects
are small; participants who were physically inactive had a 15.70% (95%CI (8.94%, 22.46%)) reduced
probability of intervention compliance.
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The population average of individual mean steps on baseline and intervention days is shown
in Figure 4, where Rural residents and Urban residents walked more steps during intervention
although the difference was statistically insignificant (Figure 4). In the mixed models, participants
on average walked 637 (95%CI (83, 1192)) more steps on intervention days (Table 2). We did not find
a significant interaction effect between intervention and groups (Supplemental File 3). In separate
groups, Rural residents had a significant increase of 1063 (95%CI (273, 1851)) mean daily steps during
intervention days, after accounting for ambient conditions and other individual-level factors (Table 2).
Participants in urban locations had a smaller increase in steps on intervention days compared to
Rural residents (Table 2). Participants walked more steps on intervention weekends than intervention
weekdays (Supplemental File 4). Intent-to-Treat results and Per-Protocol results are similar; we found
slightly lower estimated intervention effect in Per-Protocol, with an average 579 (95%CI (5, 1154))
additional steps on intervention days (Supplemental File 5). Participants had fewer steps on intervention
days in the minimal processed dataset compared to primary dataset, with the β estimate of intervention
−271 (95%CI (−960, 418)) in minimal processed dataset (Supplemental File 6).
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Table 2. Daily pedometer steps on baselines days and intervention days.

Group All Rural Residents Urban Residents Urban OutWor

Fixed effect β 95%CI β 95%CI β 95%CI β 95%CI
Intercept 12188 (2304, 22069) 8001 (−6564, 22566) 11120 (−9665, 31906) 23100 (−1962, 48133)

Intervention 637 (83, 1192) * 1063 (273, 1851) * 167 (−828, 1161) 222 (−1163, 1601)
Weather Station (WS) Heat

Index (HI) Max (◦C) −244 (−566, 78) −94 (−701, 513) −313 (−900, 276) −377 (−1283, 527)

Neighborhood HI Max (◦C) 58 (−115, 231) 193 (−52, 442) 16 (−298, 326) −71 (−550, 407)
WS HI Mean (◦C) 44 (−368, 456) 101 (−481, 684) 118 (−669, 908) −494 (−1882, 894)

Neighborhood HI Mean (◦C) 34 (−314, 381) −260 (−790, 270) 47 (−642, 732) 618 (−431, 1667)
WS rain −479 (−1084, 125) −686 (−1458, 87) 367 (−921, 1654) 92 (−2070, 2244)

Note: “*” denotes a 95% confidence interval (CI) does not contain 0. Results were Intent-to-Treat. The model for
all participants did not include a group factor. Models were adjusted for participant age, education level, annual
household income level, employment, measured body fat (%), being diabetic, activity level in Godin questionnaire,
and self-reported health condition.

Rural and Urban participants had similar average daily mean or max individually experienced
HI on intervention days, but Urban OutWor had significantly lower daily mean or max individually
experienced HI during the intervention, after accounting for WS HI (Figure 5). When we included
ambient conditions and individual-level factors in models, we found overall participants had a 0.59 ◦C
(95%CI (0.30, 0.88)) lower daily mean and a 1.40 ◦C (95%CI (0.53, 2.27)) lower daily max individually
experienced HI on intervention days (Tables 3 and 4). An interaction term between intervention and
group was significant (Supplemental File 7). In separate groups, Rural residents and Urban OutWor
participants on average experienced a 0.49 ◦C (95%CI (0.09, 0.89)) and a 1.74 ◦C (95%CI (1.09, 2.38))
lower daily mean HI[individual] during intervention days, respectively (Table 3). Urban OutWor
experienced a 6.60 ◦C (95%CI (4.11, 9.09)) lower daily max HI[individual] during the intervention
(Table 4).
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Table 3. Intervention effects on daily mean heat index (◦C) experienced by individuals in different
population groups.

Group All Rural Residents Urban Residents Urban OutWor

Fixed effect β 95%CI β 95%CI β 95%CI β 95%CI
Intercept 24.45 (19.23, 29.67) 24.47 (15.99, 32.96) 31.58 (22.02, 41.12) 5.43 (−7.78, 18.63)

Intervention −0.59 (−0.88, −0.30) * −0.49 (−0.89, −0.09) * −0.28 (−0.80, 0.24) −1.74 (−2.38, −1.09) *
WS HI Mean (◦C) NA NA NA 0.95 (0.59, 1.31) *

Neighborhood HI Mean (◦C) 0.21 (0.09, 0.34) * 0.01 (−0.19, 0.22) 0.04 (−0.17, 0.25) NA
Wind speed Mean (m/s) 0.69 (0.23, 1.15) * 0.93 (0.22, 1.64) * 0.56 (−0.16, 1.29) 1.51 (0.39, 2.63) *

WS Rain 0.24 (−0.08, 0.55) 0.32 (−0.06, 0.69) 0.03 (−0.62, 0.67) 0.06 (−0.80, 0.92)

Note: “*” indicates a 95% confidence interval does not contain 0. NA in neighborhood HI or WS HI daily mean
indicates that neighborhood HI or WS HI daily mean was not included in the model selection based on Akaike
Information Criterion (AIC). Models were adjusted for participant age, annual household income level, education
level, measured body fat (%), log(mean daily steps), employment, being diabetic, self-reported health condition,
and Godin activity level. Models for all participants did not include a group factor.

Table 4. Intervention effects on daily maximum heat index (◦C) experienced by individuals in different
population groups.

Group All Rural Residents Urban Residents Urban OutWor

Fixed effect β 95%CI β 95%CI β 95%CI β 95%CI
Intercept 45.13 (33.44, 56.73) 34.91 (8.80, 51.01) 55.64 (34.37, 76.79) −10.00 (−59.85, 39.87)

Intervention −1.40 (−2.27, −0.53) * −0.24 (−1.36, 0.88) −0.73 (−2.32, 0.86) −6.60 (−9.09, −4.11) *
WS HI Max (◦C) NA NA NA 2.03 (0.71, 3.35) *

Neighborhood HI Max(◦C) 0.15 (−0.07, 0.37) 0.07 (−0.21, 0.36) −0.01(−0.43, 0.41) NA
Wind speed Max (m/s) 0.49 (0.21, 0.76) * 0.23 (−0.13, 0.59) 1.01 (0.53, 1.49) * 0.30 (−0.60, 1.19)

WS Rain −0.05 (−0.98, 0.88) 1.01 (0.02, 2.00) * −2.30 (−4.22, −0.39) * −3.52 (−6.74, −0.30) *

Note: “*” indicates a 95% confidence interval does not contain 0. NA in neighborhood HI or WS HI daily mean
indicates that neighborhood HI or WS HI daily mean was not included in the model selection based on AIC. Models
were adjusted for participant age, annual household income level, education level, measured body fat (%), log(mean
daily steps), employment, being diabetic, self-reported health condition, and Godin activity level. Models for all
participants did not include a group factor.

Overall, participants had lower daily mean or max HI[individual] on intervention days during
weekends compared to intervention days on weekdays (Supplemental File 8). ITT results and PP
results were similar, with slightly smaller estimated effect sizes in PP (β estimate of intervention −0.59
(95%CI (−0.88, −0.30)) in ITT vs. −0.49 (95%CI (−0.79, −0.20)) in PP on daily mean of individually
experienced HI, and −1.40 (95%CI (−2.27, −0.53)) in ITT vs. −0.99 (95%CI (−1.90, −0.08)) in PP on daily
max of individually experienced HI) (Supplemental File 8). Outlier removal minimally affected the
intervention effect on daily mean HI difference (β estimate of intervention −0.59 (95%CI (−0.88, −0.30))
in ITT vs. −0.51 (95%CI (−0.83, −0.19)) in ITT with no outlier removal). Outlier removal affected the
intervention effect on daily max HI difference more (β estimate of intervention −1.40 (95%CI (−2.27,
−0.53)) in ITT vs. −0.58 (95%CI (−1.93, 0.76)) in ITT with no outlier removal) (Supplemental File 9).

Body measurement change ratios (%) are shown in Table 5. Overall, participants had a small
decrease in weight, body fat and muscle mass and a small increase in body water. These change
ratios were only statistically significant in participants who were obese. A −0.29% (95%CI (−0.45,
−0.13)) weight change ratio is equivalent to a 0.52 lb. (95%CI (0.23, 0.81)) weight loss for a participant
weighing 180 lbs. at baseline. There was no significant difference in body measurement change ratios
in sensitivity analysis including participants with extreme measurement change ratios (Supplemental
File 10).
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Table 5. Body measurement change ratios (%) of participants after the intervention.

Body Measurement
Change Ratio (%) a Mean (95%CI) Participant N Obese Level b Mean (95%CI) Participant N

Weight −0.29 (−0.45, −0.13) * 176
Normal −0.33 (−1.26, 0.6) 9

Overweight −0.3 (−0.75, 0.15) 30
Obese −0.28 (−0.46, −0.11) * 137

Body fat −1.11 (−1.73, −0.49) * 167
Normal −0.92 (−3.56, 1.71) 9

Overweight −1.15 (−2.31, 0.004) 28
Obese −1.12 (−1.85, −0.38) * 130

Body water 0.86 (0.34, 1.38) * 167
Normal 0.47 (−1.2, 2.15) 9

Overweight 0.65 (−0.14, 1.44) 28
Obese 0.93 (0.3, 1.57) * 130

Muscle mass −0.87 (−1.42, −0.32) * 167
Normal −0.42 (−2.39, 1.55) 9

Overweight −0.78 (−1.78, 0.22) 28
Obese −0.93 (−1.59, −0.27) * 130

Note: “*” denotes a 95% confidence interval does not contain 0. a Body measurement change ratio = (body
measurement after intervention—body measurement before intervention)/body measurement before intervention ×
100%. b Obese level: Normal = (BMI < 25), Overweight = (BMI ≥ 25 and < 30), Obese = (BMI ≥ 30) [44].

4. Discussion

This study investigates whether spending an additional 30 min outdoors daily in summer is
feasible in an urban versus rural environment, and if it changes daily steps and individually experienced
HI of participants. Rain, heat, and time conflicts were leading factors hindering participants from
spending an additional 30 min outdoors in both environments. This result is consistent with findings
in previous studies [1,2], suggesting heat is a barrier for physical activity in summer. Since it is hot
and humid with frequent storms in the summer in the southeastern states of the U.S., heat and rain
may be barriers to outdoor time and associated physical activity benefits. We found participants
who self-identified as physically inactive had a 15.70% (95%CI (8.94%, 22.46%)) lower probability of
intervention compliance. These results indicate participants starting with less physical exercise might
perceive higher barriers to spending time outdoors, suggesting efforts to improve time spent outdoors
among participants with less physical exercise may require initially reducing the amount of time (e.g.,
start with 15 min) or other methods of encouraging behavior change.

Participants increased daily steps by 637 (95%CI (83, 1192)) on intervention days. This relation
was driven by increased daily steps in Rural residents, who walked a mean of 1063 (95%CI (273,
1851)) more steps (baseline daily 4346 steps, 24% increase) on intervention days. In contrast, Urban
OutWor participants, with much higher baseline steps, only had a small increase in daily steps on
intervention days. The results suggested that the benefits of the increased time spent outdoors may be
more significant in physically less-active participants. The built environment (e.g., sidewalks, trails,
recreational facilities) impacts physical activity [45–48]. Birmingham is the second most walkable
city in AL while Wilcox County is considered a car-dependent, less walkable location, based on
the walk score metric [49]. Among participants, Birmingham was rated as a more activity-friendly,
walkable location with more access to recreational facilities compared to Wilcox County in the PANES
results, although some neighborhood environment variables in the PANES may not be relevant
for rural neighborhoods [30,50]. These differences in the built environment could at least partially
explain differences in neighborhood-level microclimates and might impact the intervention effects on
promoting physical activity among participants. The generalizability of the results presented to other
populations with similar or different demographics should be evaluated in future studies. Spending
an additional 30 min outdoors daily is minimally limited by socioeconomic status (SES), although we
acknowledged that conflicts of time/limited free time associated with lower SES from participants were
reported (Figure 2). We believe our results may be useful to provide an additional intervention method
to promote physical activity among populations with similar SES in both urban and rural settings,
especially in subtropical/tropical states in the U.S. Small but significant changes in body measurement
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change ratios were detected among participants who were obese after participation, suggesting the
intervention benefits may be more significant among people with higher BMI.

While previous studies use weather station data to estimate the effect of ambient conditions
on physical activity [3,51–53], in the current study we have additionally measured microclimates
experienced by participants within urban and rural neighborhoods and individual HI experienced by
participants as they move through outdoor and indoor environments. This is important as previous
studies have shown a wide variation in temperature and humidity experienced within cities, suburban,
and rural environments [54–59]. Overall, participants experienced lower daily mean or max HI on
intervention days after accounting for ambient conditions, suggesting the additional 30 min outdoors
did not result in increased heat exposure. Urban and Rural participants experienced a similar small
change in daily mean or max HIs on intervention and baseline days, while outdoor workers had
significantly reduced HI exposure during intervention days. Outdoor workers may have carried out
the intervention in the cool hours of the day, thereby reducing their overall daily heat index exposure.
Since participants were free to choose the time of day to spend the additional 30 min outdoors, we think
most of the participants carried out the intervention either on early mornings or after sunset to avoid
the hottest hours. Additionally, because the estimated prevalence of home central air-conditioning
was not high for participants, outdoor environment may be cooler than homes when participants
carried out the intervention, leading to reduced individually experienced HI. However, there was high
missingness for the central air-conditioning response, so it is difficult to draw conclusions.

Two baseline days were weekdays while two out of five intervention days were weekends.
To remove the weekend effect, we compared the daily mean or max individually experienced HI on
baseline days vs. intervention on weekdays. However, this step considerably reduced the observation
sample size. We observed that weekends augmented the negative association between the intervention
and daily mean or maximum individually experienced HI in participants. Our results show that
non-outdoor worker participants increased daily steps during the weekend but did not increase
individually experienced heat indexes.

To address the concern that the thermometer on the shoe might pick up high temperatures due to
artifacts (e.g., close to warm surfaces) when the actual environment was not hot, we removed upper
outliers. The removal had minimal impact on the intervention effect on daily mean HI[individual].
Pedometer data imputation changed the intervention effect substantially.

In future studies, researchers may use pedometers with built-in daily reading features,
or accelerometers to monitor physical activity more accurately. The benefits of additional time
spent outdoors would likely include increased physical activity and may be more pronounced after
longer term compliance, although this requires further study. Using advanced wearable technologies
(e.g., FitBit, Apple Watch), albeit more expensive, to incorporate heart rate, time spent in different
intensity activity, energy expenditure and total distance to measure physical activity more accurately
would be an important next step to quantify the physical activity benefits. Participants could be further
encouraged to engage in physical activity from these additional real-time feedback measures. Benefits
beyond improved physical activity, such as improved mental health, an improved sense of well-being
and blood pressure etc. suggested by previous studies could also be included [60–62].

5. Conclusions

In conclusion, providing a nudge to spend a small amount of additional time outdoors daily with
pedometer visual feedbacks may be a feasible intervention to promote physical activity. The current
study additionally suggests that outdoor ambient conditions at neighborhood level, in addition to
regional weather station measurements, are an important factor in determining physical activity in
both urban and rural environments in summer months. Finally, our study results indicating a stronger
intervention effect in the rural environment suggest further study of differences in built environment
characteristics across urban and rural landscapes is warranted.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/20/7558/s1,
Supplemental File 1. Data collection and processing flowcharts. Supplemental File 2. Results of risk difference
regression describing the relation between the probability of intervention compliance and ambient conditions,
individual-level factors. Supplemental File 3. Full results of the linear mixed models describing the relation
of the intervention and daily pedometer steps with an interaction term between intervention and groups in
Intent-to-Treat (ITT). Supplemental File 4. Results of linear mixed effects models describing the relation between
the intervention (weekdays vs. weekend) and the daily pedometer steps in Intent-to-Treat (ITT). Supplemental
File 5. Results of linear mixed models describing the relation between the intervention and the daily pedometer
steps in Per-Protocol (PP). Supplemental File 6. Effect of data processing methods on the pedometer step results.
Supplemental File 7. Results of linear mixed models describing the relation between the intervention and the daily
mean or max heat index experienced by individuals with an interaction term between intervention and groups
in ITT. Supplemental File 8. Sensitivity analysis of intervention (or intervention and weekdays vs. intervention
and weekend) effect on HI[individual] in ITT and PP. Supplemental File 9. Effect of ITT outlier removal on daily
mean and max HI difference (◦C) between HI[individual] and HI[WS]. Supplemental File 10. Body measurement
change ratios of supplemental datasets including extreme body measurement change ratios.

Author Contributions: Conceptualization, B.F.Z. and J.M.G.; methodology, S.W., M.B.R., C.Y.H.W., B.F.Z., J.M.G.;
validation, S.W.; formal analysis, S.W.; investigation, M.B.R., C.Y.H.W., B.F.Z., J.M.G.; data curation, S.W., M.B.R.,
C.Y.H.W.; writing—original draft preparation, S.W.; writing—review and editing, M.B.R., C.Y.H.W., B.F.Z., J.M.G.;
visualization, S.W.; supervision, J.M.G.; project administration, J.M.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Institute of Environmental Health Sciences, grant
number R01ES023029.

Acknowledgments: We gratefully acknowledge collaboration with Sheila Tyson, Keisha Brown, and Nakeia
Pullman (Friends of West End), and Sheryl Threadgill-Mathews and Ethel Johnson (West Central Alabama
Community Health Improvement League), for their aid in recruitment and implementation of the research. Thanks
to Mary Evans, Anna Scott, Michael Milazzo, Pranavi Ghugare, Kaya Bryant, and Claudiu Lungu for help with
the data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tucker, P.; Gilliland, J. The effect of season and weather on physical activity: A systematic review. Public Health
2007, 121, 909–922. [CrossRef] [PubMed]

2. Gothe, N.P.; Kendall, B.J. Barriers, motivations, and preferences for physical activity among female African
American older adults. Gerontol. Geriatr. Med. 2016, 2, 2333721416677399. [CrossRef] [PubMed]

3. Pivarnik, J.M.; Reeves, M.J.; Rafferty, A.P. Seasonal variation in adult leisure-time physical activity. Med. Sci.
Sports Exerc. 2003, 35, 1004–1008. [CrossRef]

4. Baranowski, T.; Thompson, W.O.; DuRant, R.H.; Baranowski, J.; Puhl, J. Observations on physical activity
in physical locations: Ager gender, ethnicity, and month effects. Res. Q. Exerc. Sport 1993, 64, 127–133.
[CrossRef] [PubMed]

5. Merrill, R.M.; Shields, E.C.; White, G.L., Jr.; Druce, D. Climate conditions and physical activity in the United
States. Am. J. Health Behav. 2005, 29, 371–381. [CrossRef]

6. CDC. Adult Physical Inactivity Prevalence Maps by Race/Ethnicity. 16 January 2020. Available online: https:
//www.cdc.gov/physicalactivity/data/inactivity-prevalence-maps/index.html (accessed on 28 January 2020).

7. WHO. Insufficent Physical Activity: Prevalence of Insufficient Physical Activity among Adults, Ages 18+

(Age Standardized Estimates), 2016: Both Sexes. 2019. Available online: http://gamapserver.who.int/gho/

interactive_charts/ncd/risk_factors/physical_inactivity/atlas.html?indicator=i1&date=Male (accessed on 28
September 2020).

8. Wechsler, H.; Devereaux, R.S.; Davis, M.; Collins, J. Using the school environment to promote physical
activity and healthy eating. Prev. Med. 2000, 31, S121–S137. [CrossRef]

9. Van Sluijs, E.M.; McMinn, A.M.; Griffin, S.J. Effectiveness of interventions to promote physical activity in
children and adolescents: Systematic review of controlled trials. BMJ 2007, 335, 703. [CrossRef]

10. Timperio, A.; Salmon, J.; Ball, K. Evidence-based strategies to promote physical activity among children,
adolescents and young adults: Review and update. J. Sci. Med. Sport 2004, 7, 20–29. [CrossRef]

11. King, A.C. Interventions to promote physical activity by older adults. J. Gerontol. Ser. A Biol. Sci. Med Sci.
2001, 56 (Suppl 2), 36–46. [CrossRef]

http://www.mdpi.com/1660-4601/17/20/7558/s1
http://dx.doi.org/10.1016/j.puhe.2007.04.009
http://www.ncbi.nlm.nih.gov/pubmed/17920646
http://dx.doi.org/10.1177/2333721416677399
http://www.ncbi.nlm.nih.gov/pubmed/28138500
http://dx.doi.org/10.1249/01.MSS.0000069747.55950.B1
http://dx.doi.org/10.1080/02701367.1993.10608789
http://www.ncbi.nlm.nih.gov/pubmed/8341835
http://dx.doi.org/10.5993/AJHB.29.4.9
https://www.cdc.gov/physicalactivity/data/inactivity-prevalence-maps/index.html
https://www.cdc.gov/physicalactivity/data/inactivity-prevalence-maps/index.html
http://gamapserver.who.int/gho/interactive_charts/ncd/risk_factors/physical_inactivity/atlas.html?indicator=i1&date=Male
http://gamapserver.who.int/gho/interactive_charts/ncd/risk_factors/physical_inactivity/atlas.html?indicator=i1&date=Male
http://dx.doi.org/10.1006/pmed.2000.0649
http://dx.doi.org/10.1136/bmj.39320.843947.BE
http://dx.doi.org/10.1016/S1440-2440(04)80274-3
http://dx.doi.org/10.1093/gerona/56.suppl_2.36


Int. J. Environ. Res. Public Health 2020, 17, 7558 13 of 15

12. Hillsdon, M.; Foster, C.; Thorogood, M. Interventions for Promoting Physical Activity. Cochrane Database
Syst. Rev. 2005, 1, CD003180. [CrossRef]

13. Wankel, L.M. Personal and situational factors affecting exercise involvement: The importance of enjoyment.
Res. Q. Exerc. Sport 1985, 56, 275–282. [CrossRef]

14. Gordon, N.; Gordon, N.F.; Kohl, H.; Blair, S. Life style exercise: A new strategy to promote physical activity
for adults. J. Cardiopulm. Rehabil. Prev. 1993, 13, 161–163. [CrossRef]

15. Zimmerman, F.J. Using behavioral economics to promote physical activity. Prev. Med. 2009, 49, 289–291.
[CrossRef] [PubMed]

16. Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions about Health, Wealth, and Happiness; Penguin: London,
UK, 2009.

17. Forberger, S.; Reisch, L.; Kampfmann, T.; Zeeb, H. Nudging to move: A scoping review of the use of choice
architecture interventions to promote physical activity in the general population. Int. J. Behav. Nutr. Phys. Act.
2019, 16, 77. [CrossRef]

18. Bellettiere, J.; Liles, S.; BenPorat, Y.; Bliss, N.; Hughes, S.C.; Bishop, B.; Robusto, K.; Hovell, M.F. And she’s
buying a stairway to health: Signs and participant factors influencing stair ascent at a public airport. J. Prim.
Prev. 2017, 38, 597–611. [CrossRef]

19. Beyer, K.M.; Szabo, A.; Hoormann, K.; Stolley, M. Time spent outdoors, activity levels, and chronic disease
among American adults. J. Behav. Med. 2018, 41, 494–503. [CrossRef] [PubMed]

20. Gray, C.; Gibbons, R.; Larouche, R.; Hansen, E.B.; Bienenstock, B.; Brussoni, M.; Chabot, G.; Herrington, S.;
Jansen, I.; Pickett, W.; et al. What is the relationship between outdoor time and physical activity, sedentary
behaviour, and physical fitness in children? A systematic review. Int. J. Environ. Res. Public Health 2015, 12,
6455–6474. [CrossRef] [PubMed]

21. Schaefer, L.; Plotnikoff, R.C.; Majumdar, S.R.; Mollard, R.C. Outdoor time is associated with physical activity,
sedentary time, and cardiorespiratory fitness in youth. J. Pediatrics 2014, 165, 516–521. [CrossRef]

22. Harada, K.; Masumoto, K.; Kondo, N. Daily and longitudinal associations of out-of-home time with
objectively measured physical activity and sedentary behavior among middle-aged and older adults. J. Behav.
Med. 2019, 42, 315–329. [CrossRef] [PubMed]

23. Benjamin-Neelon, S.E.; Platt, A.; Bacardi-Gascon, M.; Armstrong, S.; Neelon, B.; Jimenez-Cruz, A. Greenspace,
physical activity, and BMI in children from two cities in northern Mexico. Prev. Med. Rep. 2019, 14, 100870.
[CrossRef]

24. Harada, K.; Lee, S.; Lee, S.; Bae, S.; Harada, K.; Suzuki, T.; Shimada, H. Objectively-measured outdoor time
and physical and psychological function among older adults. Geriatr. Gerontol. Int. 2017, 17, 1455–1462.
[CrossRef] [PubMed]

25. Kono, A.; Kai, A.; Sakato, C.; Rubenstein, L.Z. Frequency of going outdoors predicts long-range functional
change among ambulatory frail elders living at home. Arch. Gerontol. Geriatr. 2007, 45, 233–242. [CrossRef]
[PubMed]

26. WeatherAtlas. July Weather Forecast and Climate Birmingham, AL. 2020. Available online: https://www.
weather-us.com/en/alabama-usa/birmingham-weather-july#temperature (accessed on 16 February 2020).

27. Bernhard, M.C.; Kent, S.T.; Sloan, M.E.; Evans, M.B.; McClure, L.A.; Gohlke, J.M. Measuring personal heat
exposure in an urban and rural environment. Environ. Res. 2015, 137, 410–418. [CrossRef] [PubMed]

28. CDC. National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical
Activity, and Obesity. Data, Trend and Maps. Available online: https://www.cdc.gov/nccdphp/dnpao/data-
trends-maps/index.html (accessed on 29 January 2020).

29. Sallis, J. International Physical Activity Prevalence Study SELF-ADMINISTERED ENVIRONMENTAL
MODULE 2002. Available online: https://drjimsallis.org/Documents/Measures_documents/PANES_survey.
pdf (accessed on 30 September 2020).

30. Sallis, J.F.; Bowles, H.R.; Bauman, A.; Ainsworth, B.E.; Bull, F.C.; Craig, C.L.; Sjöström, M.; De Bourdeaudhuij, I.;
Lefevre, J.; Matsudo, V.; et al. Neighborhood environments and physical activity among adults in 11 countries.
Am. J. Prev. Med. 2009, 36, 484–490. [CrossRef]

31. Sallis, J.C.J. How to Score PANES. 2014. Available online: https://drjimsallis.org/Documents/Measures_
documents/PANES_Scoring_03132014.pdf (accessed on 2 October 2020).

http://dx.doi.org/10.1002/14651858.CD003180.pub2
http://dx.doi.org/10.1080/02701367.1985.10605374
http://dx.doi.org/10.1097/00008483-199305000-00001
http://dx.doi.org/10.1016/j.ypmed.2009.07.008
http://www.ncbi.nlm.nih.gov/pubmed/19632266
http://dx.doi.org/10.1186/s12966-019-0844-z
http://dx.doi.org/10.1007/s10935-017-0491-6
http://dx.doi.org/10.1007/s10865-018-9911-1
http://www.ncbi.nlm.nih.gov/pubmed/29383535
http://dx.doi.org/10.3390/ijerph120606455
http://www.ncbi.nlm.nih.gov/pubmed/26062039
http://dx.doi.org/10.1016/j.jpeds.2014.05.029
http://dx.doi.org/10.1007/s10865-018-9976-x
http://www.ncbi.nlm.nih.gov/pubmed/30242598
http://dx.doi.org/10.1016/j.pmedr.2019.100870
http://dx.doi.org/10.1111/ggi.12895
http://www.ncbi.nlm.nih.gov/pubmed/27633728
http://dx.doi.org/10.1016/j.archger.2006.10.013
http://www.ncbi.nlm.nih.gov/pubmed/17296237
https://www.weather-us.com/en/alabama-usa/birmingham-weather-july#temperature
https://www.weather-us.com/en/alabama-usa/birmingham-weather-july#temperature
http://dx.doi.org/10.1016/j.envres.2014.11.002
http://www.ncbi.nlm.nih.gov/pubmed/25617601
https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.html
https://www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.html
https://drjimsallis.org/Documents/Measures_documents/PANES_survey.pdf
https://drjimsallis.org/Documents/Measures_documents/PANES_survey.pdf
http://dx.doi.org/10.1016/j.amepre.2009.01.031
https://drjimsallis.org/Documents/Measures_documents/PANES_Scoring_03132014.pdf
https://drjimsallis.org/Documents/Measures_documents/PANES_Scoring_03132014.pdf


Int. J. Environ. Res. Public Health 2020, 17, 7558 14 of 15

32. Scott, A.A.; Misiani, H.; Okoth, J.; Jordan, A.; Gohlke, J.; Ouma, G.; Arrighi, J.; Zaitchik, B.F.; Jjemba, E.;
Verjee, S.; et al. Temperature and heat in informal settlements in Nairobi. PLoS ONE 2017, 12, e0187300.
[CrossRef]

33. NOAA. NNDC Climate Data Online. 2020. Available online: https://www7.ncdc.noaa.gov/CDO/cdopoemain.
cmd?datasetabbv=DS3505 (accessed on 2 April 2020).

34. Anderson, G.; Peng, R. Weathermetrics: Functions to Convert between Weather Metrics (R Package).
2012. Available online: https://cran.r-project.org/web/packages/weathermetrics/index.html (accessed on
16 October 2020).

35. Shephard, R. Godin leisure-time exercise questionnaire. Med. Sci. Sports Exerc. 1997, 29, S36–S38.
36. Pedroza, C. Performance of models for estimating absolute risk difference in multicenter trials with binary

outcome. BMC Med Res. Methodol. 2016, 16, 113. [CrossRef]
37. Richardson, M.B.; Chmielewski, C.; Wu, C.Y.H.; Evans, M.B.; McClure, L.A.; Hosig, K.W.; Gohlke, J.M.

The effect of time spent outdoors during summer on daily blood glucose and steps in women with type 2
diabetes. J. Behav. Med. 2020, 43, 783–790. [CrossRef]

38. Tudor-Locke, C.; Bassett, D.R.; Shipe, M.F.; McClain, J.J. Pedometry methods for assessing free-living adults.
J. Phys. Act. Health 2011, 8, 445–453. [CrossRef]

39. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014,
arXiv:1406.5823.

40. Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic
Approach; Springer: New York, NY, USA, 2002.

41. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol.
Methods Res. 2004, 33, 261–304. [CrossRef]

42. Wang, S.; Wu, C.; Richardson, M.B.; Zaitchil, B.; Gohlke, J. Characterization of Heat Index Experienced by
Individuals Residing in Urban and Rural settings. 2020; under review.

43. US-Census-Bureau. US Census Bureau quick facts: Birmingham AL and Wilcox County. 2017. Available
online: https://www.census.gov/quickfacts/fact/table/birminghamcityalabama,wilcoxcountyalabama,US/

PST045219 (accessed on 14 July 2020).
44. CDC. Defining Adult Overweight and Obesity. 30 June 2020. Available online: https://www.cdc.gov/obesity/

adult/defining.html#:~{}:text=If%20your%20BMI%20is%20less,falls%20within%20the%20obese%20range
(accessed on 15 July 2020).

45. Brownson, R.C.; Baker, E.A.; Housemann, R.A.; Brennan, L.K.; Bacak, S.J. Environmental and policy
determinants of physical activity in the United States. Am. J. Public Health 2001, 91, 1995–2003. [CrossRef]

46. Roux, A.V.D.; Evenson, K.R.; McGinn, A.P.; Brown, D.G.; Moore, L.; Brines., S.; Jacobs, D.R., Jr. Availability
of recreational resources and physical activity in adults. Am. J. Public Health 2007, 97, 493–499. [CrossRef]

47. Wilson, D.K.; Kirtland, K.A.; Ainsworth, B.E.; Addy, C.L. Socioeconomic status and perceptions of access
and safety for physical activity. Ann. Behav. Med. 2004, 28, 20–28. [CrossRef] [PubMed]

48. Troped, P.J.; Saunders, R.P.; Pate, R.R.; Reininger, B.; Ureda, J.R.; Thompson, S.J. Associations between
self-reported and objective physical environmental factors and use of a community rail-trail. Prev. Med. 2001,
32, 191–200. [CrossRef]

49. WalkScore. Cities in Alabama. Available online: https://www.walkscore.com/AL/ (accessed on 2
October 2020).

50. Ding, D.; Adams, M.A.; Sallis, J.F.; Norman, G.J.; Hovell, M.F.; Chambers, C.D.; Hofstetter, C.R.; Bowles, H.R.;
Hagströmer, M.; Craig, C.L.; et al. Perceived neighborhood environment and physical activity in 11 countries:
Do associations differ by country? Int. J. Behav. Nutr. Phys. Act. 2013, 10, 57. [CrossRef]

51. Matthews, C.E.; Freedson, P.S.; Hebert, J.R.; Stanek, E.J.; Merrian, P.A.; Rosal, M.C.; Ebbeling, C.B.; Ockene, I.S.
Seasonal variation in household, occupational, and leisure time physical activity: Longitudinal analyses
from the seasonal variation of blood cholesterol study. Am. J. Epidemiol. 2001, 153, 172–183. [CrossRef]

52. Wolff, D.; Fitzhugh, E.C. The relationships between weather-related factors and daily outdoor physical
activity counts on an urban greenway. Int. J. Environ. Res. Public Health 2011, 8, 579–589. [CrossRef]
[PubMed]

53. Lewis, L.K.; Maher, C.; Belanger, K.; Tremblay, M.; Chaput, J.-P.; Olds, T. At the mercy of the gods: Associations
between weather, physical activity, and sedentary time in children. Pediatric Exerc. Sci. 2016, 28, 152–163.
[CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0187300
https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505
https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505
https://cran.r-project.org/web/packages/weathermetrics/index.html
http://dx.doi.org/10.1186/s12874-016-0217-0
http://dx.doi.org/10.1007/s10865-019-00113-5
http://dx.doi.org/10.1123/jpah.8.3.445
http://dx.doi.org/10.1177/0049124104268644
https://www.census.gov/quickfacts/fact/table/birminghamcityalabama,wilcoxcountyalabama,US/PST045219
https://www.census.gov/quickfacts/fact/table/birminghamcityalabama,wilcoxcountyalabama,US/PST045219
https://www.cdc.gov/obesity/adult/defining.html#:~{}:text=If%20your%20BMI%20is%20less,falls%20within%20the%20obese%20range
https://www.cdc.gov/obesity/adult/defining.html#:~{}:text=If%20your%20BMI%20is%20less,falls%20within%20the%20obese%20range
http://dx.doi.org/10.2105/AJPH.91.12.1995
http://dx.doi.org/10.2105/AJPH.2006.087734
http://dx.doi.org/10.1207/s15324796abm2801_4
http://www.ncbi.nlm.nih.gov/pubmed/15249256
http://dx.doi.org/10.1006/pmed.2000.0788
https://www.walkscore.com/AL/
http://dx.doi.org/10.1186/1479-5868-10-57
http://dx.doi.org/10.1093/aje/153.2.172
http://dx.doi.org/10.3390/ijerph8020579
http://www.ncbi.nlm.nih.gov/pubmed/21556205
http://dx.doi.org/10.1123/pes.2015-0076
http://www.ncbi.nlm.nih.gov/pubmed/26098393


Int. J. Environ. Res. Public Health 2020, 17, 7558 15 of 15

54. Huang, G.; Zhou, W.; Cadenasso, M. Is everyone hot in the city? Spatial pattern of land surface temperatures,
land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92,
1753–1759. [CrossRef] [PubMed]

55. Johnson, S.; Ross, Z.; Kheirbek, I.; Ito, K. Characterization of intra-urban spatial variation in observed
summer ambient temperature from the New York City Community Air Survey. Urban Clim. 2020, 31, 100583.
[CrossRef]

56. Chen, Y.-C.; Yao, K.-C.; Honjo, T.; Lin, T.-P. The application of a high-density street-level air temperature
observation network (HiSAN): Dynamic variation characteristics of urban heat island in Tainan, Taiwan.
Sci. Total Environ. 2018, 626, 555–566. [CrossRef]

57. Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability
to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [CrossRef] [PubMed]

58. Bonan, G.B. The microclimates of a suburban Colorado (USA) landscape and implications for planning and
design. Landsc. Urban Plan. 2000, 49, 97–114. [CrossRef]

59. Liu, W.; You, H.; Dou, J. Urban-rural humidity and temperature differences in the Beijing area. Theor. Appl.
Climatol. 2009, 96, 201–207. [CrossRef]

60. St Leger, L. Health and Nature—New Challenges for Health Promotion; Oxford University Press: Oxford,
UK, 2003.

61. Frumkin, H. Beyond toxicity: Human health and the natural environment. Am. J. Prev. Med. 2001, 20,
234–240. [CrossRef]

62. Coon, J.T.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does participatin g in Physical Activities
in outdoor natural environments have a greater effect o n physical and mental well being than Physical
activity indoors? A systemati c review. Environ. Sci. Technol. 2012, 45, 1761–1772. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jenvman.2011.02.006
http://www.ncbi.nlm.nih.gov/pubmed/21371807
http://dx.doi.org/10.1016/j.uclim.2020.100583
http://dx.doi.org/10.1016/j.scitotenv.2018.01.059
http://dx.doi.org/10.1016/j.socscimed.2006.07.030
http://www.ncbi.nlm.nih.gov/pubmed/16996668
http://dx.doi.org/10.1016/S0169-2046(00)00071-2
http://dx.doi.org/10.1007/s00704-008-0024-6
http://dx.doi.org/10.1016/S0749-3797(00)00317-2
http://dx.doi.org/10.1021/es102947t
http://www.ncbi.nlm.nih.gov/pubmed/21291246
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participant Recruitment and Individual Level Measurements Collection 
	Weather Station and Neighborhood Measurements Collection 
	Data Analysis 

	Results 
	Discussion 
	Conclusions 
	References

