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Abstract: The prevalence of chronic disease comorbidity has increased worldwide.
Comorbidity—i.e., the presence of multiple chronic diseases—is associated with adverse health outcomes
in terms of mobility and quality of life as well as financial burden. Understanding the progression of
comorbidities can provide valuable insights towards the prevention and better management of chronic
diseases. Administrative data can be used in this regard as they contain semantic information on patients’
health conditions. Most studies in this field are focused on understanding the progression of one
chronic disease rather than multiple diseases. This study aims to understand the progression of two
chronic diseases in the Australian health context. It specifically focuses on the comorbidity progression
of cardiovascular disease (CVD) in patients with type 2 diabetes mellitus (T2DM), as the prevalence
of these chronic diseases in Australians is high. A research framework is proposed to understand
and represent the progression of CVD in patients with T2DM using graph theory and social network
analysis techniques. Two study cohorts (i.e., patients with both T2DM and CVD and patients with only
T2DM) were selected from an administrative dataset obtained from an Australian health insurance
company. Two baseline disease networks were constructed from these two selected cohorts. A final
disease network from two baseline disease networks was then generated by weight adjustments
in a normalized way. The prevalence of renal failure, fluid and electrolyte disorders, hypertension
and obesity was significantly higher in patients with both CVD and T2DM than patients with only
T2DM. This showed that these chronic diseases occurred frequently during the progression of CVD in
patients with T2DM. The proposed network-based model may potentially help the healthcare provider to
understand high-risk diseases and the progression patterns between the recurrence of T2DM and CVD.
Also, the framework could be useful for stakeholders including governments and private health insurers
to adopt appropriate preventive health management programs for patients at a high risk of developing
multiple chronic diseases.

Keywords: chronic disease; comorbidity; administrative data; graph theory; social network analysis

1. Introduction and Background

Type 2 diabetes mellitus (T2DM) is a chronic disease that occurs when the body becomes resistant
to insulin and/or cannot make enough insulin in the pancreas [1]. Patients with T2DM are at greater
risk of developing cardiovascular disease (CVD). CVD, which includes congestive heart failure (CHF),
cardiac arrhythmias, valvular disease, pulmonary circulation disorders, and peripheral vascular
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disorders, is one of the leading causes of death in people with T2DM in most countries worldwide
and can account for 50% or more of deaths due to T2DM [2]. In 2011, CVD, diabetes and chronic
kidney disease (CKD) were the major cause of death in Australia, accounting for 14% of all deaths,
where about 7% of all deaths were due to CVD and diabetes together [3]. In clinical literature,
CVD and T2DM often occur together. Patients with T2DM have over twice the risk of occurrence
of CVD than patients without T2DM [4,5]. This is partly because of various common risk factors
between CVD and T2DM, such as obesity, old age, hypertension and chronic kidney disease. There are
also complex relationships between CVD and T2DM, and each of them may be caused by other
diseases. As a result, they are more likely to occur together in an individual. The co-occurrence
of these conditions is known as comorbidity [6]. The clinical management for people with CVD
and T2DM is more expensive, complex and time-consuming than for the people with a single disease.
Alongside the projected increase in the prevalence of chronic diseases, the presence of CVD and T2DM
as comorbidities exerts a significant social and health burden, often resulting in higher healthcare
costs [7]. Although the comorbidity of chronic diseases is receiving more attention, most studies to
date focus on understanding the progression of a single chronic disease, and fewer studies investigate
the relationship of multiple chronic diseases [8]. Thus, the increased prevalence of comorbidity and its
impact on the health of the population and the healthcare system are not clear. In particular, greater
research attention is required for the chronic disease cohort with both CVD and T2DM as the data
shows an increased risk of hospitalization and death for the patients with both CVD and T2DM
compared to patients with only T2DM [9]. Therefore, if we can identify those diabetic patients with
a risk of CVD based on their past medical data, preventive measures can be taken to increase the quality
of care and reduce treatment costs. For the patients’ health information, a potential data source can be
hospital admission and discharge data which contain standardized ICD (International Classification
of Diseases) codes [10]. Analysis of these administrative data using data mining and social network
analysis can help us to understand the progression of chronic disease comorbidities.

The development of effective disease progression modelling depends on the understanding of
the disease progression pathway. In the literature, a considerable amount of work has been done in
the related field of understanding the comorbidity of chronic disease progression. There are mainly
three types of approaches (i.e., the statistical method, machine learning and data mining approach,
and network-based approach) applied to understand the disease progression and develop the risk
prediction model [11]. Rule-based scoring is a widely used statistical method to understand disease
progression as well as risk prediction. It focuses on the clinical and empirical understanding of
symptoms, prevalence and disease comorbidities [12,13]. In these models, scores are assigned to
various physiologically observable symptoms, demographic risk factors and comorbidity conditions
to assess the severity of a patient. Various rule-based scoring methods have been developed over
the years to understand disease progression [12–15]. In 1987, Charlson et al. proposed the Charlson
Comorbidity Index to predict the 10-year mortality for a patient by ranking a range of demographic
information (e.g., age and sex) and comorbid conditions (e.g., cancer, heart disease and AIDS) [12].
The Elixhauser Index [16] shows slightly better performance for predicting mortality beyond 30
days [17,18]. Some other rule-based models such as APACHE-II (Acute Physiology and Chronic
Health Evaluation-II) [13] and SAPS (Simplified Acute Physiology Score) [19] were proposed to assess
intensive care unit (ICU) patients’ health conditions in the first 24 hours of admission. The results
of the diagnostic tests are considered as scores that are also used to assess or make a prognosis.
For example, Ewing and Clarke proposed five tests (known as Ewing’s battery test) to assess the risk
of cardiovascular disease in patients with diabetes [14]. In 2008, a diabetes-specific equation was
proposed to understand the disease progression and estimate the 5-year risk of cardiovascular disease
in T2DM patients with the use of the A1C (i.e., glycated hemoglobin) test results [15]. Although these
rule-based scoring models work well in the specific healthcare setting, they are derived from clinical
and empirical observation and do not test for many population cohorts with multiple comorbidities.
However, chronic diseases do not occur in isolation [20]. They often share common risk factors than
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can be environmental, genetic and behavioral. These risk factors have a synergistic effect [21,22] on
patients’ health outcomes and thus should not be considered in isolation.

Administrative data are generated during different stages of healthcare delivery and health insurance
claims. These include important information about the patient and population health, such as demographic
characteristics, health behaviors, clinical diagnoses and codes for procedures, laboratory results and care
utilization [23]. Recently, these data have gained popularity and are used in clinical decision-making
and healthcare research, such as treatment, diagnosis, understanding disease progression and disease risk
prediction [16,24–26]. In 2001, Nichols et al. developed a research framework to estimate the prevalence
and incidence of CVD (specifically congestive heart failure) in patients with T2DM using electronic
health data [27]. They also identified risk factors for diabetes-associated congestive heart failure using
multiple logistic regression models. Later, they updated their study to estimate the CHF incidence rate in
T2DM and identify risk factors for developing CHF in patients with T2DM over 6 years of follow-up [28].
Recently, a research methodology was developed to identify the prevalence and incidence of CVD in
patients with T2DM using electronic health data [29]. The study used ICD-9 (International Classification of
Diseases, Ninth Edition) codes to identify the prevalence and incidence of CVD events. Some data mining
and machine learning-based methods were proposed using administrative data in different healthcare
research [30,31]. For example, collaborative filtering methods were proposed to understand disease
progression and predict disease risk using healthcare data [30,32]. A deep learning algorithm was used
for risk prediction for multiple comorbid diseases [33]. The Bayesian network [34], a combination of
graph theory and probability theory, has been used to understand the comorbidity of multiple chronic
diseases [35]. A risk prediction model was developed to predict the risk of progression to chronic
obstructive pulmonary disease in asthma patients using electronic health data [36]. The study used
the Bayesian network to develop the proposed model.

In this study, we used a network-based approach on administrative data—i.e., hospital admission
and discharge data—to understand the disease progression of CVD in patients with T2DM by
considering the comorbidities. In the biomedical field, the network-based approach has been used to
understand the pathogenesis of diseases using gene expression and related proteins [37]. Social network
analysis (SNA) is another related approach introduced in healthcare informatics [38,39]. SNA can
be defined as a set of entities, such as physicians, diseases and hospitals, with some relationships
between them. More recently, administrative data have been widely used to demonstrate SNA-based
approaches [40]. These approaches are used to understand relations between healthcare entities [38,41]
and improve the collaboration efficiency among physicians [42]. SNA techniques were applied in
administrative and electronic healthcare data of CHF patients to explore the patterns of service delivery
for care coordination [43]. Khan et al. [24] proposed a framework to understand the progression
of T2DM using graph theory and SNA. Their proposed framework was applied to administrative
healthcare data in the Australian healthcare context. The study mainly focused on understanding
a single chronic disease (e.g., T2DM) rather than the progression of multiple chronic diseases. To our
knowledge, there is very little research on using a network-based approach and administrative data to
understand the progression of CVD in patients with T2DM.

2. Methods

The following section describes the process of the disease network generation as well as the selection
process of the study population and ICD code range.

2.1. Data Description

In Australia, the two major users of administrative health data are the federal government
(i.e., the universal health care system for Australia, known as Medicare) and private health insurers [44].
The hospital admission and discharge data of patients are recorded and reported in a standard
format [45] to government departments and the respective private insurer (if the patient has a private
insurance policy). The administrative dataset used in this study was collected from CBHS health
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funds company in Australia. It contained medical records of nearly 124,000 de-identified patients
who received medical services between the years 1995 and 2018. The medical records included coded
information on patients, hospital admission and clinical contents, which are shown in Table 1. For each
hospital admission of a patient, a set of ICD codes are recorded to indicate what medical conditions
the patient had at that time. The data for the patients with T2DM and CVD were considered over
the full period of the research dataset as the main aim of this study is to understand the progression of
CVD in patients with T2DM. To collect a significant and valid research dataset, a systematic process of
filtering and cleaning was applied to the original administrative dataset. Then, the appropriate cohorts
were selected from the research dataset. Some of the data filtering criteria are (a) selecting patients
with at least one admission with valid ICD codes, (b) excluding duplicate records and (c) excluding
ICD codes related to physical injuries, fever and vomiting.

Table 1. Contents of the administrative data used in this study. ICD: International Classification
of Diseases.

Dataset Contents

Patient ID Claim ID
Gender Episode ID
Age Diagnosis procedure code
Location postcode ICD types and codes
Provider ID Diagnosis-related group (DRG) codes
Admission and discharge date

2.2. Study Population

After getting the appropriate research dataset, we focus on defining the study cohorts. In order
to explore the risk of CVD for T2DM patients, two cohorts are selected in this study. We refer to
the first cohort of patients who were first diagnosed with T2DM and then diagnosed with CVD
as CohortT2DM&CVD. The second cohort of patients who were diagnosed with T2DM but not diagnosed
with CVD at any time point of their entire admission histories is referred to as CohortT2DM. To select
the cohort, this study looked for the presence of at least one ICD code of the underlying disease in
the patient admission history. There are well-defined ICD codes for T2DM and CVD as shown in
Table 2. In this study, patients with CVD were identified using ICD codes for five distinct diseases:
i.e., congestive heart failure, cardiac arrhythmias, valvular disease, pulmonary circulation disorders
and peripheral vascular disorders. For CohortT2DM&CVD, we searched for patients who have ICD codes
for both T2DM and CVD. The search was undertaken in such a way that it resulted in only those
patients who were diagnosed with T2DM in an earlier admission and with CVD at a later admission.
The patients for CohortT2DM were selected by a search criterion in which the patients have one or more
ICD codes for T2DM in their entire admission records but no ICD codes for CVD at any stage of their
admission records. The criteria used to select the appropriate patient records for both CohortT2DM&CVD
and CohortT2DM are described in Table 3.

2.3. ICD Code Grouping

One of the main challenges in developing disease progression models is to decide which diseases
and their ICD codes should be considered. The administrative dataset used in the proposed
research framework contains the disease codes (i.e., ICD codes) that are encoded in both ICD-9-AM
and ICD-10-AM format. Each version has more than 20,000 unique and active ICD codes [47], and these
codes are likely to be present in the dataset. Consideration of all ICD codes individually could make
the analysis and network visualization task complex. For this reason, the ICD codes are grouped into
comorbidities so that each node of the disease network represents one of the comorbidities. Thus,
the overall number of nodes is reduced into a reasonably small number of nodes. In this context,
comorbidity represents a group of diseases or health conditions that have occurred together in the same
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patients, such as T2DM, CVD, renal failure etc. However, clinical expertise is needed to identify
the ICD codes for the corresponding comorbidities, but they are often not available. Alternately, there
are several common lists of comorbidities in the literature, known as comorbidity indices, that we can
adopt for the analysis, including the Charlson [12], Elixhauser [16] and Charlson/Deyo comorbidity
indices [48]. These comorbidity indices are used to assess the health conditions of a patient during
hospital admission. The Elixhauser comorbidity index [16] was specially developed to measure
comorbidity using administrative data. The index is clinically and empirically validated and uses
a rule-based scoring model [17]. This study adopted the Elixhauser index for the list of comorbidities
for a particular chronic disease.

Table 2. ICD-9-AM and ICD-10-AM codes for cardiovascular disease (CVD) and type 2 diabetes
mellitus (T2DM) (Adapted from Quan et al. [46]).

Comorbidity ICD-9-AM Codes ICD-10-AM Codes

Congestive heart failure 398.91, 402.11, 402.91, 404.11, 404.13,
404.91, 404.93, 428.x

I09.9, I1.0, I13.0, I13.2, I25.5, I42.0,
I42.5–I42.9, 143.x, 150.x, P29.0

Cardiac arrhythmias
426.10, 426.11, 426.13, 426.2–426.53,
426.6–426.28, 427.0, 427.2427.31,
427.60, 427.9, 785.0, V45.0, V53.3

I44.1–I44.3, I45.6, I45.9, I47.x, R00.0,
Roo.1, R00.8, T82.1, Z45.0, Z95.0

Valvular disease 093.2, 394.0–397.1, 424.0–424.91,
746.3–746.6, V42.2, V43.3

A52.0, I05.x–108.x, I09.1, I09.8,
I34.x–I39.x, Q23.0–Q23.3,
Z95.2–Z95.4

Pulmonary circulation disorders 416.x, 417.9 I26.x, I27.x, I28.0, I28.8, I28.9

Peripheral vascular disorders 440.x, 441.2, 441.4, 441.7, 441.9,
443.1–443.9, 447.1, 557.1, 557.9, V43.4

I70.x, I71.x, I73.1, I73.8, I73.9, I77.1,
I79.0, I79.2, K55.1, K55.8,K55.9,
Z95.8, Z95.9

Type 2 diabetes mellitus 250.0–250.3, 250.4–250.7, 250.9 E11.0, E11.1, E11.2–E11.9

Table 3. Selection criteria for both cohorts.

Selection Criteria for CohortT2DM&CVD Selection Criteria for CohortT2DM

-Must be first diagnosed with T2DM and then
diagnosed with CVD.

-Must be diagnosed with T2DM but not be diagnosed
with CVD.

-Must have at least one or more admissions after
the date of first diagnosis with T2DM but before
the date of diagnosis with CVD.

-Must have at least one or more admissions before
the date of first diagnosis with T2DM.

-For each admission, must have at least one or more
ICD codes related to comorbidities from
the Elixhauser Index.

-For each admission, must have at least one or more
ICD codes related to comorbidities from
the Elixhauser Index.

2.4. Definition and Creation of Graph Theory-Based Terms Used in the Proposed Model

In this study, some concepts from graph theory are used to develop the proposed framework.
In the following subsection, the definition and creation procedure of graph theory-based terms
are discussed.

2.4.1. Individual Disease Network and Its Attributes

The individual disease network represents the health trajectory of an individual patient. The health
trajectory shows the patient’s disease transition from one disease to another during subsequent
admissions in the hospitals over time [24]. An individual disease network is essentially a graph where
each node indicates the disease and the edge between two nodes denotes that these two nodes tend
to occur sequentially. Disease information comes from the ICD codes in the administrative data;
i.e., hospital admission and discharge data. In the network, the edge is directional and is chosen in
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such a way that a disease which occurred in an earlier admission is put as a source node and a disease
from a subsequent admission is put as the target node. If there are multiple diseases in any admission,
then all possible disease pairs are considered. Also, when the patient has more than one disease in
the same admission, all possible disease pairs from the same admission are shown as bi-directional
edges. Each individual disease network has two attributes: one is the node-level attribute, called node
frequency, which refers to the number of times the diseases have occurred for the patient considering
all admissions; the other is the edge-level attribute, called edge weight, that refers to the numbers of
times two diseases have occurred simultaneously or in consecutive admissions.

The first two parts of Figure 1 illustrate the construction process of the individual disease network.
For patient 2, there are two admission episodes (i.e., E1 and E2) in the admission history. The patient
was diagnosed with two diseases (i.e., D1 and D2) at episode E1 and one disease (i.e., D2) at episode
E2. In the individual disease network, the disease D2 has a node frequency of 2 since it has appeared
twice in the admission episode. The edge from D1 and D2 has a weight of 2 since it has appeared once
in subsequent admission episodes (i.e., E1 and E2) and once in the same admission episode (i.e., E1).
The notation for one appearance in subsequent admission episodes is as follows: D1 appeared in E1

and D2 appeared in E2.

Figure 1. Construction of baseline disease network. First, individual disease networks are developed
from medical data of the corresponding patients and are then aggregated to generate the baseline
disease network.

2.4.2. Baseline Disease Network

The baseline disease network represents the overall health trajectory of a population in terms
of comorbidity progression over time. The admission histories of the selected two cohorts (such as
CohortT2DM&CVD and CohortT2DM) are used to develop the baseline disease network. This study
generated two such networks from two selected cohorts. The first disease network, referred to
as NT2DM&CVD, is derived from CohortT2DM&CVD; i.e., patients who are first diagnosed with T2DM
and then diagnosed with CVD. The second disease network, referred to as NT2DM, is derived from
CohortT2DM; i.e., patients who are diagnosed with T2DM but not diagnosed with CVD. These two
disease networks represent the health trajectories of the patients of CohortT2DM&CVD and CohortT2DM,
respectively. Each disease network is generated by merging the individual disease networks of
the patients of respective cohorts. In this way, the attributes of the node and edge of individual disease
networks are summed up. The construction process of the baseline disease network is shown in
Figure 1.
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2.4.3. Final Disease Network through Attribute Adjustment

After creating the two disease networks from two population cohorts, we merge them into one
final network, referred to as the final disease network (NFD). This study applied the attribution theory
to previously created baseline disease networks to generate the final disease network. Generally,
attribution theory is the process of understanding the factors that are responsible for an event.
These factors are used to predict the future occurrence of that event [49]. In this study, attribute
adjustment gives weight to the comorbidities that have occurred significantly more in one cohort’s
disease network compared to the other. The baseline disease networks NT2DM&CVD and NT2DM give us
a scenario of attribution theory. If we find a disease that has a higher node frequency in NT2DM&CVD,
this does not mean that this disease will be the risk factor for developing CVD in patients with T2DM,
because that particular disease may have a higher prevalence in the T2DM patient cohort, NT2DM.
However, instead of finding more prevalent comorbidities in NT2DM&CVD, this study focuses on looking
for more prevalent comorbidities in NT2DM&CVD that are less prevalent in NT2DM. Thus, we look
for more exclusive comorbidities or diseases in NT2DM&CVD compared to NT2DM, and in the process,
we adjust for the attribution effect.

After applying attribution adjustment, the nodes and edges of the final disease network (NFD)
are generated by merging the nodes and edges of NT2DM&CVD and NT2DM. The frequency of any node
in NFD is calculated by finding its relative frequency increment in NT2DM&CVD compared to NT2DM.
Similarly, the weight of edges is calculated. The final disease network (NFD) represents the health
trajectory of the patients with CVD in T2DM patients, where the network attributes (node frequency
and edge weight) show unique characteristics of progression towards CVD in T2DM patients in terms
of comorbidities.

2.5. Procedure of the Proposed Framework

The input to the framework is the administrative data obtained from an Australian private
healthcare fund. By applying the filtering criteria, this study selected two cohorts: CohortT2DM&CVD
and CohortT2DM. The dataset included the ICD codes as the disease information of the patients.
For CohortT2DM&CVD, the admission histories for the patients with both T2DM and CVD are identified
based on ICD codes. Then, all other ICD codes (related to the comorbidities from the Elixhauser
index [16]) between the two diagnoses for a patient (when the patient was first diagnosed with T2DM
and CVD, respectively) are considered to create the individual disease network. These individual
disease networks are then aggregated to generate the baseline disease network: NT2DM&CVD for patients
who were first diagnosed with T2DM and then diagnosed with CVD. Similarly, the baseline disease
network, NT2DM, is created for patients who were diagnosed with T2DM but not diagnosed with CVD.
Next, NT2DM&CVD and NT2DM are merged by applying attribute adjustment, and thus the final disease
network (NFD) is created. Finally, graph theory and SNA are applied to NFD to understand the disease
progression of CVD in patients with T2DM. The complete workflow of the proposed framework is
illustrated in Figure 2.

Figure 2. Proposed framework to understand the progression of cardiovascular disease in patients
with type 2 diabetes. SNA: social network analysis.
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3. Results and Analysis

After pre-processing and filtering the research dataset, we identified the T2DM and CVD patients
by looking for the corresponding ICD codes (i.e., Table 2) in the admission history of the patients.
A total of 4819 patients with T2DM-related ICD codes and 5731 patients with CVD-related ICD codes
were found. Among the 4819 T2DM patients, we found 3908 patients who were diagnosed with
T2DM but not diagnosed with CVD. On the other hand, among the 5731 CVD patients, we found
303 patients who were first diagnosed with T2DM and then were diagnosed with CVD at a later
stage. Then, we found 172 patients out of 303 who have at least one ICD code related to comorbidities
from the Elixhauser index [16]. Thus, a total of 172 patients were selected for the CohortT2DM&CVD.
Similarly, we found 822 patients out of 3908 who had at least one ICD code related to comorbidities
from the Elixhauser index [16]. This study needs an equal number of patients for each cohort to
create the final disease network; thus, a total of 172 patients out of 822 were randomly sampled for
the CohortT2DM, where the patients were diagnosed with T2DM but not diagnosed with CVD in their
entire medical history. The flow of selecting the patients of cohorts is shown in Figure 3. The number of
hospital admissions for CohortT2DM (i.e., 1236) is slightly higher than the number of hospital admissions
for CohortT2DM&CVD (i.e., 1147).

Figure 3. Flow diagram of selecting the patients of cohorts.

3.1. List of Selected Comorbidities

The admission records of the patients were coded in both ICD-9-AM and ICD-10-AM as the dataset
was based on an Australian healthcare context collected from a private health insurer in Australia.
The data of the selected cohorts contained around 1000 different ICD codes. It was required to filter
and group the ICD codes into comorbidities so that the nodes (i.e., ICD codes) of the disease network
could be reduced into a small number of nodes. Therefore, an ICD mapping table for the comorbidity
list was used to map each comorbidity with its relevant ICD codes. In this study, the Elixhauser
comorbidity index was used to create the comorbidity list and the mapping table. The adapted
Elixhauser comorbidity index [50] included 31 comorbidities. As the aim of this study is to understand
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the progression of CVD in patients with T2DM, we removed seven comorbidities (two for diabetes
and five for CVD) related to T2DM and CVD. The translation table from the study of Quan et al. [46] was
used to map of these 24 comorbidities to ICD codes. The ICD codes of the translation table were in ICD-9
and ICD-10 versions, which we manually tested with our dataset’s ICD-9-AM and ICD-10-AM versions.
All of the ICD-9 and ICD-10 codes of the translation table matched with ICD-9-AM and ICD-10-AM,
and hence no further modification was necessary. The list of selected comorbidities is given in Table 4.

Table 4. Elixhauser comorbidity list used in this proposed framework.

Comorbidities

Hypertension, uncomplicated Solid tumor without metastasis
Hypertension, complicated Rheumatoid arthritis/collagen vascular diseases
Paralysis Coagulopathy
Other neurological disorders Obesity
Chronic pulmonary disease Weight loss
Hypothyroidism Fluid and electrolyte disorders
Renal failure Blood loss anemia
Liver disease Deficiency anemia
Peptic ulcer disease excluding
bleeding Alcohol abuse

AIDS/HIV Drug abuse
Lymphoma Psychoses
Metastatic cancer Depression

3.2. Comorbidity Prevalence of NT2DM&CVD and NT2DM

Using the above-mentioned lists of comorbidities, two baseline disease networks (NT2DM&CVD
and NT2DM) were generated from two selected population cohorts which show the corresponding
cohorts’ health trajectory. The node frequency of these baseline disease networks represents
the prevalence of diseases.

Table 5 represents the most prevalent comorbidities from the two baseline disease networks.
For the network NT2DM&CVD, the comorbidity conditions derived from the ICD codes were diagnosed
any time after the diagnosis of T2DM but before the diagnosis of CVD, whereas the comorbidities
for the network NT2DM were diagnosed before the diagnosis of T2DM. In Table 5, it is observed
that the patients with both T2DM and CVD have a higher prevalence of comorbidities compared to
the patients with the only T2DM. Additionally, there is a difference between the two baseline disease
networks in terms of the most common comorbidities. The NT2DM&CVD baseline disease network shows
a significantly high prevalence of renal failure, hypertension, chronic pulmonary disease, and obesity.
These comorbidities or diseases are the risk factors for developing CVD within diabetic patients.
These findings are consistent with the studies in the literature [7,51,52]. In this study, the frequency
of nodes of the two baseline disease networks can give comparative insights about the prevalence
of comorbidities between the patients with both T2DM and CVD and the patients with only T2DM.
The average prevalence in NT2DM&CVD is higher than the average prevalence in NT2DM, which shows
that people with both T2DM and CVD have a greater health risk.

3.3. Attribution Effects on Final Disease Network

After generating the two baseline disease networks, this study generated the final disease network,
NFD, through attribution adjustment. The final disease network shows the unique characteristics
of CVD progression in patients with T2DM. NFD network assigned a higher score to comorbidities
(i.e., node frequency) and their progression (i.e., edge weight) for those that are more prevalent in
patients with both T2DM and CVD compared to the patients with T2DM only. In NFD, the node
frequency and edge weight are normalized to the range of 0 to 1. Figure 4 represents the top 10
comorbidities with their normalized scores in terms of node frequency of NFD.
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Table 5. Top 10 most prevalent comorbidities for patients with both T2DM and CVD, and patients
with only T2DM. The prevalence refers to the number of admissions that have ICD codes related to
those comorbidities.

Comorbidities for NT2DM&CVD Prevalence Comorbidities for NT2DM Prevalence

Renal failure 430 Depression 331
Solid tumor without metastasis 300 Metastatic cancer 265
Hypertension 102 Solid tumor without metastasis 205
Peptic ulcer disease excluding bleeding 71 Obesity 114
Fluid and electrolyte disorders 63 Peptic ulcer disease excluding bleeding 40
Other neurological disorders 60 Drug abuse 30
Chronic pulmonary disease 41 Paralysis 22
Liver disease 24 Psychoses 18
Obesity 21 Hypertension 12
Weight loss 17 Other neurological disorders 09

In the figure, the highest score of 1 for “renal failure” indicates that this disease was exclusive or
more prevalent to the patients with both T2DM and CVD. The score for the comorbidities—i.e., fluid
and electrolyte disorders, chronic pulmonary disease and hypertension—indicates that these diseases
were the most prevalent in the NT2DM&CVD and had a small prevalence in the NT2DM. The other
comorbidities, such as liver disease, solid tumor without metastasis and drug abuse, gained scores
of less than 0.2. This refers to the small amount of differentiation for these comorbidity occurrences
between the two baseline disease networks. Figure 4 suggests that the patients with T2DM have certain
risk factors such as renal failure, chronic pulmonary disease, hypertension and fluid and electrolyte
disorders that are associated with developing CVD. This observation is also consistent with the study
of Nichols et al. [27] and Zhang et al. [33]. In the Australian context, this observation is also reported
by the Australian Institute of Health and Welfare [53].

Figure 4. Top 10 comorbidities that attributed most to the progress of CVD in patients with T2DM.

The top five pairs of the most prevalent disease progression of developing CVD in type 2 diabetic
patients are shown in Table 6. The prevalent transitions of NFD show the comorbidities that are
associated with the progress towards CVD in patients with T2DM. In Table 6, the highest transition
(i.e., edge weight), which is from fluid and electrolyte disorders to renal failure, indicates two different
problems of the body system. Fluid and electrolyte disorders are a deficiency or excess in key minerals
(e.g., calcium and phosphorous) and electrolyte imbalances (e.g., sodium and potassium). The patients
with T2DM develop a constellation of fluid and electrolyte disorders [54]. Also, potassium disorders
can lead to the development of CVD [55]. On the other hand, renal failure is chronic kidney disease
(CKD), and there is a strong comorbid relationship between CKD and CVD for a diabetic patient [33,56].
This reflects the fact that the transition between “fluid and electrolyte disorders” and “renal failure”
may be a potential risk factor for the progression towards CVD in patients with T2DM. Additionally,
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the normalized weight of this transition is 1, which indicates that this is exclusive or more prevalent in
patients with both T2DM and CVD compared to the patients with T2DM. The other top transitions in
Table 6 are also more prevalent in patients with both T2DM and CVD. To test the statistical significance,
we performed a Z-test on the weight of nodes and edges for the final disease network. The level of
significance (p) was found to be less than 0.05 (p < 0.05).

Table 6. Top five most prevalent transitions between comorbidities in the final disease network.

Initial Condition Next Condition Normalized Weight

Fluid and electrolyte disorders Renal failure 1
Weight loss Fluid and electrolyte disorders 0.80
Renal failure Chronic pulmonary disease 0.70
Other neurological disorders Liver disease 0.65
Renal failure Weight loss 0.61

The graph representation of the final disease network (NFD) is shown in Figure 5. To visualize
and analyze the network, this study used the social network analysis software Gephi [57]. The nodes
in the figure indicate the comorbidities or diseases. The size of the nodes and labels are proportional
to the prevalence of the corresponding comorbidity. Renal failure, fluid and electrolyte disorders,
chronic pulmonary disease and hypertension dominate the final disease network; this reflects the fact
that these comorbidities can be risk factors of progressing towards CVD in patients with T2DM.
The large number of edges in the network represents the transitions from one disease to another disease.
The thickness of an edge is proportional to its weight.

Figure 5. Final disease network of T2DM patients progressing towards CVD. The node size and labels
are proportional to the prevalence of the corresponding comorbidity. The thickness of an edge between
two comorbidities is proportional to its weight.
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3.4. Comparison of Network Measures for Three Disease Networks

This study performed a network comparison of the three disease networks. Several social
network-based measures are calculated to understand the features of these networks, and the results
are shown in Table 7. The table shows that the total number of nodes of the three disease networks
are very close; this is because there are the same selective comorbidities for all three networks. Also,
there is a high chance that each cohort has at least a few occurrences from these. The edge count
in NT2DM&CVD is higher than the edge count in NT2DM, which shows that patients with both T2DM
and CVD have relatively more admissions and more transitions between comorbidities in subsequent
admissions. In addition, this may represent more exclusive comorbidities in subsequent admissions.
The high graph density for the network of NT2DM&CVD also supports this suggestion. The graph density
of NT2DM&CVD is higher than the graph density of NT2DM. This suggests that patients with both T2DM
and CVD represent a higher admission burden and complex progression structure over subsequent
admissions. The remaining two measures (e.g., average clustering coefficient and average path length)
do not show important features in the present context.

Table 7. Different network measures of three disease networks.

Network Measures NT2DM NT2DM&CVD NFD

Number of nodes 22 21 23
Number of edges 80 120 166
Graph density 0.20 0.30 0.22
Network diameter 4 4 4
Average clustering co-efficient 0.49 0.63 0.55
Average path length 2.11 1.90 1.91

4. Discussions

This study presented a network-based framework to understand chronic disease comorbidities.
Administrative data are used in this study as they represent a unique source of information for patients’
medical conditions. Also, these databases are probably the best available source for understanding
disease progression. Our study focused on the understanding of the progression of CVD in patients
with T2DM. The final disease network generated from two baseline disease networks represents
the health trajectory of the patients with CVD in T2DM patients, where the node frequency (i.e., Figure 4)
and edge weight (i.e., Table 6) of the network show unique characteristics of progression towards
CVD in patients with T2DM in terms of comorbidities. For instance, this study found some risk
factors (e.g., renal failure, chronic pulmonary disease, hypertension and fluid and electrolyte disorders)
that may be responsible for developing CVD in patients with T2DM [27,33,53]. Although these risk
factors are well-known evidence for developing CVD among diabetic patients, this study provided
further in-depth information about the transition between these comorbid conditions. For example,
as illustrated in Table 6, we found that the transition between “fluid and electrolyte disorders”
and “renal failure” has the highest weight, meaning that this transition may be a potential risk factor
for the progression towards CVD in patients with T2DM. Apparently, no other studies in the present
literature provide such in-depth information regarding the edge-level transition of comorbid disease
conditions. The proposed framework for learning disease progression is flexible and can accommodate
new sources of data for understanding the progression of multiple (more than two) chronic diseases.

4.1. Age and Sex Distribution of the Patients of Cohorts

Table 8 represents the age and sex distribution for both CohortT2DM&CVD and CohortT2DM. It is
observed that the number of elderly patients (≥60 years) is higher than others in both cohorts. It is
well known that the risk of developing T2DM and CVD in elderly patients is very high [58,59].
In Table 8, the number of female patients with both T2DM and CVD is higher than the number of
female patients with only T2DM. On the other hand, the ratio of developing CVD in diabetic male
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patients is significantly lower. Regarding patients with T2DM, it has been shown that female patients
have a higher risk of developing CVD than male patients [60]. In addition, the age for the first
group (CohortT2DM&CVD) is higher than the second group (CohortT2DM) for each age range. This is
obvious, as we considered T2D leading to CVD for the first group; on the other hand, the second
group considered only T2D. Thus, the selected two cohorts could be uniform to analyze in term of age
and sex. Additionally, male patients have a higher prevalence than female patients for both cohorts.
This is consistent with the data released by the Australian Institute of Health and Welfare (AIHW) [53].
Thus, the research dataset is selected following the Australian government statistics.

Table 8. Age and sex distribution of the population for both CohortT2DM&CVD and CohortT2DM.

CohortT2DM&CVD Population
%

CohortT2DM Population
%

Age
0–30 0 0

31–40 0.58 0
41–50 1.16 0.58
51–60 4.65 16.86
61–70 18.60 25
71–80 31.39 26.74
81–90 35.47 24.42

91–100 7.56 5.23
≥101 0.58 1.16

Gender
Male 59.30 69.65

Female 40.70 30.35

4.2. Limitations of the Proposed Framework and Potential Future Works

This study has several limitations. The main limitation comes from the fact that the dataset used
in this study uses real-world healthcare data. The quality of coding of these datasets is the main
constraint because of the different coding criteria across different hospitals. The changing trend of
policy is a cause of changes in the coding system. In addition, the expertise of clinical coders, funding
and time constraints can affect the quality of coding. The data used in this study come from the hospital
admissions and discharge summaries; thus, they do not include the GP (general practitioners) records
and subsequent diagnoses. This may underestimate the comorbidity conditions of the patients.
Additionally, the dataset collected from a private health insurer does not contain the information about
the patients when they are admitted to a public hospital as public patients. However, most of these
limitations are common for most administrative datasets. Another limitation of this study is that it
does not include ischemic heart disease, acute myocardial infarction and stroke as a CVD since this
study used the cardiovascular diseases mentioned in the Elixhauser comorbidity index. Also, this
study cannot draw the time span between first and last hospitalization, as the selection criteria for
cohorts limits the amount of data. Thus, the study considers the patients of cohorts with at least one
hospitalization. Nevertheless, despite these limitations, the proposed framework could be useful for
healthcare providers to obtain a better understanding of the progression of CVD in patients with T2DM.

As future work, the features extracted from the final disease network of chronic disease
comorbidities can be utilized to develop a predictive model for future chronic disease. This can
be implemented by comparing the final disease network with the individual disease network of a test
patient. If the features of the test patient’s network match significantly with the features of the final
disease network, the patient might be progressing on that chronic disease pathway.
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5. Conclusions

This study presented a new framework to understand the comorbidity of two chronic diseases
(T2DM leading to the development of CVD). For this, the proposed framework applied graph theory
and social network analysis to administrative data based on the Australian context. Two cohorts
(i.e., patients with both T2DM and CVD and patients with T2DM only) were selected to generate
the corresponding baseline disease network. The final disease network was generated from these
two baseline disease networks through attribute adjustment. This can represent the overall health
trajectory of the patients of both cohorts in terms of comorbidity progression over time. This was
then analyzed by network measures. As a result, this study found some risk factors (i.e., renal failure,
fluid and electrolyte disorders, chronic pulmonary disease, hypertension and obesity) that could
be associated with the development of CVD in patients with T2DM. The network-based methods
demonstrate the effectiveness of the proposed framework for understanding the progression of CVD in
patients with T2DM. Also, this framework can be tested for other groups of comorbidities to understand
their progression. Thus, the study can help healthcare providers to understand high-risk diseases
and the progression patterns between the recurrence of T2DM and CVD. Also, it can help providers to
manage healthcare resources efficiently.
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