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Abstract: The current information systems for the registration and control of electronic medical
records (EMR) present a series of problems in terms of the fragmentation, security, and privacy
of medical information, since each health institution, laboratory, doctor, etc. has its own database
and manages its own information, without the intervention of patients. This situation does not
favor effective treatment and prevention of diseases for the population, due to potential information
loss, misinformation, or data leaks related to a patient, which in turn may imply a direct risk for
the individual and high public health costs for governments. One of the proposed solutions to
this problem has been the creation of electronic medical record (EMR) systems using blockchain
networks; however, most of them do not take into account the occurrence of connectivity failures,
such as those found in various developing countries, which can lead to failures in the integrity of the
system data. To address these problems, HealthyBlock is presented in this paper as an architecture
based on blockchain networks, which proposes a unified electronic medical record system that
considers different clinical providers, with resilience in data integrity during connectivity failure and
with usability, security, and privacy characteristics. On the basis of the HealthyBlock architecture,
a prototype was implemented for the care of patients in a network of hospitals. The results of the
evaluation showed high efficiency in keeping the EMRs of patients unified, updated, and secure,
regardless of the network clinical provider they consult.

Keywords: blockchain; electronic medical records; EMR; resilience; information technology
architecture; data integrity

1. Introduction

Health can be defined as a state of complete physical, mental, and social wellbeing, and not just the
absence of disease or illness [1]. To achieve the above, each person should keep an appropriate record
of the medical controls and treatments they have received throughout their lives; however, this does not
happen. Most medical information systems are not interconnected, and each health center, laboratory,
specialist doctor, etc. has its own private database, with restricted access for patients. This situation
leaves the patients with complete responsibility to remember all their prior and current conditions and
treatments. This becomes a problem when, during each visit to a health system actor, it is necessary to
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rerecord the patient’s medical history, risking omissions with or without intention. This fragmented
view also prevents a historical analysis from being used to support new diagnostic processes.

In this context, and with the advancement of eHealth technology [2], electronic medical records
(EMRs) have emerged as the first part of a solution to offer the integration of a person’s clinical
information [3]. However, it is not enough since each health entity records the clinical information
of patients individually, disconnected from other entities. In addition, we must add the potential
inconsistency of the information among medical entities, as well as loss of data and the lack of control
of patients over who can see their clinical history [4]. That is, patients, despite being the main actor
protected by laws in many countries [5,6], have limited access to and little control over their health
information [7]. Putting all these problems together results in low effectiveness of the health system
for the treatment and prevention of diseases that affect the general population, which in turn generates
high costs in public health for governments, especially those in developing countries [8].

There are different proposals in the literature for electronic medical records (EMRs) [9–11]; however,
this is a topic still open to research since the integration of these requires not only a unified data
system, but the definition of policies and strategies that address current needs such as access to
data by the patient (whereby the patient can see all their medical history in one place), the user’s
participation in decisions regarding their information (access notifications and the possibility of
defining restrictions to third parties), security and traceability of data (avoiding modifications to data),
accessibility, and consistency.

A technology beginning to be used as a tool to solve some of these issues is blockchain. In 2009,
this concept was unveiled by Satoshi Nakamoto [12], and it was initially used to store transactions
originated by movements or changes in value of the Bitcoin cryptocurrency; however, the proposed
structure can be used to exchange any set of values in a distributed and secure way. In general,
a blockchain is a distributed system of nodes, with an immutable data structure, which allows the
transaction log to be kept in a secure manner, among many actors [13]. Blockchain technology has
been used not only in the financial field, but in various applications such as automatic driving of cars
and vehicle networks [14], educational records [15], identity management [16], chains of supply [17],
Internet of things (IoT) [18], and in the health area [19–21]. In the latter field, due to its characteristics,
blockchain can support the development of EMR solutions that comply with the requirements defined
above for these systems.

The advantages of blockchain in EMR were presented in different studies [22–28], in relation to
the fragmentation, privacy, and scalability of data. However, the solutions proposed in the literature
assume stable and permanent connectivity environments, which may not be the case for developing
countries [29], where, for reasons ranging from technical to economic, communication networks may
not be stable over a period of time, which generates connection failures that can be intermittent or
for long periods of time. Taking the above into account, and after analyzing the workflows of the
systems found in the literature, it can be seen that they do not contemplate solutions to connection
failures; thus, when facing a disconnection from the blockchain network, these systems in some cases
are unable to function properly. This situation could lead to the non-provision of services to patients or
clinical actors and, in other cases, could lead to the loss of integrity between the data stored in the local
databases of the providers (hospitals, clinics, laboratories, external doctors, etc.) and those replicated
in the blockchain.

In the present work, HealthyBlock is proposed as an architecture based on blockchain networks
that allows the development of electronic medical record systems shared between different clinical
providers, with resilience in data integrity in the event of connectivity failures and with usability,
security, and privacy characteristics. Likewise, the application of the proposed architecture is presented
in the development of an electronic medical records (EMR) system for the care of patients in a network
of hospitals and the evaluation of this prototype.

The conceptual development of the proposed architecture was done through the use of the
Archimate visual modeling language, which allows describing, analyzing, and communicating business
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architectures [30]. For the prototype carried out with the HealthyBlock architecture, a permissioned
blockchain network was created using Ethereum [31], with smart contracts for the management of users
and medical records of patients. For the development of the front-end development, ReactJS [32] was
used, and PostgreSQL [33] was used as the database system for local data storage. For the evaluation of
the prototype performance, parameters such as system latency, performance, and resource utilization
were measured.

The rest of this document is organized as follows: in Section 2, preliminary theoretical concepts and
related work to the development of blockchain architectures for health are presented. Section 3 presents
the proposed HealthyBlock architecture. In Section 4, the development of a prototype based on the
HealthyBlock architecture is presented. Section 5 addresses the environment and the tests carried out
on the prototype developed using the HealthyBlock architecture. Finally, Sections 6 and 7 are devoted
to the discussion on the proposed architecture, conclusions, and future work.

2. Literature Review

2.1. Background

2.1.1. Electronic Medical Records (EMRs)

There are various concepts associated with EMR such as electronic health record (EHR), personal
health record (PHR), electronic patient record (EPR), digital medical record (DMR), computer-based
patient record (CPR), patient-carried record (PCR), and computerized medical record (CMR). Of all
the previous concepts, the broadest is that of EHR, which is defined in the ISO/TR 20514: 2005 Health
Informatics, Electronic Health Record [3] standard. This document defines EHR as a repository
of information about a person’s health status in a format that can be processed by a computer,
which is stored and transmitted in a secure and accessible way by multiple authorized users, having a
standardized format that is independent of the electronic medical records system used and whose
purpose is that of accompanying the continuity of care efficiently and facilitating quality integrated
healthcare. For all purposes in this article, EMR is taken as equivalent to EHR.

2.1.2. International Standards for EMRs

There are a series of international standards that allow regulating the aspects of content, structure,
representation, distribution, security, confidentiality, authentication, and exchange, among other aspects,
of electronic medical records; the most recognized are HL7 (Health Level Seven International) [34],
ISO 18308: 2011 [35], and HIPAA (Health Insurance Portability and Accountability Act of 1996) [36].

2.1.3. Blockchain

A blockchain is a distributed, encrypted, and shared database among a group of participants called
nodes, which works like a ledger, keeping all network records or information in blocks [37]. In the
blockchain, the information stored in all the nodes is the same and cannot be eliminated, which serves as
a strategy for the protection and validation of the information. Likewise, the information is transmitted
to the entire network, and the members who receive it must verify the integrity of the information,
in order to be saved. The most common way of performing this task is called mining, which is the
generation of new blocks in the network, which contain the new transactions and the inclusion of
validation information that is verified by the rest of the nodes. To choose which of the different blocks
generated by the miners is the correct one, a consensus algorithm is used, the concept of which is
described in Section 2.1.5. There are three types of blockchain:

• Public or permissionless blockchain: public blockchain networks are those to which anyone has
access [38].

• Private or permissioned blockchain: private blockchain networks are those where control is
reduced to a single entity, responsible for maintaining the chain, giving permissions to the users
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that want to participate, proposing transactions, and accepting the blocks. A mining process does
not exist [38].

• Hybrid or consortium blockchain: hybrid blockchains are not open to public participation, but a
certain number of organizations, entities, or companies are responsible for managing the network
as a whole and keeping synchronized copies of the registry [38].

2.1.4. Smart Contract

Smart contracts are programs that govern transactions on the basis of a series of previously
programmed rules [39]. This program is stored on the blockchain and runs automatically with each
transaction. Smart contracts can have many contractual clauses that could be made partially or totally
self-executing, or both. To use a smart contract in the blockchain network, the conditions are first
programmed, then the parties involved are signed, and finally it is deployed on a blockchain such that
it cannot be modified while being used by the blockchain [40].

2.1.5. Consensus Algorithms

A consensus algorithm is a mechanism to determine whether the addition of a new block
to the chain is valid or not [41]. The main consensus algorithms are proof of work (PoW) [42],
proof of authority [43,44], proof of stake (PoS) [45], and practical byzantine fault tolerance (PBFT) [46],
among others. In the present work, proof of authority (PoA) was used. In this algorithm, previously
approved authority nodes called seals or validators are used that certify the transactions and blocks
in the network [43]. The main characteristics of this algorithm are (1) minimal use of processing,
since there is no need to solve complex operations to reach a consensus on which blocks to add to the
network, (2) lower energy consumption, since the validators do not compete with each other to validate
the blocks, (3) high performance, since its computational complexity is much lower, and (4) security,
since the nodes in the blockchain only receive new blocks from the previously approved validator nodes.

2.1.6. Connectivity Failure

In the present work, a connectivity failure is defined as an interruption between one of the nodes
of the blockchain and the remaining nodes of the blockchain network. In the node that suffers the
interruption, a copy of the blockchain is locally stored, which can still be accessed; however, information
quickly becomes out of date compared to the copy of the blockchain of the nodes that are still connected
to the network. This represents a problem because the disconnected node cannot process any new
transactions into blocks (i.e., mine). because the new blocks containing this information will most
likely become invalidated by the rest of the nodes in the network once the node reconnects; this means
that all patient information will not be synchronized correctly with the blockchain, thereby creating a
problem with the integrity of the data.

2.2. Related Work

This section discusses some existing proposals for blockchain-based architectures for EMRs.
MedRec [22], developed by Massachusetts Institute of Technology (MIT) researchers, is a decentralized
record management system, whose architecture offers the possibility of managing permits and data
exchange between different healthcare systems, but keeping the clinical data of patients in the local
electronic systems of hospitals and clinics. MedRec is supported by an Ethereum blockchain [31].
MedRec manages authentication, confidentiality, liability, and data exchange through the use of three
smart contracts. In the first of these contracts called registrar (RC), the data of the identities of people
who have some function within the clinical ecosystem are stored, as well as public keys. In the second
contract called patient relationship provider (PPR), the relationships between the patient and the
provider are established; this is issued when one node stores or manages data for another node, and it
allows patients to select which part of their medical records they wish to share. The third contract called
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summary (SC) allows patients to access their medical history, described by its authors as a “breadcrumb
trail” for participants in the system to locate their medical history, since it has a list of references
to patient relationship provider (PPR) contracts, representing all past and current commitments of
participants to other nodes in the system.

In [23], Medchain was proposed, which is a healthcare data exchange system that uses two separate
decentralized networks: a blockchain network where the fingerprint of data, session, and operation is
stored (data that are immutable) and a second peer-to-peer (P2P) storage network, where descriptions
of the data and the session are stored, which are mutable and, therefore, can be updated. To achieve
security and preservation of privacy, Medchain uses a session-based data exchange.

Patientory [24] is a patient-centered system supported by blockchain technology that enables the
connection of centralized and isolated electronic medical records (EMRs) for the storage of medical
records using distributed blockchain computing. Patientory implements HIPAA in relation to security
and privacy; for this, it encrypts the information of the medical records of the patients in each of the
medical service providers, whether they are hospitals or insurance companies. The architecture of
Patientory works on a permissioned blockchain, in which each node is authorized to interact only with
other nodes on the same network, with the HIPAA storage system, and with the RPC (remote procedure
call) server; the latter is the connection interface between Patientory’s permissioned blockchain and
the public internet network. In the proposed architecture, it also contains the key authoring entity,
in charge of generating the private/public keys that will be used in the blockchain and the HIPAA
database which stores the data that constitute private health information.

In [25], Dubovitskaya et al. proposed an architecture to manage and share electronic medical
records of cancer patients using a blockchain network. This architecture is formed by a membership
service whose function is to register users with different roles such as patient or doctor; in the latter
case, the system verifies if the doctor is registered with The National Practitioner Data Bank, to check
whether they are indeed a duly licensed physician. Likewise, the membership service is in charge
of generating the keys used by the patient to sign their medical history and the encryption keys to
guarantee the confidentiality of the medical records. Patient data are stored both locally in the database
of the hospital where the patient is being treated and in a cloud-based platform, so that they are
available to other members of the network. In the case of data storage in the cloud, these are stored
encrypted with the patient key generated by the membership system. This framework also implements
an application programming interface (API) for users, in charge of receiving the actions from the
users and taking them to the nodes where they are organized by a leading node, which organizes
them in blocks and initiates the consensus protocol. These transactions are replicated in all the nodes
according to the logic programmed in each one of them.

The Ancile platform [26] is a system for the interoperability of electronic medical health records
implemented on Ethereum, which also preserves the privacy of patient information. In Ancile, there are
multiple parts that can interact through a private blockchain. Medical records are stored on the
blockchain using hashes.

In MeDShare [27], the authors propose an architecture for the storage, privacy control, and exchange
of medical data between providers in an environment without trust. MeDShare uses the blockchain
network to save the history of the operations carried out on the data by the participants and smart
contracts to enforce access control and, in case of misuse, revoke the access permissions granted.

There are other related papers [47–50], which proposed blockchain-based EMR architectures,
that addressed different approaches to ensuring privacy in electronic medical record systems. Due to
the above and given that privacy for electronic medical records is regulated by government laws [6,36],
a review of the literature on this topic was carried out. In this review, it was found that a very
important aspect is the type of access control to be used for the confidentiality of clinical information,
mainly highlighting the role-based access control (RBAC) access control [51–54]. In this type of control,
each user who accesses the system is assigned a role, which, in turn, has a defined series of permissions
and restrictions. For the creation of this type of control, it is proposed that the institutions, hospitals,
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or some committee define them previously, while other studies suggest that it is the patient who may
include refinements or restrictions on access permits to their clinical history, thereby customizing them
according to their needs. Another important aspect of privacy is the way in which data are stored;
for this purpose, [10] proposed a cloud storage scheme in encrypted form of electronic medical records,
which contain personal information, diagnoses, medications, allergies, etc., along with attribute-based
access policies to stored data. Likewise, the proposed schemes have re-encryption systems that allow
authorized users, friends, family, doctors, and insurance providers, among others, to decrypt the
requested EMR files. In [55], the authors proposed, for the secure storage of health data, a protocol
using a symmetric encryption scheme that allows the secure storage of encrypted versions of a user’s
medical data.

After analyzing the architectures found in the literature, some generalities can be identified:

• They are implemented to unite a set of geographically dispersed clinical providers.
• In some cases, these systems communicate with the existing EMR systems in clinical providers,

especially with their local databases, and, in other cases, the proposed architecture completely
replaces them.

• In most of the designs, blockchain is used as a repository of cryptographic hashes that act as
pointers to indicate the place where medical records are stored in local databases; in other cases,
EMRs are stored entirely on the blockchain.

• All systems propose strategies to guarantee the security and privacy of medical records, which is
understandable given the sensitivity of clinical information.

• Generally, private blockchains are used, but some proposals also use public blockchains.
• Different consensus algorithms are used to mine or store transactions on the blockchain, the most

widely used being proof of work (PoW).
• In each clinical provider, there is a blockchain node, which has a copy of the chain and, in order to

improve efficiency, this node is a blockchain miner.

As can be seen, the systems found in the literature address different concerns about the creation
of electronic medical record systems supported by blockchain technology; however, none of these
contemplate the operation of the system when a blockchain node, located in a clinical provider,
is disconnected from the blockchain network. This is critical because, during the time it remains
disconnected, new transactions are generated at the node, which must be referenced or stored in the
blockchain. The studies exposed in the literature neither contemplate this case nor indicate how their
systems work under these conditions; however, from the analysis of the workflows shown in their
publications and on the basis of the normal operation of blockchain networks, it can be inferred that
the proposed systems, having no way of detecting that the node was disconnected from the blockchain,
will continue to send transactions to it, in which case, there are two potentially critical problems:

• The first scenario occurs if the blockchain node that was disconnected is a mining node. In this case,
the node acts as a fork of a single node of the blockchain; therefore, when receiving transactions,
it proceeds to mine them on the local copy of the blockchain. Once this node reconnects with
the blockchain network, the copy of the chain that it contains and that was used to store the
transactions will not be valid for the rest of the blockchain network. This occurs because the
remaining nodes of the chain act as the majority, and they have a different version of the blockchain
than the one at the node; thus, the blockchain will proceed to synchronize and send the valid copy
of the blockchain, overwriting the previous one. This will result in the loss of the last transactions
created in the node of the clinical provider, which will lead to a failure in the integrity of the data
between the blockchain and the node’s local database.

• The second problem occurs when the node that loses connectivity is a non-mining node.
According to the operation of blockchains in general, the transactions received by a node,
during the time it is not connected to the blockchain network, are stored by it and, once the
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node reconnects, it will proceed to send the transactions for mining. When contrasting this
general operation of the blockchain with the analysis of the workflows of the EMR systems found
in the literature, it can be observed that many of them need to receive confirmation from the
blockchain nodes related to the mining of the transactions; however, as the node is disconnected,
this confirmation cannot be generated and, therefore, the workflows will be interrupted.

Therefore, the systems found in the literature may not function properly.
Failures related to connection to the node of the blockchain network and their impact on the

integrity of the system data are the main problems addressed in this work, whereby the proposed
architecture takes into account the fragmentation, usability, security, and privacy of the systems of
electronic medical records, using blockchain networks.

3. Proposed Architecture

3.1. Preliminaries

In this section, some preliminary concepts used for the development of the proposed architecture
are presented.

3.1.1. Software Components

A component is a unit of a system that can be developed independently and, together with other
components, gives functionality to a system through its interfaces [56]. Figure 1 shows the graphic
representation of a component.

Figure 1. Representation of a component.

3.1.2. Information Technology (IT) Architecture

The IT architecture is a view of the system that includes the main software components, as well as
their behavior, interaction, and coordination to achieve the objective of the system [57]. There are
different types of architectures, one of the most used being layered architecture, in which the system is
organized in layers in such a way that the software components of each layer communicate with the
software components of other layers through known interfaces [58], and each lower level provides
its services only at a higher level if the design involves strict layers or at different levels if the design
is layered.

3.1.3. Archimate Modeling Language

Archimate is a visual language with a default iconography to describe, analyze, and communicate
many concerns of enterprise architectures as they change over time [30].

3.1.4. CRU (Create, Read, Update) Operations

This acronym is used throughout this paper to indicate the three operations that can be performed
on digital data management in environments with blockchain networks: create, read, and update.

3.2. Architecture Overview

Figure 2 presents a general usage scenario for the proposed HealthyBlock architecture. In this
graphic representation, the essential elements of implementation of the architecture can be seen, such as
medical blockchain, responsible for storing the EMR, and health entities, which have database servers



Int. J. Environ. Res. Public Health 2020, 17, 7132 8 of 38

and applications that synchronize with the blockchain for the local storage of the EMRs. As it can be
seen, the internal actors of these health entities such as doctors, nurses, and other authorized personnel
communicate with the system through the internal application server. Likewise, the synchronizer
component is in charge of keeping the medical records of the local databases of health entities unified
with those of the blockchain, guaranteeing data integrity and resilience in the case of connectivity
failures. Finally, there are external actors, such as patients, laboratories, and external doctors who
communicate with the blockchain through an external web server. HealthyBlock is based on the
following premises:

• The owner of the electronic medical records is the patient.
• The internal and external system actors are enrolled in the system by an administrative authority,

which is designated by the participating entities of the system and is in charge of verifying the
suitability of the enrollment of the actors who request it.

• When a patient enters the system, a family doctor is assigned. This doctor becomes a custodian
and has full access to that patient’s electronic medical records.

• A patient may have an additional custodian of their EMRs, especially in cases when the patient is
a minor or for emergencies.

• A patient’s medical records have an access control policy that can only be changed by the patient
or the data custodians. This policy is recorded in the blockchain, as are the changes made to it and
the author of the changes. In this way, the traceability of who had access to the data is ensured.

Figure 2. Architecture overview.
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The cases of interaction of the actors, both internal and external, with the HealthyBlock architecture
are shown in Figure 3; a description of these cases is given below.

Figure 3. Interaction cases of the different actors.

• Case 1. Patient or family doctor creates or updates access levels. This case starts when a patient or
family doctor receives a request for access or wishes to give access to some actor in the system
of their clinical data or those of their patient. To do this, the user enters the system, which asks
for access data. The system verifies, according to the credentials, if the user has permission
for the action to be performed; if so, it grants permission, and the patient, custodian or family
doctor proceeds to make changes in the access levels, which are stored in the local database.
Then, the synchronizer, if there is a connection to the network, proceeds to send the transactions
to the blockchain; otherwise, it marks them as not sent before proceeding to send them as soon as
there is a connection to the blockchain. In case of not having the required permissions, the system
sends a request for authorization to the managing authority.

• Case 2. Patient or family doctor consults EMR. This case starts when the electronic medical records
of a patient are going to be consulted by the patient herself or by its family doctor. To do this,
the user enters the system to request the access data. After that, the system verifies the permissions
for the action to be carried out; if permitted, the synchronizer proceeds to extract the EMRs from
the local database and proceeds to update them with those stored in the blockchain, as long as



Int. J. Environ. Res. Public Health 2020, 17, 7132 10 of 38

there is no connectivity failure. In the case of a connectivity failure, it shows the latest update
of the EMRs stored in the local database. If the actor does not have the required permissions,
they can make a request to the administrative authority to enable permissions.

• Case 3. Attention to the patient in a health institution. This case begins when a patient
attends a medical visit to a health provider, which may be their daily provider or a new one.
There, the patient is cared for by the medical staff, who, if they have the appropriate permissions,
and, according to approved clinical practices, start by consulting the patient’s medical records.
For this, the synchronizer extracts the existing EMRs from the local data of the hospital and then
proceeds to update them with those stored in the blockchain, as long as there is connectivity.
In case of a connectivity failure, the system shows the latest update of the EMRs stored in the
local database. Next, the medical staff performs the patient care and generates a series of medical
records that are stored by the synchronizer: first, in the local database of the health provider,
and then, if there is a connection to the network, it proceeds to send the transactions to the
blockchain. If there is no connection, the synchronizer marks the new records as not sent and
waist until there is a connection to send them to the blockchain, thus making them available for
all the nodes of the system. In case of not having the required permissions, a request is made to
the patient or the family doctor for access.

• Case 4. Consultation with an external provider. This case begins when a patient attends a
consultation with an external doctor or a laboratory. In this appointment, the doctor accesses
the patient’s data through a web interface; however, generally, this external provider has limited
access to the patient’s EMRs. At the end of the session and if the doctor has the appropriate
permissions, they can enter the new records into the patient’s medical record on the blockchain.
In the case of not having the required permits, a request is made to the patient or family doctor.

3.3. Design of the Architecture

In this section, the design components and layers of the HealthyBlock architecture are presented.
In order to show the relationships between layers and components, a layered viewpoint, using the
ArchiMate® 3.1 (The Open Group, San Francisco, CA, USA) specification, was developed, as shown
in Figure 4. The design serves as a guide to develop blockchain-based, unfragmented electronic
medical record systems with data integrity, usability, security, privacy, and resilience characteristics
in connectivity failure scenarios. As can be seen, the HealthyBlock architecture is made up of the
following layers: technology, technology services, application components, application services,
processes, processes services, and presentation.

A description of the proposed layers and their components is presented below.
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Figure 4. HealthyBlock architecture—layered viewpoint.

3.3.1. Technology Layer

This layer is made up of the hardware components of the architecture, such as servers and
communication equipment, which are necessary to create the network that allows the operation of the
EMR system. It is also responsible for the physical storage of medical records, either on the blockchain
so that they are available to all the actors in the system or in the local databases of medical service
providers. Three types of servers are proposed:
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• Web servers (hardware): these elements host part of the system for encryption, obfuscation,
and synchronization of electronic medical records. These servers are configured with the operating
system and the web server (software) chosen to host the applications.

• Local database servers (hardware): these servers are configured with the operating system
and the chosen database server (software) to store the clinical information of the patients
locally. Hospitals may have their own information systems, but they must provide a two-way
communication channel with the HealthyBlock system, which allows obtaining local data to
be published on the blockchain and made available to all actors, and receiving patient data,
which should be included in the patient’s local medical history.

• Servers (hardware) to host the nodes of the blockchain network: these servers are configured with
the operating system, the blockchain on which the smart contracts will run, and a blockchain
client in charge of providing the configuration interface for the nodes and managing the
connection with other nodes to create the blockchain network. An important element when
configuring the blockchain node is the choice of the consensus algorithm, for which the proof
of authority (POA) algorithm is recommended given its advantages for private blockchain
networks. It is also suggested that health institutions have a blockchain server to support network
maintenance and guarantee access to the most up-to-date synchronized information even under a
disconnection scenario.

It is important to indicate that the institutions can choose to have a single server (hardware) on
which the operating system, the web server (software), the database server (software), the blockchain,
and the blockchain client are installed, but with a potential compromise on performance.

3.3.2. Technology Services Layer

This layer is responsible for exposing the services offered by the technology sublayer and provides
communication between the latter and the application components sublayer. The services offered by
this layer are the blockchain service, web service, and database service.

The functions of the blockchain service are (i) establishing the connection to the blockchain,
performing two specific functions for this (first, it acts as a wallet that allows system users to have a
unique identity to control their interactions with smart contracts, and, second, it establishes a bridge
for the upper layers of the architecture to connect with the blockchain network, allowing them to
execute actions and receive data from the blockchain), and (ii) using the blockchain as a repository of
information from medical centers such as hospitals and references of patient affiliation to different
medical centers, carrying out the process of saving user data and all their medical information, such as
treatments and medicines, on the blockchain.

The web service is in charge of receiving the requests made by the upper layers and managing
them on the web server. This web service must be able to (i) make bidirectional and/or unidirectional
and synchronous or asynchronous connections, (ii) implement a web information transfer and delivery
protocol to the upper layers, in order to have access to all the functionalities proposed by the
HealthyBlock architecture, (iii) encrypt or obfuscate medical history data, and (iv) synchronize clinical
data from local hospital databases with clinical data stored on the blockchain. The database service
controls and accesses the databases that each medical entity has to locally store the clinical history of
their patients.

3.3.3. Application Components Layer

This layer is made up of three major components called the EMR Component, the security component,
and the encryption and synchronization component. These elements are responsible for providing the
services related to electronic medical records, users, security, and privacy. The functionality of these
components is detailed below.



Int. J. Environ. Res. Public Health 2020, 17, 7132 13 of 38

EMR Component

The EMR component (Figure 5) is made up of the EMR manager, HL7, and obfuscation components,
which together provide the functionalities for the record management.

Figure 5. Electronic medical record (EMR) components.

• EMR manager: This component is in charge of managing the data structure of the records,
including the different sections and fields that the records have. It works in conjunction with the
synchronizer component to which it sends the captured EMR information.

• HL7 component: For the construction, storage, and transmission of the records, according to the
Health Level Seven International (HL7) clinical standard. This component oversees formatting
the EMR data such that they comply with the rules established in HL7.

• Obfuscation component: Obfuscation consists of replacing or altering the existing real data to hide
details and protect either the identity or the sensitive characteristics of the information of a user.
Ideally, the technique should resist reverse engineering attacks [59]; however, at the same time,
it should not alter the data in excess, so that it remains useful for some level of decision-making.
Data obfuscation techniques have three main properties: reversibility, specification, and change [60].
In accordance with these concepts, the proposed obfuscator alters the clinical data of the patients
in order to be able to carry out trend analysis on them, but without being able to identify the real
data or its owner. This component performs the obfuscation process on the basis of the access
levels proposed in [61] and defined in the role manager component described below.

Security Component

The security component (Figure 6) is in charge of the roles of users, requests for access to the
records, and the keys (public and private) of system users and, therefore, provides authentication of
access to the EMRs stored in the blockchain and local databases.
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Figure 6. Security components.

• Roles component: This component is in charge of managing the roles assigned to each user within
the system. Each user who is registered in the system is assigned a role (patient, doctor, laboratory,
administrative, etc.), which in turn has a defined series of differential accesses which refer to
the assignment of a set of predetermined permissions, in order to reduce the complexity of
establishing a user access to clinical information for a user/patient. The proposed access levels in
Figure 7 are based on those defined in [61]: (i) no access, where no information is revealed from the
patient; (ii) information, where just basic descriptors of the general behavior of the data are shared
but no specific data are revealed (range, trend, statistical distribution); (iii) sample, where the
shared information is restricted in quantity or quality of the data (last data, every two data points,
truncated or obfuscated data); (iv) full access, where the entire dataset is shared without alteration.

Figure 7. Access types.

• Requests component: This component is in charge of managing requests for access to a patient’s
clinical data. These requests can be issued by a doctor or by an entity and must be approved by
the patient or the family doctor. In case they are approved, this component creates a relationship
of the patient’s records with the user to whom the request was approved, as well as the type of
role that is granted in the system.

• Keys component: This component is in charge of generating and managing user accounts with
which you can interact and carry out transactions on the blockchain. While, in a conventional
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system, a user/password pair is used to authenticate, in the blockchain, accounts whose access
credentials are a cryptographic pair are used, which, for security, must be made up of a public key
and a private key, which can be seen as the username and password of the blockchain. As can be
deduced from the above, these accounts are necessary for interaction with the blockchain; therefore,
each user in the system must be associated with an account on the blockchain, with their public
key and private key being the access credentials. Likewise, the keys component generates the
public and private keys used by the encryption component to carry out the encryption processes;
the generation, management, and correct validation of these keys are of utmost importance,
in order to carry out a correct encryption of the EMR.

• Authentication and registration component: This component is in charge of registering and
authenticating the different actors that have access to the system, such as the administrative
authority, doctors, hospitals, clinical centers, and patients. At the time of registration, the user
is assigned a name, a password, a role, and an access level that, by default, is without access.
Likewise, the keys component generates the public and private key for access to the blockchain,
and the public and private keys of the blockchain are stored in the user’s account of the system to
facilitate later access. Later, public and private keys are generated for the encryption processes;
the public key is stored in the blockchain so that it can be used by all the actors in the system who
want to communicate with the user, while the private key is delivered to the user for custody.
At the time of access to the system, the user uses the username, password, and private encryption
key that was assigned. If the authentication process is correct, this component allows access
to the system and, in collaboration with the roles component, grants the user the access levels
assigned to them for CRU operations on the EMR system. This authentication component is
also responsible for generating the log of the transactions carried out by users on the system,
in order to carry out audit processes of visualizations, additions, or modifications to the electronic
medical records (EMRs).

Encryption and Synchronization Component

This component, as its name implies (Figure 8), provides the security and synchronization
of the electronic medical records (EMRs) stored in the blockchain with those of local data from
clinical providers.

Figure 8. Encryption and synchronization component.

• Encryption component: Cryptography is an encryption technique that disorganizes information
in a particular way so that only the user can read and process it [62]; there are two types of
cryptography techniques: secret key cryptography and public key cryptography. In secret key
cryptography, a single key is used with which both the sender and the receiver encrypt and
decrypt the data; this is also known as symmetric encryption. Public key cryptography is made
up of two encryption systems that give rise to a public key that is shared with all those to whom
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it wants to communicate and a private key that is secret [63]. In the proposed HealthyBlock
architecture, public key cryptography is suggested, since it offers greater security, and special care
must be given to the delivery of the private key to system users.

• Synchronizer component: This component is in charge of creating the bridge between the
blockchain network and the internal databases of the medical centers. The structure of the module
can be seen it Figure 9, and the main functions of the synchronizer are as follows:

# Detect system connection failures to the blockchain network, through a connection sentinel.
# Store transactions (including user information, permissions, and the medical records of a

patient) in the local database of the medical provider to later send them to the blockchain.
# Manage the transmission of transactions to the blockchain, implementing a buffer to

avoid errors in the block creation of a disconnected node. The intermediate buffer can
be implemented using a queue management algorithm or other existing techniques for
managing buffers available in the literature.

# Download the information of users and patients from the blockchain when it is requested
by medical staff and it is not stored in the local database; this means that the synchronizer
works on demand, which reduces the work load of the component and reduces the amount
of information stored on the local database. For example, if a patient has an appointment at
a new health provider, the patient’s EMRs are downloaded from the blockchain and saved
in the local database. If the hospital is experiencing a connectivity failure, the synchronizer
updates the information in the local database from the latest version of the local blockchain
node; thus, the system guarantees access to the latest data on the blockchain before the
failure. Once the connection is re-established, even during patient care, the synchronizer
notifies the doctor if there are new records on the updated blockchain.

# Guarantee the resilience in the integrity of the architecture data, since, in the event
of a connectivity failure of a clinical provider’s node, the synchronizer, during the
disconnection period, stops sending transactions to the blockchain and only stores them in
the local databases of the providers, marking them as not sent in said database. Once the
synchronizer detects that the provider’s connection has returned, it proceeds to send the
unsent transactions that were generated during the disconnection period, so that they can
be included in the blockchain.

# Execute algorithms of record searching when inserting transactions to the blockchain and
when downloading information from it. It must be programmed with efficient search
algorithms, in order to improve the access speeds of the required information.

Figure 9. Synchronizer buffer.
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3.3.4. Application Services Layer

This layer is responsible for exposing the services offered by the application components layer.
The services found in this layer are application services EMR, application services encryption and
synchronization, and application services security. The above services are used by the process layer to
carry out the functional processes of the HealthyBlock architecture and are supported by the EMR,
security, and encryption and synchronization components, the operation of which was described in
the previous section. It is important to indicate that the application security services is made up of
the authentication, data registry, keys, and permissions services, the use of which is shown in the
next section.

3.3.5. Processes Layer

In this layer, three processes are executed that allow the functionality of the HealthyBlock
architecture: User processes, permission processes, and EMR processes. These processes and their
relationships with the components of the lower layers are described below.

• User processes: This process begins with a CRU request by an actor before an administrative
authority of the system (Figure 10); then, an authentication process is performed by the
administrative authority. For this, the system relies on the service authentication that is provided
by the authentication, keys, and roles components. Then, it is validated whether the request
is a creation or not. In the case of a creation request, the user data are registered, supported
by the data registration service provided by the authentication component. The system then
generates the public and private keys for the blockchain and the public and private keys for
the user, while the user’s private key is delivered to them for safekeeping. Next, according to
the role and type of user, the access level for the requesting user is created, supported by the
access service that is provided by the roles component. Finally, the transaction is concluded,
and the system, by means of the application services encryption and synchronization, which is
provided by the encryption and synchronization component, takes the data of the transaction,
encrypts them, and saves them on the blockchain. If it is not a creation request, but rather a
read, update, or delete request, the data of the requesting user are verified, relying on the data
registration service, which is provided by the authentication component, and then the request is
processed. request required. Finally, the transaction and the system are concluded by means of
the application services encryption and synchronization, which is provided by the encryption and
synchronization component, which takes the transaction data, encrypts them, and saves them in
the local database and the blockchain.

Figure 10. User processes.
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• Permits processes: This process begins with a request for permission to access a patient’s electronic
medical records by an actor, generally a hospital or a doctor (Figure 11). The patient or authorized
guardian then authenticates themself in the system, through the authentication service that
is provided by the authentication, keys, and roles components. Next, the patient performs
the CRU operation; that is, it allows access to new users, and modifies or updates access to
their medical records, relying on the system access service, which is provided by the roles
component. Finally, the transaction is concluded and the system, by means of the application
services encryption and synchronization, takes the data of the transaction made, encrypts them,
and saves them in the local database and blockchain.

Figure 11. Permitting processes.

• EMR processes: This process usually begins with a patient’s consultation with a medical provider
(Figure 12). Next, the medical provider authenticates themself in the system through the
authentication service, which is provided by the authentication, keys, and roles components.
The system then verifies if the provider has sufficient permissions to view, create, or update
the medical records; if so, it gives access to the EMRs and the medical provider proceeds to
perform the necessary CRU operations on the patient’s EMRs, using the application services EMR,
provided by the obfuscator and HL7 components, and the application services encryption and
synchronization, using the encryption and synchronizer components. If the medical provider
does not have access to the patient’s records, the system gives them the option to make a request
to access the EMR; this access request is supported by the system access service which is provided
by the roles component. In the two ways previously described, the transaction and the system are
concluded by means of the application services encryption and synchronization, which takes the
data of the transaction made, encrypts them, and saves them in the local database and blockchain.
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Figure 12. EMR processes.

3.3.6. Processes Services Layer

This layer is responsible for exposing the services offered by the process layer. These services are
used by the presentation layer to advance these processes. These services are divided into two groups:
processes services EMR and processes services security. These services are accessed by users and base
their functionality on the processes described above in the process layer.

3.3.7. Presentation Layer

This is the output layer of the system. It is made up of the web client component, which, in turn,
is supported by a browser through which the user can access the system. Likewise, it is made
up of interfaces for clinical, patient, and medical use. These interfaces allow the consultation and
management of the EMR, administrative interfaces, and local and administrative entities. The first is
used by the local administrative personnel of the healthcare entities to, for example, assign a doctor to
a patient. The second is used by the administrative entities to create or update the users of the system.

4. Developed Prototype

The deployment of the HealthyBlock architecture for the execution of the prototype was carried
out in the test environment, detailed in the diagram shown in Figure 13. As can be seen, for the
technology layer, the option of a single server (hardware) was chosen, which contained the base
operating system, web server (software), database server (software), blockchain, and blockchain client.
Likewise, the application components and application services layers of the HealthyBlock architecture
were executed on this server, either as programmed components or as smart contracts, as explained in
Appendix A. For privacy purposes, no real-life patient medical data were used in the performance tests.
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Figure 13. Architecture deployment diagram.

In Appendix A, all the components shown in the prototype deployment model (Figure 13) are
presented, as well as the development environments and contracts used to implement the components
of the HealthyBlock architecture layers.

5. Evaluation

5.1. Testing Environment

For the development of the tests on the prototype, the following hardware characteristics were
used in the client computers: Intel Core i3-7020U 2.30 GHz processor, 2 cores, 3 MB cache, 4 GB RAM
1200 MHz DDR4, 1 TB hard disk, and 433 Mbps 2.4 GHz/5 GHz wireless network card.

For the server computers, the hardware characteristics were as follows: Intel Core i7-870 3.6 GHz
processor, 4 cores, 8 MB Cache, 8 GB 2400 MHz DDR3 RAM, 1 TB hard disk, and 1 Gbps network card.
Both the client and the server used the Windows 10 (64-bit) operating system.
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For the local network device, a Technicolor TC8305C Gateway was used, with broadband access
via the integrated DOCSIS 3.0 (8 × 4) cable modem with 1 Gbps Ethernet ports and IEEE 802.11b/g/n
2.4 GHz wireless access points. For the wide area network, the OpenVPN application was used,
which allows virtual private network (VPN) connections to be made in order to simulate geographically
separated equipment.

The blockchain used for the development of the prototype given its ability to execute smart
contracts was an Ethereum permissive network, which was configured with a proof of authority
consensus algorithm. Smart contracts were written in Solidity. Remix IDE was used to compile and
deploy the contracts on the blockchain.

The performance of the prototype was evaluated using the System Explorer v7.0.05356 [64] (Mister
Group), and Apache JMeter v5.2.1 (Apache Software Foundation, Wakefield, MA, USA) [65] tools in a
distributed manner, as shown in Figure 14.

Figure 14. JMeter distributed configuration.

The experimental parameters are shown in Table 1.

Table 1. Experimental parameters.

Variable Levels

Number of threads (users) 50, 100, 200, 500, 1000
Ramp-up period (seconds) 60
Same user on each iteration Yes

Duration (seconds) 300

5.2. Performance Indicators

The main criteria used to evaluate the performance of the prototype derived from [66,67] were
as follows:

• Latency: measure of responsiveness that represents the time it takes to complete the execution of
a request.

• Transaction throughput: the number of successful transactions that the prototype can process
per second.
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• Resource utilization: utilization of resources while processing requests and responses of
transactions. Resource utilization can be measured by checking the resources used by the
prototype in the CPU, memory, network, and I/O in a defined period of time.

5.3. Performance Results

Figure 15 shows the minimum, maximum, and average latency results when executing query
requests and creating electronic medical records. These response times are those used by the
synchronizer to carry out all concurrent requests; however, the end user would not perceive these
times, since electronic medical records are first stored in the local databases of health entities and
then be uploaded to the blockchain. As can be seen, different numbers of users were used to observe
the variation in the response time, compared to consultation and insertion requests. As can be seen,
the query requests have lower latency since they do not need to be synchronized, obtaining for the
analyzed user groups an average latency range of 58 ms to 622 ms with a linear behavior between each
group of users. For requests to insert electronic medical records, response times increased, given the
synchronization and validation operations that must be carried out and previously described in this
document, obtaining an average latency range of 633 ms to 10,676 ms, following a linear behavior among
each group of users. For the analyzed user groups (50, 100, 200, 500, and 1000), a maximum number of
transactions per second was obtained for each group (110, 120, 200, 240, and 600, respectively).

Figure 16 shows the performance and resilience of executing electronic medical record creation
and query processes to obtain the number of successful transactions that the prototype can process and
synchronize. The presented values were obtained from the transactions carried out in the previous
latency tests with user groups. On average, the prototype performance was 99.54% for high-concurrency
scenarios greater than 900 users and 100% for the synchronization of successful transactions made on
the system.

Figure 17 shows the synchronizer latency for updating a node’s local database when that node
disconnects from the blockchain network and reconnects. To develop this test, which seeks to verify
the resilience of the prototype in terms of response times, one of the nodes of the prototype was
disconnected and 50, 100, 300, 500, and 1000 records were loaded in the node that was connected in the
blockchain; then, the node that was disconnected to the blockchain was reconnected, and the update
times were taken for each group of records indicated in the local database. As can be seen, the latency
times had a minimum of 275 ms and a maximum of 802 ms, being optimal synchronization times for
high-demand processes when the EMR information is required to be synchronized.

Figure 18 shows resource utilization during testing of the HealthyBlock prototype. As can be
seen, system parameters such as RAM memory usage (MB), average CPU usage (%), disk performance,
and incoming and outgoing traffic were measured. The graph shows that, despite increasing incoming
traffic from 19 MB to 332 MB, the average CPU usage remained practically constant at approximately 13%.
Memory usage for these request ranges increased from approximately 95 MB to 430 MB, representing a
usage range of 1.2% to 5.3% of total available system memory; this does not represent stability problems
for a server with 8 GB of memory onward running the prototype. Finally, values such as disk throughput
(0.1 MB) and outgoing traffic (10.25 MB) remained constant throughout the tests carried out.



Int. J. Environ. Res. Public Health 2020, 17, 7132 23 of 38

Figure 15. Latency results: (a) query latency EMR; (b) insertion latency EMR.
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Figure 16. Throughput and resilience of the HealthyBlock prototype.

Figure 17. Synchronizer resilience time.

Figure 18. Resource utilization of the HealthyBlock prototype.
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5.4. Functionality and Usability Evaluation

To evaluate the usability and functionality of the prototype, a survey was conducted of 32 people
related to the medical area, who performed the roles of patient, doctor, laboratory, administrator,
or family doctor/staff. They answered nine questions corresponding to usability for a total of 288 answers.
Eighteen questions were answered for functionality, for a total of 576 answers. Appendix B shows
the instrument and how to carry out the survey. The results obtained show an acceptance of 79% of
the prototype regarding its usability (Figure 19) and an 80% acceptance regarding its functionality
(Figure 20).

Figure 19. Usability survey results.

Figure 20. Functionality survey results.

6. Discussion

The proposed architecture provides a secure and resilient infrastructure for electronic medical
records, which maintains an integrated view of the medical records of patients in a hospital system.
Security and privacy are provided through encryption and authentication techniques across the
blockchain. Likewise, the architecture proposes a private network configured with a consensus
algorithm (POA), which, in addition to making the privacy of the system more robust, allows scalability,
since a large number of transactions can be executed optimally given that the consensus algorithm
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(POA) does not require as much processing time. The use of smart contracts for access control and role
definition guarantee security as to who can enter the system. An additional feature that is achieved
when using blockchain networks is the immutability of EMRs, which is given by the data structure
that the blockchain possesses and which guarantees the detection of subsequent changes in data and
multiple copies in the network. Likewise, the consensus algorithm (POA) proposed in the architecture
guarantees the veracity of the copies of the medical records at each node.

It is important to note that the storage space is going to grow rapidly, since it holds the records of
all the patients in a hospital network instead of just references to their local databases, like other existing
solutions. However, the advantages in terms of security and accessibility outweigh the storage costs.
In addition, there is the possibility that thin clients can connect to the blockchain, without necessarily
having to store the massive data structure, thus allowing the participation of a large number of users,
registered on the blockchain, but without the limitation of storage, which only use the authentication
and access services of the EMR system.

A key element of the HealthyBlock architecture that must be carefully programmed is the
synchronizer, since it is the core of the system, due to its functions of maintaining the integrity of
the system data. This element has a great impact on the latency times of the system, as observed in
the performance tests carried out. During the development of the prototype, slight changes in the
querying design, both on the local database and on the blockchain, generated changes in performance.
The local database still needs to improve performance on EMR querying, whereby improvements can
be implemented until the blockchain technology optimizes their data structures for querying.

7. Conclusions

In this article, HealthyBlock was proposed as an architecture based on blockchain networks,
which allows the development of unified electronic medical record systems between different health
providers, with resilience in the integrity of data in the event of connectivity failures and with
characteristics of usability, security, and privacy, For this, the architecture proposes the use of software
components that allow the detection of failures and the correct synchronization of the data between
the local databases of hospitals or clinical centers and the blockchain, thus guaranteeing that the actors
have secure access to consistent clinical information. Using the HealthyBlock architecture, a prototype
was implemented for the care of patients in a network of hospitals, from which it was possible to
observe, in the results of the evaluation, a high efficiency to keep the EMRs of patients, regardless
of the clinical network provider they see, as well as residence after a connectivity failure, with very
short synchronization times. The experiment demonstrates the feasibility of implementing prototypes
developed from the HealthyBlock architecture in a productive environment. The implementation of
the test architecture can be accessed in a GitHub repository for further study [68].

As future work, expansion of the architecture components is proposed to achieve the following:

• Patients should be able to download their records on portable media, such as cryptographically
signed flash cards or cell phone APIs, in such a way that patients, when making a visit to a clinical
provider, and in case the system of this provider is faced with a connection failure, can perform a
wired or wireless synchronization between the most up-to-date version of the EMRs that they
have and the provider’s local databases.

• Integrate clinical decision support services (CDSS) to assist physicians in making decisions about
the diagnosis of their patients.

• Support patients in their health routines such as medicine schedules, medical appointment
reminders, etc.

In addition, the creation of a new data structure for the blockchain was proposed, which allows
not only data security but also a more efficient query, since it currently behaves as a common linked
list with a large size expected to arrive. Having the linear search before large volumes of data and
concurrency can generate high latency. It is proposed to continue investigating other consensus
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algorithms that also allow greater agility in the verification processes of blocks, even supported by thin
clients that do not necessarily store the blockchain but have available computing capacity. In relation to
data privacy and access control, the validation of credentials with biometrics through a mobile device
is considered as a future improvement, so that the process of assigning permits can be carried out more
quickly, especially when the patient is in front of the clinical actor who requires it. Finally, the definition
of a more flexible medical record storage structure is essential to store a wider variety of data that a
real EMR application will require.
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Appendix A. Description of the Prototype

Below is a detailed description of the implementation of the prototype, used to perform the
experiments and performance evaluation.

Appendix A.1. Client

The hardware features used in the client computers were as follows: Intel Core i3-7020U 2.30 GHz
processor, 2 cores, 3 MB cache, 4 GB 1200 MHz DDR4 RAM, 1 TB hard drive, and 433 Mbps 2.4 GHz
wireless network card/5 GHz. The components and software used in the clients to execute the prototype
are detailed below.

Appendix A.1.1. Operating System

The operating system used in the clients was Windows 10 (64-bit) [69].

Appendix A.1.2. Web Client

As indicated in the description of the architecture, this component is made up of the different
interfaces (medical, patient, local administrative, and enrollment institution) offered by the system to
carry out the processes (users, EMR, permits) and by a browser through from which the user can access
said interfaces. For the specific case of the prototype developed, the Google Chrome web browser
(Google, Mountain View, CA, USA) was used [70]. The interfaces were developed using React.js
v16.12.0 [32], with the design of Material UI React v4.9.3.

Appendix A.2. Server

The hardware features used in the server device were as follows: Intel Core i7-870 3.6 GHz
processor, 4 cores, 8 MB cache, 8 GB 2400 MHz DDR3 RAM, 1 TB hard drive, and 1 Gbps network card.
The components and software used on the servers to run the prototype made are detailed below.

Appendix A.2.1. Operating System

The operating system used in the servers was Windows 10 (64-bit) [69].

Appendix A.2.2. Blockchain Client

Geth 1.9.14 for Windows [71] (Ethereum Foundation) was used as a blockchain client. This client,
developed in the Go language, is the command line interface to run a complete Ethereum node.
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Geth allows each node in the network to enable a port with the RPC (request procedure call)
protocol [72], through which the transactions can be sent to the blockchain.

Appendix A.2.3. Blockchain

The blockchain used for the development of the prototype, given its extensive technical information,
stability, and ability to execute smart contracts, was a permissioned network of Ethereum [31], which was
configured with a consensus algorithm from proof of authority [43].

Appendix A.2.4. Database Server

PostgreSQL v12.3 [33] (PostgreSQL Global Development Group) was selected due to its good query
performance thanks to the indexing options (b-tree, multicolumn, expressions, partial), parallelization
of read queries and building b-tree indexes, and multi-version concurrency control.

Appendix A.2.5. Web Server

This component was performed using the internal server provided by ReactJS [32] (Facebook,
Menlo Park, CA, USA).

Appendix A.2.6. HealthyBlock Architecture Components

The HL7, encryptor, synchronizer, and keys components were developed using Node.js v12.18.0
LTS, with the Express module v4.17.1, and the web3.js v1.2.4 library was used to connect the applications
to the blockchain. The obfuscator and request components were developed with React.js v16.12.0 [32].
For the encryption component, the advanced encryption standard (AES) and (Rivest–Shamir–Adleman)
RSA encryption algorithms [73] were used, in order to guarantee the security of the EMRs. For the
HL7 component, an ORU-R01 message was used (Table A1), as it is useful for sending information
about the hemoglobin records and medical appointments/visits that were the subject of this prototype
and that are detailed in the functional description. In the case of the synchronizer, a Representational
State Transfer (REST) API is additionally used that allows the management of users and their records.

Table A1. Message HL7.

Structure ORU-R01

MSH Message Header (General information about the message)
PID Patient Identification (Patient information)
[
OBR Observation Requests (Type of request observation)
{
OBX Observation Results (Results of the requested observation)
}
]
[
{
PV1 Patient Visit (Information about the patient’s visit)
NTE Notes and Comments (General information about the visit)
}
]

The EMR manager, roles, and authentication and registration components were developed using
smart contracts in Solidity v0.5.0. Remix IDE V 0.6.6 was used to compile and deploy the contracts on
the blockchain. These contracts are described below, the codes of which can be consulted in the project
repository at [68].
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• EMR manager: The smart contract that develops this component is called MedicalHistory.sol.
This contract is in charge of managing the fields that have the EMRs that, for the developed prototype,
were name, address, telephone number, the patient’s hemoglobin records, and patient queries.

• Roles: The smart contract developed by this component is called Agent.sol. This contract allows
the definition of roles and, therefore, the different levels of access of an actor to the records of a
patient. As previously indicated, the accesses are based on [61] and, in order to manage better
functionality in the prototype, the following access levels were implemented: no access, range,
trend, partial list, full altered list, and full access. Patients are a special agent as they are the owners
of their medical history and, thus, must have this additional attribute; therefore, an additional
smart contract was used that extends from Agent.sol.

• Authentication and registration: The smart contract developed by this component is called
Platform.sol. This contract has the agents or actors of the system such as patients, doctors,
laboratories, and the relationships between them; this is why this contract is considered of utmost
importance, since it allows a relationship between the different system contracts.

Appendix A.3. Network Devices

Appendix A.3.1. LAN Devices

A Technicolor TC8305C gateway was used to create the local area network, with broadband access
via the integrated DOCSIS 3.0 (8 × 4) cable modem with 1 Gbps Ethernet ports and IEEE 802.11b/g/n
2.4 GHz wireless access points.

Appendix A.3.2. WAN Devices

For the implementation of the wide area network, the OpenVPN application [74] was used,
which allows VPN connections to be made to simulate geographically separated equipment.

Appendix A.4. Description of the Prototype

The functionality of the prototype is described below on the basis of the processes contained in
the processes layer of the HealthyBlock architecture.

Appendix A.4.1. User Processes

The user CRU processes described in Section 3.3.5 are carried out in the system through the
screens shown in Figure A1; in (a), the new users are registered and, in (b), having the administrator
role, they can be read, updated, or deleted.

As previously mentioned, at the level of security and encryption in the prototype, the RSA and AES
encryption algorithms were implemented. When a new user is registered, the key service, provided
by the key component, generates a private and a public key using the RSA algorithm. The former
is delivered to the user and the latter is stored in the blockchain through the agent contract. If the
registered user is a patient, the system also asks them to create a password, which is later used by the
encryption service to encrypt the medical records using AES.
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Figure A1. Prototype user processes: (a) access interface; (b) manager interface.

Appendix A.4.2. Permission Process

The permission CRU processes described in Section 3.3.5 are performed in the system through the
screens shown in Figure A2; in (a), initially, the system administrator associates patients with a family
doctor, who by default has full access to electronic medical records (EMRs); in (b), through the search
option, doctors or laboratories can search for patients to request access to their electronic medical
records (EMR); in (c), upon entering the system, a patient can know which actors have access to their
data and can also process the access requests they have made. When a patient gives a medical actor
access to their EMRs, the encryption service provided by the encryption component takes the public
key of the applicant and, together with the password previously created by the patient, generates a
unique encrypted key through RSA encryption, which is stored on the blockchain through the platform
contract. There, a relationship is established between the patient and the owner of the public key.
This encrypted key is unique for each relationship that is established and is used by the owner of the
public key to decrypt the patient’s EMRs in conjunction with their private key.
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Figure A2. Prototype permit processes: (a) Manager associates family doctor with a patient; (b) Doctors
can request access; (c) Patient can grant access to a medical actor.

Appendix A.4.3. EMR Processes

The EMR CRU processes described in Section 3.3.5 are performed in the system through the
screens shown in Figure A3; in (a), upon entering the system, a medical user is able to view and enter
records of a patient; in (b), a laboratory that has a full access level may enter hemoglobin readings
and the date of that reading; in (c), the display of the historical records of hemoglobin are obfuscated
according to the type of access that the actor has.
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Figure A3. Prototype EMR processes: (a) Visualization of medical records; (b) Input of hemoglobin
data of a patient by a laboratory; (c) Visualization of obfuscated records.

When a clinical actor wants to access the EMRs of a patient, the authentication service and the access
service verify that the user has the permissions to access them. In case the actor can, the key service
extracts the encrypted key from the blockchain. This key is taken by the encryption service provided by
the encryption component, which, together with the user’s private key, proceeds initially through RSA
cryptography and later through AES cryptography to decrypt the EMRs. Then, the synchronization
service, provided by the synchronizer component, extracts the data of the blockchain, in HL7 format.
The opposite case occurs when an EMR must be encrypted to be stored on the blockchain; for this,
the EMR service processes the records in HL7 format so that the encryption service, provided by
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the encryption component, uses the AES algorithm to code the data. Once the data are encrypted,
the synchronization service proceeds to save them in the blockchain.

Appendix B. Functionality and Usability Survey

To carry out the usability and functionality tests, two surveys were designed, which were answered
by users related to the clinical setting, to evaluate the platform. For this, a series of questions were
presented to the user who expressed their level of satisfaction with the following scale: “strongly
agree”, “agree”, “neither agree nor disagree”, “disagree”, and “strongly disagree”.

Each participant registered and assumed a role in the system. The actions carried out by each of
the roles on the system are described below.

• Patient: the surveyed individual answered requests from laboratory and medical users for access
to their medical history and assigned a level of access to each one if they accepted the request.

• Doctor: in the search module, the surveyed individual searched for a patient and asked them
for access to the medical history. Depending on the level of access, if this user could modify the
patient’s medical history, they proceeded with the respective test.

• Laboratory: the surveyed individual carried out the search for patients and requested their
medical history. Once the request was answered and an access level was assigned, the surveyed
individual added data to the patient’s medical record.

• Administrator: the surveyed individual was in charge of assigning a patient to a family/personal
doctor, who could be any medical-type user registered in the system.

• Family/personal physician: the surveyed individual had the same functionalities as a normal
physician, but also could manage the access permissions to medical records of their patients
assigned by an administrator.

The activities performed by the surveyed individuals are shown in Table A2.

Table A2. Activities performed by surveyed individuals.

Activity Duration Type of Interaction

Interaction with web platform 20 min Use the web platform, assuming a certain role: doctor, laboratory, patient
Usability survey 5 min Answer the survey

Functionality survey 5 min Answer the survey

The questions and results obtained in the survey are shown in Table A3 for usability and Table A4
for functionality.

Table A3. Usability survey and answers.

No. Questions Strongly
Agree Agree Neither Agree

nor Disagree Disagree Strongly
Disagree

1 It was easy to learn how to use the system. 10 10 7 5 0

2 The information provided by the system is
easy to understand. 12 14 6 0 0

3 The system has all the functionalities and tools
that you expected it to have. 12 15 5 0 0

4 The organization of the information on the
screen is clear. 13 14 5 0 0

5 Overall, I am satisfied with how easy the
system was to use. 10 11 7 4 0

6 The system interface is nice. 13 13 6 0 0

7 I like to use the system interface. 14 13 5 0 0
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Table A3. Cont.

No. Questions Strongly
Agree Agree Neither Agree

nor Disagree Disagree Strongly
Disagree

8 I can effectively perform operations using
the system. 13 14 5 0 0

9 Finding information or functionality of the
system was easy. 13 14 5 0 0

Total (N) 110 118 51 9 0

Percentage (%) 38 41 18 3 0

Table A4. Functionality survey and answers.

No. Questions Strongly
Agree Agree Neither Agree

nor Disagree Disagree Strongly
Disagree

1 User registration is easy to perform and
runs smoothly. 10 9 9 4 0

2 It is easy to log in to the website. 6 10 7 9 0

3

The user can see the access control
relationships they are in (users with access to

the medical record) and these are easily
accessible in the interface.

16 12 4 0 0

4
The patient can modify permissions to decide

who can see and/or modify their medical
history in a satisfactory way.

16 11 5 0 0

5
The patient can activate the access requests of

other users to their medical history (set
status on).

16 12 4 0 0

6 The patient can view their medical history
without problems. 14 14 4 0 0

7 The process of using the tool to interact with
the system is easy and understandable. 10 6 7 9 0

8 The doctor can perform successful patient
searches on the system. 15 13 4 0 0

9 The doctor can request a medical history from
the patient. 14 13 5 0 0

10 The doctor can see the list of patient medical
records to which they have access. 11 16 5 0 0

11
The doctor can see the medical records of the

patients according to the level of access
they have.

16 12 4 0 0

12 The family doctor can see and/or modify the
medical history of their patients. 12 15 5 0 0

13
The family doctor can manage the medical

history of their patients. (change access,
change status)

12 14 6 0 0

14 The laboratory can perform satisfactory
patient searches on the system. 12 16 4 0 0

15 The laboratory can make a request for clinical
history to the patient. 14 14 4 0 0

16 The laboratory can view the list of patient
medical records to which it has access. 13 15 4 0 0

17 The laboratory with full access can add
records to the clinical history of its patients. 13 14 5 0 0
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Table A4. Cont.

No. Questions Strongly
Agree Agree Neither Agree

nor Disagree Disagree Strongly
Disagree

18 The laboratory can view patient records on the
basis of the level of access it has. 13 15 4 0 0

Total (N) 233 231 90 22 0

Percentage (%) 40 40 16 4 0
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