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Abstract: Mali aims to reach the pre-elimination stage of malaria by the next decade. This study
used functional regression models to predict the incidence of malaria as a function of past
meteorological patterns to better prevent and to act proactively against impending malaria
outbreaks. All data were collected over a five-year period (2012–2017) from 1400 persons who
sought treatment at Dangassa’s community health center. Rainfall, temperature, humidity,
and wind speed variables were collected. Functional Generalized Spectral Additive Model
(FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel
Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern
of meteorological indicators over a continuum of the 18 weeks preceding the week of interest.
Their respective outcomes were compared in terms of predictive abilities. The results showed
that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed
a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and
a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in
terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and
FGKAM in terms of flexibility and simplicity. The models showed that some meteorological
conditions may provide a basis for detection of future outbreaks of malaria. The models developed
in this paper are useful for implementing preventive strategies using past meteorological and
past malaria incidence.
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1. Introduction

In the next decade, Mali seeks to achieve the challenge of reaching the malaria pre-elimination
stage [1]. The implementation of all World Health Organization (WHO) measures to prevent and
control malaria remains intensive across the country [2]. According to Mali’s National Malaria Control
Program (NMCP) report in 2018, among the 2,749,118 suspected cases of malaria tested, 60.28% were
confirmed, of which 34.32% were children less than five years old. Compared to 2017, malaria cases
increased by 16.50% in the general population, while the case fatality rate decreased from 0.76% to
0.65% [1].

The epidemiological situation of malaria in Mali remains highly variable, despite some
improvements. Many disparities in the mortality and morbidity rates have been observed countrywide.
Such observed differences in malaria burden have their explanations in both socioeconomic and
environmental factors, such as education levels, occupation, use of protective measures, living standards,
temperature, air humidity, rain, and wind speed [3–8]. Since malaria is a vector-borne disease,
climate change can affect its transmission [9–11].

Many modelling approaches have been developed in the past, integrating climate and
environmental variables to better understand the impact on malaria transmission dynamics [12–15].
Functional Data Analysis (FDA) [16–18] is an alternative and flexible modeling approach dealing
with measurements taken over a continuum. In this case, past meteorological information (previous
18 weeks to week of interest) was considered as a function for finding the patterns that have influenced
an increase in malaria cases. This novel variable selection approach [19] makes intensive use of the
distance correlation [20] and is implemented in the R package fda.usc [21]. We can also notice that this
new variable selection approach allows the building of more efficient models based on historical data,
which fully accounts for uncertainty associated with the model selection process.

This technique has been used recently in many modeling applications, such as influenza incidence
rate modeling with climate covariates [22], but has yet to be used in the context of malaria. In this study,
we use such methods to identify the underlying factors that shape the patterns of malaria prevalence
in Dangassa, a rural Malian village which experiences bimodal malaria transmission dynamics [3,23].
Proper understanding of both past and future influences of environment and meteorological factors on
malaria risk will help identify the relevant variables that contribute to the spread of the disease and
to prevent outbreaks based on past malaria incidence rate and recognizable environmental climatic
patterns. This study demonstrates that the FDA approach can be used in the malaria field with a
set of recently developed functional models such as FGLM (Functional Generalized Linear Model),
FGSAM (Functional Generalized Spectral Additive Models), and FGKAM (Functional Generalized
Kernel Additive Models). We also describe how the results can be useful for designing targeted malaria
intervention strategies.

2. Materials and Methods

2.1. Materials

2.1.1. Study Areas

This study was conducted in Dangassa (12.14 N, 8.21 W), located in Niagadina’s council,
in the administrative region of Koulikoro, Mali (Figure 1). In 2012, the estimated population was
6200 inhabitants [24]. The average annual temperature and rainfall are 27.5 ◦C and 855 mm, respectively.
The village sits at an altitude of 350 m in the Pre-Guinea savannah zone of Mali [25]. Like many villages
in Mali, malaria remains a public health concern in Dangassa. The transmission dynamic is bimodal,
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with the start and end of the rainy season (in June–August and December–January) accounting for
peak transmission. Measures such as Long Lasting Insecticidal Nets (LLINs), Artemisinin-based
Combination Therapies (ACTs), and Intermittent Preventive Treatment during pregnancy (IPTp) have
been in effect in Dangassa since 2008 [3,23].
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Figure 1. Map of Mali indicating the location of Dangassa a. a The study site is indicated by a black
point. The map has been made based on the cartography of Mali, the mean normalized difference
vegetation index (NDVI) reported was downloaded as a raster from NASA Giovanni for the time
period 11/01/2012–31/12/2017. Source: ICER Mali/MRTC-OKD/DEAP/GIS Unit, 2020.

2.1.2. Data Source

Study Population and Data Collection

(1) Malaria Data

From 2012 to 2017, an observational study assessed the impact of malaria control measures at
four study sites, including Dangassa [23]. An open dynamic cohort of 1400 participants of all ages
(0–85 years) and sex were recruited. Passive case detection was performed at the local community
health center. Free diagnosis and treatment with ACTs were provided to cohort participants with
uncomplicated Plasmodium falciparum infection. Clinical or symptomatic malaria cases were defined as
fever (temperature ≥ 37.5 ◦C) or history of fever in the last 48 hours, with positive rapid diagnostic
test and/or positive smear by microscopy. A signed informed consent was required from randomly
selected household members before they participated in the study, and parents or legal guardians gave
their approval for all minors involved. Ethical approvals were obtained from the National Institutes of
Health (NIAID) and from the Institutional Review Boards (IRBs) of Tulane University (FWA00002055)
and the University of Sciences, Techniques and Technology of Bamako, Mali (FWA00001769) [23].
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(2) Meteorological and Environmental Data

Daily and monthly meteorological data were extracted from the National Aeronautics and
Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS) [25]
from 11 January 2012 to 31 December 2017. The data extracted for this analysis were precipitation
(mm/day, 0.25◦), average air temperature (◦C, 0.5 × 0.625◦), humidity in the ground surface (1◦),
and wind speed (m/s, 0.25◦).

Ethical Approvals: Ethical approvals were obtained from the National Institutes of Health (NIAID)
and from the IRBs of Tulane University (FWA00002055) and the University of Sciences, Techniques and
Technology of Bamako in Mali (FWA00001769). Before patients were enrolled in this study in 2011
and for those enrolled after, a written informed consent was obtained from each participant or their
parent/legal guardian. Please note that the cohort study protocol has been reviewed and renewed
annually since that time [23].

Research Data: The dataset of malaria cases aggregated on a weekly basis are available at the
level of the International Center of Excellence for Malaria Research (ICEMR) data management core
(sdoumbi@icermali.org). The meteorological and environmental data are free of access, and available
parts of this analysis were extracted from the EOSDIS information system (https://urs.earthdata.nasa.gov).

2.2. Statistical Methods

We considered several summaries (minimum, maximum, average, and amplitude) for the main
covariates: temperature, humidity, wind speed, and the number of rain events. This was done to
construct the set of possible candidates to be incorporated into the functional regression models:
FGLM [26,27], FGSAM [28], and FGKAM [29] in all cases for predicting malaria incidence.

The three models share the following equation:

y(t + 1) = f1(X1(t, . . . , t− 17)) + · · ·+ fp

(
Xp(t, . . . , t− 17)

)
+ ε (1)

where y(t + 1) represents the malaria incidence at a certain week, Xi(t, . . . , t− 17) is the whole trajectory
of the covariate in the previous 18 weeks, and fi is a function that translates the information of the
covariate to the malaria incidence and is the residual error (typically following a normal distribution).

The differences among models are based on the form of fi:

• FGLM: fi(Xi(t, . . . , t− 17)) =
∫ t

t−17 βi(u)Xi(u)du

• FGSAM: fi(Xi(t, . . . , t− 17)) =
∑K

k=1 fk
i

(
νk

i

)
with fk

i being smooth functions of νk
i , the score of the

kth principal component of the ith covariate.
• FGKAM: fi(Xi(t, . . . , t− 17)) = fi(Xi) with fi being a general function computed from the

functional covariate using a Gaussian kernel approximation.

Except for the FGKAM, we selected a way of representing the information contained in covariate X.
Typically, this was done using a fixed basis like Fourier B-spline or Wavelet or using a data-driven
basis like the principal components (the decomposition of the variance–covariance matrix of X) or the
partial least squares (the components that maximize the relationship among X and the response).

In this paper, the functional principal components basis was chosen. This basis is quite simple
to compute, and it is the one which can explain more of X with fewer elements. For designing the
covariates that integrate our functional models, for selecting relevant information, and for avoiding
variates with high collinearities, we used the distance correlation measure [20]. The primary advantage
over its competitors is that it portrays independence among two covariates, no matter the distribution
or the dimension of the covariates.

The distance correlation takes value in the interval [0, 1], where zero indicates complete
independence and one indicates full dependence. Its scale is like that of the coefficient of determination,
although the distance correlation has no such simple interpretation in terms of the explained variability

https://urs.earthdata.nasa.gov
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of the response. In any case, higher values of the distance correlation mean higher dependence, and the
same authors that proposed the distance correlation have proposed an independence test for distance
correlation [21]. The selection of the covariates was done using the algorithm described in the novel
variable selection approach [19], which seems to select non-sparse models. To assess the performance
of the algorithms related to the previous models in our data set, we have proposed a comparison based
on some common characteristics of those models, such as the R-sq. (adj), Mean Squared Prediction
Error (MSPE), and predictive ability. The best choice is measured in terms of prediction coverage
(predictive ability, %), checking the real coverage of the 95% prediction intervals for data not included
in the estimation process.

All statistical analyses was performed by using the R 4.0.0 (R Foundation for Statistical Computing,
Vienna, Austria) [30] software and the Rpackage fda.usc [21], where the methods for variable selection
and the functional regression models are implemented. ArcGIS 10.3 (ESRI, Redlands, CA, USA) [31]
has been used for cartography of our study site.

3. Result

3.1. Descriptive Analysis of the Functional Data

In Dangassa, based on the data collected in the period 2012–2017, the minimum number of cases
was three per 1000 person-weeks when the maximum number of cases was 70 per 1000 person-weeks.
Descriptive analyses of each of the functional covariates (Figure 2) were done by comparing the
malaria incidence in four groups, an intuition born from the quantile distribution observed on the
data set descriptive analysis against the pattern of the measurements over the previous 18 weeks:
low, medium low, medium high, and high. For each group, we have computed the average of the
curves that lead to the response group as a way of indicating past patterns of the curves which lead
to higher or lower rates. This simple descriptive analysis revealed that the mean humidity pattern
of over 65% produced the highest incidence rate while, below 50%, it produced the lowest incidence
rate. A mean rain event pattern of more than two rain events produced the highest incidence rate,
and below that threshold, it produced the lowest incidence rate. The peaks of humidity and rain events
happen about 12–13 weeks before the highest malaria incidence rate. A similar phenomenon occurs
with temperature. A mean temperature pattern below 27 ◦C led to a high incidence rate, particularly
with a deep valley under 26 ◦C, 10 weeks in advance to peak incidence rates. Consecutive weeks with
temperature over 28 ◦C led to the lowest incidence rates. A mean wind speed pattern below 1.8 m/s for
at least 10 weeks led to a high incidence rate. Altogether, the descriptive analysis points out that if
we observe an episode with high humidity, a high number of rain events, and low wind speed about
10–12 weeks before, we will likely witness a malaria outbreak. The effect of past incidence pattern is
less interesting (see Figure 3), but we observed a slow decline for lower incidence rates and a high
increasing pattern at 10 weeks.

As a second part of this descriptive analysis, we compute the importance of each functional
covariate, taking values in the interval [n−17, n] with the response evaluated in n + 1 and n + 2 to find
out if the information chosen has relevance for predicting the malaria incidence. Given the different
nature of the variates (some functional and some scalar), the only choice is the distance correlation
proposed by Székely et al. [20]. The distance correlation among response and functional covariates are
provided in Table 1. In order of relevance, fHumidity has the highest value (0.404 and 0.420), and then
fRainNb (0.363 and 0.390) has the next highest, closely followed by fWindspeed (0.357 and 0.350) and
finally fTemperature (0.267 and 0.240) and fIncidence (0.256 and 0.220). The relationship among the
past values of incidence rate (fIncidence) with its future suggest that there is no strong temporal
dependence in the malaria incidence rate.

The relatively high values among covariates (Table 2) suggest a great interdependence among
them. This interdependence must be considered in the construction of the regression models. If not,
the inclusion of some covariates may interact with others to hide relevant effects.
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Figure 2. Mean curves of past functional meteorological covariates per group of malaria incidence b.
b Clockwise from top left: fTemperature, fHumidity, fWindspeed, and fRain mean curves groups.
The groups are constructed based on values of the quantile of the incidence values: low [0, 2.5]
(dark blue line), medium low (2.5, 5] (green line), medium high (5, 10] (black line), and high (10, 20]
(dark red line). Altogether, if we observe a mean humidity pattern (>65%), mean rain events (>2),
and mean wind speed (<1.8 m.s−1) about 10–12 weeks before, then we will probably suffer a peak in
malaria incidence in Dangassa.
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Table 1. The distance correlation among the functional covariates and the response at week n + 1 and
n + 2 d.

Functional Covariates Incidence (n + 1) Incidence (n + 2)

fIncidence (n − 17, . . . , n) 0.256 0.220

fWindspeed (n − 17, . . . , n) 0.357 0.350

fRainNb (n − 17, . . . , n) 0.363 0.390

fTemperature (n − 17, . . . , n) 0.267 0.240

fHumidity (n − 17, . . . , n) 0.404 0.420
d In Dangassa, malaria incidence is influenced in order of relevance by fHumidity (0.404 and 0.420), by fRainNb
(0.363 and 0.390), by fWindspeed (0.357 and 0.350), and finally by fTemperature (0.267 and 0.240) and fIncidence
(0.256 and 0.220). We discovered that there is no strong temporal dependence in the malaria incidence rate.

Table 2. Distance correlation among functional covariates e.

Functional
Covariates fIncidence fTemperature fHumidity fRainNb fWindspeed

fIncidence 1.000 0.457 0.556 0.604 0.585

fTemperature 0.457 1.000 0.519 0.430 0.387

fHumidity 0.556 0.519 1.000 0.887 0.705

fRainNb 0.604 0.430 0.887 1.000 0.691

fWindspeed 0.585 0.387 0.705 0.691 1.000
e The dependence among functional variates is measured by the value of the correlation of distances. The relatively
high values among all the covariates suggests a great interdependence among them. fHumidity and fRain have the
strongest correlations (0.887), while fTemperature and fWindspeed have the lowest correlations.

3.2. Constructing a Functional Regression Model (FGSAM) for Malaria Incidence Rate

Using the information from the previous 18 weeks of the same functional covariates for predicting
the malaria incidence, we have constructed a FGSAM model. We have also tried other weekly
summaries (amplitude, minimum, or maximum) but with no better success. To construct the FGSAM
model, all covariates were represented by their first three principal components. The algorithm
described [19] was applied to select the final covariates in the FGSAM model that obtained an adjusted
R-sq (0.673) and deviance explained (72.4%), identifying four pertinent partial functions (six if we
extend the confidence to 90%). The results can be seen in Table 3, where the order of the rows reflects the
pertinence of each covariate. The second covariate (fWindspeed) was selected, although fRainNb had
a higher distance correlation than fWindspeed (Table 2). The relatively high interdependence between
fRainNb and fWindspeed perhaps influences the p-value column that accounts for the pertinence of
each row. The covariate fTemperature was not selected in the model, meaning that, given the other
covariates, there is nothing new that this covariate can add. The column edf (estimated degrees of
freedom) shows the complexity of the information provided by the particular component.
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Table 3. Pertinence of partial candidate smooth functions to enter into the Functional Generalized
Spectral Additive Model (FGSAM) and the nature of their relationship to the response: pertinent curves
to enter in the FGSAM model f.

Curves Edf Ref.df F p-Value

s(fHumidity.PC1) 3.126 4.003 3.865 0.005

s(fWindspeed.PC2) 2.000 2.536 2.259 0.075

s(fRainNb.PC1) 3.304 4.199 9.457 <0.001

s(fRainNb.PC2) 1.000 1.000 7.840 0.006

s(fIncidence.PC1) 8.544 8.910 4.551 <0.001

s(fIncidence.PC3) 1.000 1.000 2.885 0.091
f fHumidity, fWindspeed, and fRainNb are in that order the most important candidate smooth curves to enter
into the FGSAM model. The covariate fTemperature was not selected in the model. The information provided by
the fHumidity.PC1, fWindspeed.PC2, fRainNb.PC1, and fIncidence.PC1 components to the response is quite not
linear (complex).

The FGSAM model is quite flexible and powerful, but its interpretation is not easy, as shown in
Table 3. Every row of Table 3 is the combination of a principal component (that must be interpreted
itself) jointly with a smooth function on the scores of that principal component. Therefore, to interpret
the contribution of each covariate, we must combine both interpretations. Figure 4 shows the chosen
principal component (PC) (left column) and its associated function (right column). The first row of
Figure 4 corresponds to the effect of fHumidity and the first PC and can be interpreted in terms of its
difference with respect to the zero line, which represents the average humidity in the previous 18 weeks.
Therefore, PC1 of fHumidity represents the level of fHumidity with respect to its mean. Positive scores
of PC1 represent curves of fHumidity constantly over the mean in the last 18 weeks, and negative
scores represent curves of fHumidity constantly below the mean. The scores are represented in the
right column or on the x-axis.

The shape of the function with respect to these scores means that positive scores (curve of
fHumidity above the mean) lead to fewer cases of malaria (the function for positive values is
below zero). Negative scores (curve of fHumidity below the mean) lead to an increased malaria
incidence (function slightly over zero baseline).

The interpretation for the second row (PC1 of fRainNb) is similar, but on the contrary, positive scores
(number of rain events in the last 18 weeks over the mean) lead to an increase in malaria incidence
whereas negative scores (number of rain events below the mean) slightly decrease the malaria incidence
(smooth function is below the zero line). The third row corresponds to PC2 of fRainNb, and its shape
corresponds to curves that are below the mean before week −8 and over the mean after that. Therefore,
positive scores (curves with that shape) now slightly decrease the incidence and negative scores (curves
over the mean in the interval [−17, −8] and below the mean in [−8, 0]) increase the incidence. Indeed,
the shape of that function suggests that the relationship among PC2 and the response is linear. The rest
of the rows can be interpreted in the same way, although close proximity of the smooth function to the
zero line suggests weak effects of these covariates (fWindspeed and fIncidence) on malaria incidence.
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Figure 4. Some chosen principal component (PC) and their associated smooth functions g. g The shape
of fHumidity.PC1 over the mean leads to fewer cases of malaria, and the curve of fHumidity below the
mean leads to an increased malaria incidence. The shape of fRainNb.PC1 over the mean leads to an
increase in malaria incidence, whereas the number of rain events below the mean slightly decreases
the malaria incidence. The relationship among fRainNb.PC2 and the response is linear. The effect
covariates fWindspeed and fIncidence on malaria incidence are weak.

3.3. Comparing Different Functional Models for Dangassa Data

We have built three models based on the pertinence of covariate curves of the previous 18 weeks of
malaria incidence rate and on meteorological and environmental data observed in Dangassa using the
same algorithm described in the novel variable selection approach [19]. The set of relevant covariates
differs from one type of model to another. For instance, when using FGLM, all covariates were included,
obtaining adjusted R-sq (0.579) and deviance explained (61.20%) as its best result. The three models
were compared in terms of their predictive coverage.
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The last 40 weeks of data were used as a validation sample to check the predictive performance of
the three models: for every week in the validation sample, estimation of the models was done with
the past data and prediction levels of incidence along a predictive interval at the 95% level for that
estimation. The prediction level was used for computing the MSPE in the usual way. The predictive
coverage was estimated, counting how many times the true future value was inside the prediction
interval. The results are summarized in Table 4. Although in terms of adjusted R-sq FGSAM provides
the highest value, the best predictive coverage (closer to the nominal level) is provided by FGLM.

Table 4. Comparison of the predictive abilities of the functional models Functional Generalized Linear
Model (FGLM), Functional Generalized Spectral Additive Model (FGSAM), and Functional Generalized
Kernel Additive Model (FGKAM) h.

Goodness-of-Fit Measures
of the Functional Models FGKAM FGLM FGSAM

Adjusted R-sq (%) 65.70 57.90 67.30

Dev. Explained (%) 75.10 61.20 72.40

MSPE 7.52 7.50 11.38

Pred. coverage (%) 90.00 95.00 92.50
h Here, we display some goodness-of-fit measures R-sq(adj), Mean Square Prediction Error (MSPE), and predictive
coverage as a tool to compare the functional models FGLM, GGSAM, and FGKAM. In terms of the predictive
abilities, all models performed well, none did better than the others. FGSAM fit the best with adjusted R-sq (67.3%),
but FGLM had the best predictive coverage (95%) and FGSAM obtained the best explained deviance (75.1%).

The predictive estimation and their 95% predictive interval are plotted in Figure 5, confirming that
the FGKAM model has the best predictive abilities. It seems that FGLM and FGSAM provide excessively
optimistic prediction intervals (see the amplitude of the intervals), derived by an underestimation of
the predictive variance. Unfortunately, the interpretation of FGKAM is not an easy task because there
are no simple tests that could help. From a summary of the model, it is possible to point out that the
fRainNb, fHumidity, and fWindspeed are the most relevant factors related to malaria incidence but that
it is not possible to derive simple rules relating the covariates and the response. The past fIncidence
and fTemperature have a clearly lower influence in the response, although it is not negligible.

Our findings show that the role of temperature on malaria dynamics is complicated and indicate
an indirect but ignored impact of air temperature on the increase of malaria transmission through
reduction of larval habitats and vector density. Once more, FGSAM has been shown to be a good
compromise among flexibility and simplicity of interpretation, but FGLM provides the best predictive
results. The results obtained by FGSAM confirm that this prediction problem is not linear, i.e., the effect
of the covariates on the response is more complicated than linear models.
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Figure 5. Prediction of the raw rates (cases per 1000/pop) in the village of Dangassa i. i The predictions
have been made in the validation period for the Functional Generalized Spectral Additive Model
(FGSAM), the Functional Generalized Linear Model (FGLM), and the Functional Generalized Kernel
Additive Model (FGKAM). We used functional information based on past incidence and meteorological
covariates with 95% Confidence Intervals (CIs). The black solid line represents the validation set
(40-week)-based incidence (observed). The two dashed red lines represent the FGSAM predictions and
its 95% CI. The dotted blue lines represent the FKAM predictions and its 95% CI. The green long dash
lines represent the FGLM predictions and its 95% CI. All 3 models performed well, but FGLM has 95%
CI curves closer to the validation set incidence curves. FGLM seems to have the best tuned 95% CI
prediction bandwidth.

4. Discussion

In this paper, we have proposed the use of a functional approach to predict malaria outbreaks
based on a rigorous selection of the covariates that contribute the most to the spread of malaria in
Dangassa. The use of the distance correlation allowed us to identify, as shown extensively in the
literature, some environmental variables that influence malaria incidence [3,6–8,12].

In Dangassa, humidity, number of rain events, wind speed, temperature, and past incidence were
the climate covariates associated with malaria incidence, but here, we have been able to determine an
order of their relevance in influencing malaria transmission dynamics. The functional models used
(FGLM, FGSAM, and FGKAM) allowed us to use past malaria incidence as an additional covariate,
although its contribution to understanding malaria transmission dynamics and predicting future
malaria outbreaks in Dangassa is small (quite negligible). With the functional modeling approach,
we have taken time as a continuum and used curves rather than point-time estimations, as is done in
many other approaches [13].

To predict malaria outbreaks, our results suggest we pay attention to a particular meteorological
configuration: humidity greater than 65%, more than two rain events, and wind speed levels < 1.8 m·s−1.
If we detect this particular configuration, then outbreak preparedness should start, as it means that a
malaria outbreak will probably occur in Dangassa 10–12 weeks later. Using these functional model
predictions, our aim is to try to prevent outbreaks and to raise alerts in order to prepare both public
health authorities and populations in advance of an outbreak.

It has been shown in many studies that malaria-to-malaria transmission dynamics depend not only
on a few meteorological conditions like humidity, rain, wind speed, vegetation, and air temperature
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at the ground level but also on factors such as sociocultural behaviors, access to health care, level of
education [32,33], and use of vector protection tools [6,9]. One limitation of our functional models
is that they include only climate covariates. Our results show that FGKAM, FGLM, and FGSAM
obtained explained deviances of 75.10%, 61.20%, and 72.40%, respectively’ however, we could improve
the explained deviance of our functional models by including non-climate covariates related to
malaria transmission dynamics, including data from the vectors such as biting rate and genetic
resistance mechanism to anti-vectoral drugs [11,34]. It could be beneficial to add variables related
to the implementation of preventive measures like Seasonal Malaria Chemoprevention (SMC) and
long-lasting insecticide-impregnated nets (LLINs) in our functional models, as they can deal with
scalar covariates in predicting the response curves.

During the project of West African International Center of Excellence for Malaria Research
(ICEMR-1) at the base of this study, the SMC effect on malaria indicators in children under five years old
living in Dangassa was investigated. A monthly curative dose of SP + AQ (sulfadoxine-pyrimethamine
+ amodiaquine) was given to each child during malaria transmission season (August to October).
A significant reduction in both malaria incidence and gametocyte prevalence levels in children under
five years due to the SMC treatment was found [35]. This has surely shaped malaria transmission
dynamics in a particular way, as our models could predict a greater number of cases during a period
where SMC was not being distributed and a lower number of cases in an SMC implementation
period. If such information is included in our models, we could improve their explained deviance and
their accuracy.

In Dangassa, malaria control strategies rely on the use of long-lasting insecticide-impregnated
nets (LLINs), ACT for treatment, and sulfadoxine-pyrimethamine (SP) for intermittent preventive
treatment of pregnant women (IPTp). No artemisinin resistance genetic background was found [36].
In the context of Dangassa, ACTs and SP resistance did not contribute to malaria recrudescence and,
consequently, incidence. Our results could not suffer from the non-inclusion of that reality in the
functional modeling approach.

In this study, we have explored three different types of functional models in the field of malaria:
FGLM (Functional Generalized Linear Model), FGSAM (Functional Generalized Spectral Additive
Models), and FGKAM (Functional Generalized Kernel Additive Models). It has been necessary to
compare them in the case of malaria because some specific differences in the process of parameter
estimations could have favored one. In fact, FGLMs are the extension of classical GLMs, used as
functional predictors, and simply consists of replacing the linear combination of the covariates by the
inner product in the functional space [26]. This could be a limitation in certain situations, where a
functional datum could contain different information depending on the semi-metric used. However,
we have not reached the limitations of this models due to the nature of our data. In the case of FGSAM,
the estimation of the partial functions is made through the functional principal component (FPC)
scores. This model makes use of spectral decomposition of the covariance operator of the matrix
of covariates X, although the use of other basis representations is possible or even, in certain cases,
desirable. The GSAM model has an increasing flexibility while avoiding the curse of dimensionality.
Indeed, the fact that the FPC scores are always uncorrelated for every functional covariate ensures that
the estimation of partial functions associated with that covariate will not suffer concurvity problems
(some smooth terms could be approximated by one or more of the other smooth terms) [27,28]. The fact
that the FGSAM model does not suffer concurvity problems makes it of potentially appropriate use in
our current situation in the field of malaria. The last model we used here is FGKAM, which is based on
a mixture of the Iteratively Reweighted Least Squares (IRLS) and Backfitting algorithms adapted to the
functional context. It allows the nonparametric estimation of partial functions [29].

Many models developed in the field of malaria do not order the covariates by order of relevance.
They do not evaluate the strength of the signal coming from the covariates on the response (malaria
incidence for example); our functional models handled that issue. For instance, in the work carried
out by Ateba and al. [3] in the same site of Dangassa, temperature was included in our Generalized
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Additive Models(GAMs) models, but it was not possible to quantify to what extent temperature
contributed to explaining malaria incidence. Here, in our framework, we have been able to determine
the order of relevance of the factors (mostly meteorological) that have been included. It has been
made clear in the context of Dangassa that some factors like past incidence and temperature contribute
less (almost not at all) in explaining the increase in malaria incidence in Dangassa. As for the other
factors, humidity, windspeed. and rain contributed the most, in that order (based on the distance
correlation [20]).

This study has proposed three functional models, although none of them were a clear winner.
A compromise between predicting abilities and ease in interpreting results is needed when choosing a
model to make a prediction of malaria incidence.

The added value of using functional modeling here has been to clearly identify a particular pattern
of meteorological conditions that may occur in Dangassa 10 to 12 weeks before observing malaria
outbreaks. This finding indicates that both public health authorities and meteorological offices can
assist in decision making to reduce the burden of the disease by raising alerts when particular patterns
of meteorological conditions arise.

Our results did not provide us with a clear decision on which of the models we should applied
in the prediction of malaria outbreak. Ee should always be cautious and put into context our results
and their interpretations as to comprise between model flexibility and simplicity in the interpretation
of results.

5. Conclusions

A geo-epidemiological approach using functional models can be extremely useful to health
managers in allocating resources in advance for epidemic outbreak control and management.
The National Meteorological Agency of Mali could play a key role in malaria outbreak prevention and
preparedness by raising alerts if particular meteorological patterns occur.
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Abbreviations

ACTs Artemisinin-based Combination Therapies
EOSDIS Earth Observing System Data and Information System
IPTp Intermittent Preventive Treatment during pregnancy
LLINS Long Lasting Insecticidal Nets
NASA National Aeronautics and Space Administration
FDA Functional Data Analysis
FGLM Functional Generalized Linear Model
FGSAM Functional Generalized Spectral Additive Models
FGKAM Functional Generalized Kernel Additive Models
MSPE Mean Squared Prediction Error
NDVI Normalized Difference Vegetation Index
PCA Principal Components Analysis
PCD Passive Detection Case
RDT Rapid Diagnostic Test
SMC Seasonal Malaria Chemoprevention
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