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Abstract: Natural disasters worldwide regularly impact on human activities. As a frequently occurring
natural disaster, drought has adverse impacts on agricultural production. The Lancang-Mekong
River is a transnational river running through China and five Southeast Asian countries and it is a
vital water resource for irrigation in the region. Drought in the Lancang-Mekong Region (LMR) has
occurred frequently in recent years. Assessing the risk of drought in the region is essential for rational
planning of agricultural production and formulation of drought relief measures. In this study, an
assessment of drought risk has been achieved by combining the hazard and vulnerability assessments
for drought. The assessment of the drought hazard depends mainly on the standardized precipitation
index (SPI). The assessment of drought vulnerability takes into account various indicators such
as climatic factors (e.g., crop water stress index), soil factors (e.g., available water capacity), and
irrigation factors (e.g., irrigation support). The results reveal that: (1) Drought distribution in the LMR
is characterized by a spreading of the drought to countries along the middle and lower reaches of the
Mekong River. Countries located in the middle and lower reaches of the Mekong River are more prone
to drought. Laos, Thailand, and Cambodia are the regions with higher and high-drought risk levels.
(2) The spatial distributions for the drought hazard and the drought vulnerability in the LMR exhibit
significant differences as evidenced in the mapping results. High-hazard and high-vulnerability areas
are mainly distributed in the middle LMR, and the middle to higher hazard areas and the middle to
higher vulnerability areas are mainly distributed in the south-central LMR, while the low-hazard
areas and the low-vulnerability areas are mainly in the north. (3) The majority of planting areas for
sugarcane, rice, and cassava are located in the high-hazard areas. The distributions of drought-prone
and high-hazard areas also correspond to the main agricultural areas in the LMR.
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1. Introduction

For many years, natural disasters throughout the world have regularly caused serious impacts to
life and societies [1,2]. Natural disasters often result in the loss of natural and social resources [3,4].
According to the types, intensity, and space–time distribution of disasters, the risks and losses
caused by natural disasters may be different [5–7]. Although the occurrence of natural disasters is
inevitable, they can be reasonably anticipated by studying their nature and historical data in order to
provide for possible early warning, effective monitoring, and prevention [4,8]. Therefore, scientific
assessment of natural disaster risk, together with subjective judgement, can effectively strengthen the
risk management and mitigation measures for disaster prevention.
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Drought is one of the most important types of natural disasters [9]. It is a complex and multi-faceted
disaster caused by natural and human factors [10], and has the characteristics of high frequency, large
influence, long duration, and great harm [11]. The Intergovernmental Panel on Climate Change (IPCC)
has stated [12–14] that the future risk of agricultural drought is increasing globally. At the same time,
with a more frequent occurrence of drought, its potential threat to agriculture in developing countries
is also increasing [15–18]. Agriculture is one of the areas that is heavily affected by drought [19–21].
Agricultural drought will have a series of negative effects on food production, people’s lives, and
the ecological environment [22,23]. For example, the decline of precipitation in the north-east of the
United States in 2016, and the fact that summer temperatures exceeded historical peaks, resulted in
a 30% reduction in the yield per unit of most agricultural and pastoral products in the region, with
some losses even reaching 90% [24]. Affected by a combination of climate, social production, and
political factors, drought in Uganda has become like a “war” cycle, making agriculture land untillable,
and where people have chronic hunger and the ecological environment is severely damaged [25].
A scientific risk assessment can help to provide effective disaster prevention and mitigation guidance
in the case of agricultural drought and reduce the losses caused by drought [26,27].

In the early 1980s, researchers began to pay attention to the factors responsible for the formation of
natural disasters and risk assessment theory, and the interaction of natural disasters and risk elements
and the role of mathematical expressions in the subject matter were discussed [28–30]. These efforts
stimulated the development of natural disaster risk theory such that agricultural drought risk research
has also been greatly developed [31–33]. At present, the formation mechanism for agricultural drought
risk is dominated by “factor theory” [33]. For example, researchers have identified three aspects of the
drought index in risk assessment, namely, the hazard, the exposure, and the vulnerability elements,
considering indices such as agricultural drought, irrigation, and the social ecosystem. Using this
framework, information on agricultural drought risk at a global scale was analyzed [23]. By considering
a variety of factors, the research was able to predict the agricultural drought risk in Africa from the
years 2010 to 2100 [34]. In addition, based on the hazard and vulnerability factors, researchers also
constructed a comprehensive risk model for drought and evaluated the distribution of drought risk in
southwest China [35]. Furthermore, stability factors were constructed based on the meteorological
drought conditions for a 10-year scale, and the drought risk of different states in the United States from
the year 1901 to 2017 [36] was analyzed. These factor-led drought risk analyses and assessments have
been recognized by many scholars and have provided effective help for governments to defend against
drought disasters [37]. Therefore, “factor-led” agricultural drought risk assessment is an effective way
to reduce losses through drought.

The Lancang-Mekong Region (LMR) spans six countries and regions in Southeast Asia.
The Lancang-Mekong River is a vital water resource for irrigation in the LMR. In 2016, China,
Cambodia, Laos, Myanmar, Thailand, and Vietnam jointly launched and built a new sub-regional
cooperation mechanism, which made the region cooperate more closely on food production security
and other food-related issues. Today, the LMR continues to be affected by floods and drought [38,39].
Among the countries in the LMR region, the impacts of drought on agricultural production are
particularly serious, so drought risk assessment in the region is essential [39–41]. Some researchers
have used the Normalized Difference Vegetation Index (NDVI) and the Land Surface Temperature
(LST) to calculate the Temperature Vegetation Dryness Index (TVDI) to assess agricultural drought in
Laos, Thailand, Cambodia, and Vietnam [40]. The Standardized Precipitation Index (SPI) has also been
used to analyze historical drought data in the lower Mekong basin from 1965 to 2006, and this enabled
the drought risk for the years 2016 to 2099 to be estimated [42]. Furthermore, based on the natural
disaster risk theory, the probability of drought occurrence in Yunnan province, China has also been
evaluated [43]. The studies mentioned above [39–43] indicate that there has been some research on
drought risk assessment in the LMR, but most of the studies have been limited to local regions, and the
studies have lacked a holistic approach to drought risk assessment; moreover, the spatial distribution
of risk is unknown.
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A major aim of this paper is to redress the lack of a holistic assessment of drought risk across the
LMR. Specifically, this study is concerned with the following: (1) Using the SPI to assess the hazard
of agricultural drought in the LMR; (2) selection of evaluation indicators associated with the climate,
soil, and irrigation to facilitate comprehensive analysis of the agricultural drought vulnerability in the
LMR; (3) assessment of the agricultural drought risk in the LMR based on the hazard and vulnerability
assessments. The paper is arranged as follows: In Section 2, an overview of the study area and
descriptions and sources of the study data are given; in Section 3, the method for assessing agricultural
drought risk is introduced; in Section 4, the results for agricultural drought risk are presented; and
main findings are discussed in Section 5.

2. Study Area and Data Sources

2.1. Overview of the Study Area

The Lancang-Mekong River, which flows through the four provinces of Qinghai, Tibet, Sichuan,
and Yunnan in China, as well as Myanmar, Thailand, Laos, Cambodia, and Vietnam, is called the
Lancang River in China and the Mekong River in the five countries of Southeast Asia (Figure 1).
The LMR (the four provinces in China and the five countries in Southeast Asia) lies between 13◦45′ N,
78◦25′ E and 39◦19′ N, 109◦29′ E, has a total area of 5 million km2, and serves more than 400 million
people. The natural landscape of the river basin is diverse, covering a variety of climatic types, e.g., cold
temperate zone, temperate zone, subtropical zone, and tropical zone. There are many geomorphological
types in the LMR, such as glacier, alpine mountain area, plateau meadow, deep mountain range, shallow
hill, alluvial plain, and estuarine delta. The whole region, especially the sub-region (five countries of
Southeast Asia and Yunnan Province in China), has good natural conditions including plentiful water,
hydro-electric, biological, and mineral resources, with great economic and development potential.
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2.2. Data Sources and Preprocessing

2.2.1. Precipitation Data

The precipitation data used in the study were the daily precipitation data with a spatial resolution
of 0.25◦ × 0.25◦ (◦ stands for degree) and were obtained from the global land surface data assimilation
system (GLDAS) for the period 1965–2014 [44]. The mask environment of the LMR was utilized to
obtain precipitation data using the ArcGIS extraction function.

Given the large amount of raw precipitation data and the fact that visualization itself was not
conducive to large-scale research evaluation, the precipitation rate attribute values for the data were
extracted as point data using a Python script, resulting in the LMR 900 base site data being obtained
(Figure 2a). Processing of the site observation data proceeded as follows: (1) The data were checked to
revise the part site location and elevation information. (2) The missing partial site data were processed.
For data missing for 1–2 days, the interpolation process was performed using the value of the similar
period before and after the days in question. For data that were missing for more than 10 consecutive
days, the values of the site for that period were taken as invalid and were not involved in later
processing operations. (3) MATLAB was used to collate data and facilitate interpolation. The location
information for the site was accurate to the point (“), with the elevation information accurate to 0.1 m;
the units for the temperature data were accurate to 0.1 ◦C, and the precipitation data were accurate to
0.1 mm.
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Figure 2. Distribution of sites (a) and precipitation (b) in the LMR.

On the basis of previous studies and comparative analysis of the interpolation results of the
meteorological data using various interpolation models, it has been shown that the spatial correlation
model ANUSPLIN gave the best fit for the spatial distribution of the meteorological elements [45].
The optimized thin-plate smooth spline function was used to fit the meteorological data, and there
was no limit on the number of meteorological stations needed. Therefore, the ANUSPLIN model was
selected for interpolation to obtain the distribution of the precipitation data [46]. The model requires
the input of the location and elevation of the meteorological stations and other auxiliary data, as well
as factor values. The common equation of the thin-plate spline function is given elsewhere [47].
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2.2.2. Evapotranspiration

The evapotranspiration data are derived from the Global-Aridity index (Global-Aridity_ET0)
and the global reference evapotranspiration (Global-ET0) dataset. The Global-ET0 dataset provides
high-resolution (30 arcsec) global raster climate data [48,49] for the period 1970–2000 associated with
evapotranspiration and rainfall. The Penman–Monteith formula, as recommended by the Food and
Agricultural Organization (FAO, 1998) of the United Nations, was applied to calculate the ET0 (reference
crop water requirement) values [50]. The maximum possible annual mean for the evapotranspiration
for the LMR was from 74 to 1956 mm, as shown in Figure 3a. Most of the areas shown range from
800 to 1300 mm and 1500 to 1800 mm, while evapotranspiration values for the Hengduan Mountain
areas are mostly low; evapotranspiration values for the northwest of Qinghai, the central part of
Myanmar, eastern Thailand, and northern Cambodia are above 1746 mm, which correspond to the
high-evapotranspiration areas of the LMR.
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2.2.3. Available Water Capacity

The available water capacity (AWC) data are derived from the global soil hydraulic
parameters—soil physics hydraulic background parameters and termed “Global Map”, which were
studied jointly by Tianjin University and the University of Arizona [51]. The data are raster data with a
resolution of 1 km × 1 km (Figure 3b). Finally, the data were resampled in ArcGIS at a resolution of
10 km × 10 km.

2.2.4. Agricultural Irrigation and Zone Data

The global irrigation area map (Global Map of Irrigated Areas-version 5.0, GMIA-v5.0) is published
by the FOA [52]. The data are in raster format and the resolution is 10 km × 10 km. The irrigation
distribution data for the LMR were extracted based on the administrative divisions of the LMR
(Figure 3c). The agricultural irrigation areas of the LMR are mainly concentrated in the plain terrains
between mountainous regions, such as the central part of Myanmar, the northern part of Vietnam, and
the eastern part of Sichuan, where there are intensive irrigation areas. The northern irrigation areas of
the LMR are scattered, for example, the eastern part of Qinghai and the southeast of Tibet. From the
statistics, the irrigation areas accounted for 34.9% of the LMR.

2.2.5. Crop Phenology and Zone Data

The crop phenology data (growth stages and growing seasons for sugarcane, rice, and cassava) were
derived from the World Food Program’s crop water-requirements guidance document (Table 1) with reference
to the FAO-56 standard [53]. Sugarcane, rice, and cassava are of the three main crops in the LMR [54].

Table 1. Growth season crop coefficients.

Crop Type Early Growing Season Mid-Growth Season End of Growing Season

Sugarcane 0.40 1.25 0.75
Rice 1.05 1.20 0.75

Cassava 0.30 0.95 0.4

The data for the agricultural zones are from the global crop distribution dataset [55]. The spatial
resolution of the data is 10 km × 10 km. The data describe the global crop census data (harvest area
and yield) from 1997 to 2003. The spatial distributions for sugar cane, rice, and cassava in the LMR
were obtained under the auspices of the administrative divisions of the LMR (Figure 4).
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2.2.6. Historical Drought Data

The historical drought information for the LMR covers five countries in South-East Asia and four
provinces in China, and is based on the Global Disaster Database (EM-DAT), supplemented by the
Desinventar Database, the Reliefweb, and the ADRC (Asian Disaster Reduction Centre). A total of 35
data sets were obtained for the period 1965–2017. These data sets relate to Thailand (9), Cambodia
(6), Sichuan (6), Vietnam (5), Laos (4), Yunnan (4), Qinghai (1), Myanmar (0), and Tibet (0) (figures in
brackets refer to the number of times data were accessed).

3. Research Methods

3.1. Framework for Agricultural Drought Risk Assessment

The main research steps for agricultural drought risk assessment in the LMR are outlined in
Figure 5 and consist of the following: (1) Proposing the drought risk assessment method by combining
the hazard and vulnerability assessments; (2) developing a database of risk assessment at a resolution
of l0 km × l0 km; (3) analyzing the spatial distribution of the drought hazard and the vulnerability;
(4) evaluating the risk of drought in the LMR and identifying the spatial distribution pattern to provide
a scientific decision basis for drought risk management.
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3.2. Assessment of Drought Hazard

The intensity of drought depends on the degree of the water deficit, and the duration and the
spatial range of the impact [56,57]. The use of SPI analysis for drought characterization and drought
hazard assessment is widely recognized [58–60]. The main advantages of the SPI are mainly reflected
in two aspects [61,62]: (1) The calculation of the SPI only needs rainfall data, and is not affected by
topographic factors; thus, it is convenient to carry out comparative spatial research. (2) The SPI’s
multi-time-scale features enable calculations to be performed at different time-scales, and the approach
can be used not only to monitor water changes in a short period of time, but also to monitor water
dynamics over a long time period. Given that water changes in a short period of time can have an
important impact on agriculture yield, this study carries out hazard analysis and calculation of drought
based on an SPI at a three-month scale. Based on historical rainfall data, the intensity characteristics
of drought are identified by the SPI, and the frequency of drought occurrence in different regions is
calculated statistically. Then, the drought hazard assessment model, which reflects comprehensively
the drought intensity and frequency, is constructed, and the spatial distribution characteristics of the
drought hazard are able to be discussed based on the results of the model calculation (Figure 6).
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The SPI method is based on the use of the Γ probability distribution function to fit the historical
rainfall time series for each station [58], that is (Equation (1)):

g(x) =
1

βαΓ(α)
χα−1e−x/β (1)

When x > 0, it represents rainfall; when α > 0, it represents the shape parameter; when β > 0, it
represents the scale parameter; and Γ(α) is the gamma function.

The MLE (maximum likelihood estimation) method is used to obtain the value of α and β
(Equations (2)–(4)):

α =
1

4A

1 +
√

1 +
4A
3

 (2)
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β =
x
α

(3)

A = ln(x) −
∑

ln(x)
n

(4)

where n represents the length of the rainfall sequence. Thus, the cumulative probability of a given
time-scale can be calculated as follows (Equation (5)):

G(x) =

x∫
0

g(x)dx =
1

βαΓ(α)

x∫
0

xα−1e−x/βdx (5)

Given that the gamma function does not include the case that x is 0, and the actual precipitation
can be 0, the cumulative probability is expressed as (Equation (6)):

H(x) = q + (1− q)G(x) (6)

where q represents the probability of zero precipitation. After that, the cumulative probability function
H(x) is transformed into the standard normal distribution function with a mean value of 0 and a
standard deviation of 1; then, the SPI is obtained.

H(x) is the cumulative probability (H(x) ∈ {0, 1}). For the standard normal distribution function,
assuming F(SPI) = H(x), the value of SPI can be deduced by knowing H(x). For example, if the rainfall
of a certain month x = 100 mm and the corresponding H(100) = 0.5, we can deduce that SPI = 0.

When SPI < 0, it represents drought and when SPI > 0, it indicates wetting. The commonly used
SPI calculation scale parameter β is set to 1, 3, 6, 12, 24, and 36, which represent the SPI values with one
month, three months, six months, one year, two years, and three years as the step size, respectively, and
are counted as SPI(β). The World Meteorological Organization (WMO) has published standardized
SPI guidance literature [63], and SPI(β) statistical results can be obtained as long as the corresponding
format requirements are strictly adhered to. This study performs drought hazard analysis calculations
at a three-month scale for the SPI (Table 2), using SPI (3) from the years 1975 to 2014.

Table 2. Standardized precipitation index (SPI) (3) measurement.

Station 1975-01 1975-02 1975-03 1975-04 1975-05 2014-12

56100 −1.43 −0.57 −0.84 1.89 1.6 −0.31
56101 0.09 0.56 0.83 −0.16 −0.01 0.49
56102 0.68 0.36 0.09 −0.55 0.45 −0.56
56103 0.09 0.46 0.14 −1.11 0.7 −0.28
56104 −0.01 0.43 0.19 −0.7 0.65 0.45
56105 0 0.35 0.2 −0.93 −1.45 0.88
56999 −0.25 −0.43 −0.87 1.19 1.27 −1.21

Notes: The date in the table header is continuous data from 1975-01 to 2014-12; the station column in the table is
continuous from 56100 to 56999. Due to limited space, only part of the data is displayed in the table.

According to the size of the SPI value, the drought condition was divided into 4 grades (Table 3).
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Table 3. SPI (3) and classification of drought grades.

SPI (3) Value Drought Level Weightings Incidence Rate

−1.0–0 Mild drought - -

−1.0–−1.49
Moderate
drought 1

low
medium
higher
high

−1.5–−1.99 Severe drought 2

low
medium
higher
high

≤−2
Extreme
drought 3

low
medium
higher
high

The hazard of drought depends on the intensity and frequency of the drought. The greater
the intensity and frequency of drought, the greater the hazard. Comprehensive drought hazard
assessment models should be able to reflect comprehensively the multiple characteristics of drought.
With reference to existing research results and the SPI results, drought of different intensity grades is
given different weightings, and the incidence rate of each drought grade is calculated. The drought
hazard model is constructed as follows (Equation (7)) [64]:

DHI = (MDr ×MDw) + (SDr × SDw) + (VDr ×VDw) (7)

where DHI represents the drought hazard index; MDr represents a moderate drought rate; MDw

represents a moderate drought weight; SDr represents a severe drought rate; SDw represents a severe
drought weight; VDr represents a very severe drought rate; VDw represents a very severe drought
weight. The impact of mild drought on agricultural production is very small and, therefore, is not
considered. The model takes into account the intensity and frequency characteristics of drought and
the time-scale characteristics of the SPI, while the application of Geographic Information System (GIS)
can describe the spatial distribution characteristics of drought.

Here, we used the scoring method to determine the weight according to the grade of probability of
occurrence. When −1.5 < SPI < −1, the probability of the normal distribution function is 0.0918; when
−2 < SPI < −1.5, the probability of the normal distribution function is about 0.0440; when SPI < −2,
the probability of the normal distribution function is about 0.0227. The probability of occurrence of
the three ranges is approximately proportional, with a ratio of 0.5. When scoring, every time the
probability of occurrence is halved, the weight increases by one level, so the corresponding weights are
1, 2, and 3, respectively.

3.3. Assessment of Drought Vulnerability

3.3.1. Selection and Method for Calculation of the Drought Vulnerability Factor

The vulnerability was assessed based on the vulnerability evaluation of natural environmental
conditions and socio-economic conditions of crop production. Aspects of the three key factors (climate,
soil, and irrigation) closely related to the production of major crops in the LMR were considered for
vulnerability assessment index selection (Figure 7). For the factors of climate, soil, and irrigation, many
indices can be selected for vulnerability assessment. Nevertheless, the data of some indices cannot be
obtained in LMR. Referencing the previous research and the data availability, the water deficiency rate,
the AWC, and the availability of irrigation in the crop growing season were selected as the specific
indices for vulnerability assessment. Given that the vulnerability to drought in the LMR is affected by
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the above three factors, a conceptual model for drought vulnerability assessment was constructed as
follows (Equation (8)):

V = G( f (C), f (S), f (I)) (8)

where V represents the agricultural drought vulnerability; f (C) represents the climate factor function,
f (S) represents the soil factor function, and f (I) represents the irrigation factor function.
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(1) Climate factors

The water demand in the crop growing season and the precipitation for the corresponding
growing season can be used to estimate the water deficiency during the whole crop growth period;
thus, providing a scientific basis for improving the water use efficiency of farmland and developing
efficient water-saving measures for agriculture. The formula is as follows (Equation (9)) [65]:

SCWD =
ET − P

ET
(9)

where SCWD is the seasonal crop water deficiency; ET is the crop growth season water demand; and P
is the crop growth season precipitation. When SCWD is positive, this indicates that the crop growth
season is short of water, whereas a negative value indicates that the precipitation in the growth season
can meet the crop growth season water demand.

A unit of crop water demand is generally measured by the depth (mm) of the water layer consumed
at a certain period or during full fertility. For this study, the crop growth season water demand was
expressed by the crop coefficient-reference crop water demand method (Equation (10)) [50], namely:

ET = ET0·Kc (10)

where ET0 is the reference crop water requirement and Kc is the crop coefficient.
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At the regional scale, the average crop water demand in the growing season is calculated on the
basis of the weight of the crop planting area, that is (Equation (11)):

ET =
ETw ∗ ρw + ETc ∗ ρc + ETr ∗ ρr

ρw + ρc + ρr
(11)

where ET represents the regional average water consumption for the crop in the growth season; ETw,
ETc, and ETr represent the water consumption for sugarcane, rice, and cassava, respectively, in the
growing season; ρw, ρc, and ρr represent the percentage of planting area for sugarcane, rice, and
cassava planting, respectively, in the whole agricultural region.

The seasonal crop water deficiency (SCWD) is as follows (Equation (12)):

SCWD =
ET − P

ET
(12)

As there are large differences in the agricultural planting structure and the planting systems in
various regions for the whole LMR, it is difficult to consider the water deficiency of each crop in the
growing season. Therefore, this study makes use of the water deficiency of three major food crops,
namely, sugarcane, rice, and cassava in the growing season, as the climate vulnerability factors of
agricultural drought.

(2) Soil factors

The AWC refers to the amount of water that the soil can store at a certain depth and can be used by
plants. It is an inherent characteristic of the soil, which shows the water supply capacity of well-drained
soil to vegetation [66]. It is generally considered to be a measure of the soil moisture between the
field water-holding capacity (FC) and the permanent wilting percentage (PWP), that is, the difference
between the field water holding capacity and the water content for a permanent wilting scenario.

(3) Irrigation factors

Irrigation is the main agricultural production measure to prevent and reduce drought, which is of
great significance to increasing crop yield, guarantee water supply security, food security, increasing the
farmers’ income, and improving the ecological environment. The study hypothesized that irrigation
can effectively mitigate the impact of water deficiency on agricultural production when drought occurs,
and that irrigated agricultural areas without irrigation have higher vulnerability compared to irrigated
agricultural areas where irrigation is available.

3.3.2. Drought Vulnerability Assessment Model

Referring to existing research [43,67], vulnerability factor weightings were set in the drought
vulnerability assessments as shown in Table 4, and each vulnerability factor was ranked, weighting
each level with values between 1 to 5, where 1 indicates the least impact on drought vulnerability and 5
indicates a significant impact on vulnerability. Meanwhile, with respect to the weightings, to reflect the
differences between the factors, different weighting ranges were set according to the importance of each
factor in agricultural production. For example, for agricultural production, the available water-holding
capacity and the climate conditions are more important; hence, the climate factor weighting range
was set to 2–5, and the soil factor weighting range was set to 1–4. To demonstrate the importance of
irrigation in agricultural production, the weightings for irrigated and non-irrigated areas were set to 1
and 4, respectively.
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Table 4. Weightings for the drought vulnerability assessment factors in the LMR.

Vulnerability Factor Vulnerability Rating Weightings

AWC

<100 mm 4
100–175 mm 3
175–250 mm 2

>250 mm 1

SCWD

<0 2
0–30% 3
30–60% 4
>60% 5

Irrigation Irrigated land 1
Non-irrigated land 4

Finally, the drought vulnerability assessment model was constructed as follows (Equation (13)):

V = Wawc + Wwd + Wir (13)

where V refers to the agricultural drought vulnerability; Wawc refers to the available water-holding
capacity weight; Wwd refers to the water deficiency rate weighting in the crop growing season; Wir
refers to the irrigation factor weighting.

By using the ArcGIS space calculation function, the three vulnerability factor layers were
superimposed, the weights were summed, and the vulnerability of each grid cell was calculated. Then,
the numerical values were normalized, and the vulnerability was categorized from high to low by the
natural breakpoint method, to realize higher vulnerability, high vulnerability, medium vulnerability,
and low vulnerability areas; finally, the outcomes were mapped.

3.4. Assessment of Drought Risk

Regional drought risk is the result of a combination of the regional drought hazard, the regional
natural environment, and socio-economic vulnerability [23,68,69]. Therefore, drought risk assessment
includes drought hazard assessment and vulnerability assessment. Based on this, a conceptual model
of agricultural drought risk assessment was constructed as follows (Equation (14)):

R = G(f(h), f(v)) (14)

where R refers to the agricultural drought risk, f(h) refers to the agricultural drought hazard function,
and f(v) refers to the agricultural drought vulnerability function.

In the latest research, the conceptual model of risk multiplied by vulnerability is usually used to
calculate the risk, namely, risk = hazard × vulnerability (Equation (15)) [69]. Based on this relationship,
the present study established the drought risk assessment model as follows:

DRI = DHI×DVI (15)

where DRI refers to the agricultural drought risk index, DHI refers to the drought hazard index, and
DVI refers to the agricultural drought vulnerability index.



Int. J. Environ. Res. Public Health 2020, 17, 6153 14 of 24

4. Results and Discussion

4.1. Comprehensive Assessment of Agricultural Drought Hazard

4.1.1. Spatial Pattern of Drought Occurrence

The frequency of drought occurrence of varying intensities was analyzed using a three-month
SPI scale with a 10 km × 10 km grid. The spatial distributions of the occurrence frequencies for (a)
moderate drought, (b) severe drought, and (c) extreme drought within the LMR are presented in
Figure 8. High incidence of extreme drought is mainly distributed in Yunnan Province, China and
northwest Thailand. The central part of Yunnan Province is at the center of the distribution, and the
extreme drought situation covers almost the whole of Yunnan Province. The high incidence of severe
drought is mainly in the western Yunnan region, the western Sichuan region, Myanmar, northeast
Laos, and the northernmost part of Vietnam. The high incidence of moderate drought is in northeast
Yunnan, northern and southern Qinghai, southern Sichuan, western Tibet, Myanmar and western
Thailand, coastal areas in southwest Cambodia, and coastal areas in central and northern Vietnam.
Of these, only the moderate-drought-incidence regions of Vietnam and Cambodia are coastal with the
rest being landlocked. In addition, Cambodia was least affected by the overall incidence of regional
drought. Yunnan Province is the most LMR drought-prone region for all grades, and the province is
also the drought center with respect to agriculture.
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4.1.2. Spatial Patterns of the Drought Hazard

The drought hazard was calculated grid-by-grid, and was divided into four grades (low, medium,
high, higher) from high to low by the natural breakpoint method. Thus, in this way, the distribution
map of the drought hazard in the LMR was realized (Figure 9a). It can be seen that the high-hazard
area is an area that has a high frequency and a high intensity of drought; the incidence of drought in
the low-hazard area is low, and the drought intensity is also low.
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The low-hazard areas are mainly distributed in the middle of Tibet, and account for 5.63% of
the LMR area; in addition, most of the low-hazard areas are in plateau areas with very few crops.
The medium hazardous areas account for 26.0% of the LMR area, and these areas are mostly in
Cambodia and Tibet. The high-hazard zone, which accounts for 48.0% of the LMR area, is the largest
area for all grades and is widely distributed throughout large areas of the LMR, such as Myanmar,
Qinghai, and Sichuan, and these high-hazard zones are interspersed with the other hazard grades in
Vietnam and Laos. The high-hazard zone means that the frequency or intensity of agricultural drought
in the specific area is high, and will have a great influence on agricultural production. The higher-hazard
zone is a region that experiences a higher frequency and intensity of drought (relative to a high-hazard
zone), accounting for 20.4% of the LMR area. As can be seen in the distribution map, several high-value
drought hazard centers in the LMR are located in the vast areas of the Yungui Plateau in China
(e.g., Yunnan) and there is also a large distribution in northern Vietnam, western Thailand, and
eastern Qinghai.

The distribution maps for sugarcane, cassava, and rice were extracted from the global crop
distribution data and the drought hazard maps of the LMR. Statistical analysis shows (Table 5) that for
the three food crop distribution areas, 38% of the sugar cane growing areas are located in high-hazard
areas, while the corresponding values are 30% for cassava and 24% for rice. These three main crops are
located mostly in the high-hazard areas. As can be seen from the above analysis, the drought hazard
for agriculture in the LMR corresponds to the higher category.
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Table 5. Distribution of major crops for the different drought hazard grades in the LMR.

Drought Hazard
Main Crops

Sugarcane Cassava Rice

Low 0.00 0.00 0.00
Medium 0.06 0.08 0.21
Higher 0.56 0.62 0.55
High 0.38 0.30 0.24

4.1.3. Comparative Analysis of the Drought Hazard in the Various Agricultural Areas

There are great differences in the drought hazard throughout the various agricultural areas of the
LMR. Figure 9b is a bar chart of the proportion of drought hazards of different grades in each sub-region.
Qinghai Province, China, is dominated by higher hazards, as is Yunnan Province; the Tibet Autonomous
Region is dominated by lower and medium hazards, Sichuan Province by medium and higher hazards,
and Laos by medium hazards. Myanmar is dominated by medium and higher-hazards as is Sichuan
Province. Thailand mostly experiences higher-hazards, with some medium and high-hazards like
Vietnam. Cambodia is similar to the Tibet Autonomous Region with respect to drought hazard. Overall,
for the whole LMR, there are clear differences in the regional drought hazard but there are no obvious
north–south or east–west trends or features.

4.2. Comprehensive Assessment of Agricultural Drought Vulnerability

4.2.1. Drought Vulnerability Factors for the Various Regions

Based on the main crop phenology and the crop coefficients, the average water demand values for
rice, sugarcane, and cassava during the growing season were calculated. The average water demand for
rice was 4609.10 mm, while the proportion of the planting area was 40.6%. The average water demand
for sugarcane was 3012.20 mm, while the proportion of the planting area was 0.26%. The average
water demand in the growing season for cassava was 3470.99 mm, while the proportion of the planting
area was 0.07%. The results for the vulnerability factor calculations show (Figure 10) that the average
water deficiency rates for the three crops in the growing season vary greatly from north to south and
from east to west. In general, large areas in the south correspond to low-value areas of crop water
deficiency, and the more one goes northward, the more the crop water deficiency rate increases.
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4.2.2. Analysis of Spatial Patterns of Drought Vulnerability

The spatial distribution of drought vulnerability with respect to agriculture in the LMR exhibits
clear spatial differences, as shown in Figure 11a. The low-vulnerability areas are mainly distributed in
the northeast of the LMR, while the middle- and higher-vulnerability areas are mainly distributed in
the southern part of the LMR and are intermixed with other regions of different vulnerability grades.
The high-vulnerability areas are mainly distributed in the central part of the LMR.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 17 of 24 
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The low-vulnerability zone is mainly distributed in the eastern part of Sichuan and the northern
part of Vietnam, and the overall distribution range is small; this zone is the area with the least grain
planting. The medium-vulnerability zone is the largest area of food cultivation, and this zone is affected
by the terrain, which consists of the main mountainous flat areas, such as the central part of Myanmar,
western Thailand, southern Cambodia, and other areas. The higher-vulnerability areas are mainly
distributed in the northern, eastern, and western coastal areas of Myanmar, and the northern regions
of Laos, which are mostly plateau and mountainous areas. High-vulnerability areas are located mainly
in northern and northeast Myanmar, as well as southwest Yunnan.

4.2.3. Comparative Analysis of Drought Vulnerability for the Various Regions

The fraction of area under drought vulnerability conditions in the various regions of the LMR is
illustrated in Figure 11b. Combined with Table 6, it can be seen that there are significant differences
in drought vulnerability between the different agricultural areas. At the same time, within each
area, the spatial distribution of the drought vulnerability levels for the various agricultural areas is
also quite different. From a regional perspective, the Tibet Autonomous Region is dominated by a
higher-drought-vulnerability area, while Sichuan Province is dominated by a low-drought-vulnerability
area, and Yunnan Province is more balanced having mostly a medium-drought vulnerability.
Myanmar is dominated by moderate- and high-vulnerability areas. Thailand is dominated by
moderate-vulnerability areas and with a few higher grades. Laos has mainly high-vulnerability areas
and some medium-vulnerability areas. Cambodia is dominated by higher- and moderate-vulnerability
areas. Vietnam is mostly dominated by moderate-vulnerability areas.
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Table 6. Regional differences of drought vulnerability in the LMR.

Area

The Fraction of Area under Drought
Vulnerability Conditions

Regional SCWD
During the Growing

Season (%)

Regional Average
AWC (mm)

Regional Average
Irrigation Area

FractionLow Medium Higher High

Qinghai 0.00 0.00 0.00 0.00 0.0 166 0.07
Tibet 0.13 0.12 0.71 0.04 65.2 157 0.08

Sichuan 0.58 0.34 0.07 0.01 56.5 199 0.47
Yunnan 0.24 0.46 0.24 0.06 58.5 181 0.62

Myanmar 0.05 0.41 0.45 0.09 56.2 166 0.47
Thailand 0.01 0.67 0.31 0.01 52.8 147 0.66

Laos 0.05 0.36 0.58 0.01 54.5 165 0.39
Cambodia 0.02 0.44 0.52 0.02 51.8 149 0.43
Vietnam 0.18 0.66 0.15 0.01 53.3 166 0.85

4.3. Drought Risk Assessment and Spatial Analysis Patterns

4.3.1. Results for Drought Risk Assessment

Spatial superposition calculations were performed using the results for drought hazard assessment
and the vulnerability assessment. The risk assessment model was then constructed. Next, the GIS
spatial analysis function was used to calculate the results for the drought risk assessment, and the
natural breaks were used to classify the drought risk into four grades from the lowest to the highest.
In this way, the spatial distribution pattern of drought risk in the LMR was revealed (Figure 12).
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4.3.2. Spatial Analysis Patterns for Assessment of Drought Risk

The drought risk distribution for the LMR with respect to agriculture exhibited clear regional
differences, the map for the whole of the LMR indicating a distribution pattern of high-risk areas in the
central region, low-risk areas in the regions adjoining the central region, high-risk in southern areas,
and low-risk in northern areas. The high-risk areas are located in the middle and the northern part of
each agricultural division, and the low-risk areas are located in the adjoining areas and the southern
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part of each agricultural division. The low-risk zone reflects a combination of low-vulnerability and
low-hazard, with several distinct low-risk zones apparent in Figure 12, namely southern Myanmar,
southern Laos, eastern and southeast Sichuan, and southern Cambodia. In addition, there are sporadic
low-risk distributions in Yunnan, China, central Laos, and northern and southern Vietnam.

As can be seen from the vulnerability and hazard distributions for each country, areas with
high drought hazard, such as Yunnan, Vietnam, and Thailand, are covered correspondingly with
low-drought-vulnerability areas, whereas Cambodia with a low-drought hazard has a higher drought
vulnerability. In addition, the same characteristics are also evident with respect to the spatial
distributions for drought hazard and drought vulnerability, such as Myanmar, which has a higher
drought hazard and moderate-higher drought vulnerability. This is also the case with Laos and
Sichuan Province.

4.3.3. Comparison of Drought Risk for the Various Regions

Compared to the zoning map for the LMR, statistical analysis of the drought risk in the various
areas shows (Figure 13) that with respect to the drought risk, there are great differences between and
within the various agricultural areas. Myanmar and Thailand, as well as Yunnan Province, have a
relatively high proportion of high-risk regions, while Laos and Cambodia have a relatively higher
proportion of high-risk levels, whereas Sichuan Province is almost all covered with low-risk areas.
Compared to other countries, the drought risk in Yunnan is more balanced in terms of the spatial
distribution with the different risk levels being relatively evenly distributed throughout the province.
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In addition, the distribution of drought risk varies considerably within each agricultural area
(Table 7). For example, the southern part of Myanmar is mainly low and medium risk as evidenced
by a strip-like distribution and with some flake distribution, while the large area of drought risk in
the north and northeast is flake distribution. The risk grade distribution in Thailand and Vietnam is
similar, with both exhibiting a balance between high-risk and medium-risk distributions. Laos and the
Tibet Autonomous Region are mainly low-risk and high-risk, respectively.
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Table 7. Regional differences of drought risk in the LMR.

Area
Proportion of Agricultural Risks By Region High-Hazard

Area Ratio
High-Vulnerability

Area RatioLow Medium Higher High

Yunnan 0.14 0.45 0.16 0.25 0.81 0.07
Cambodia 0.42 0.06 0.50 0.02 0.00 0.015

Laos 0.27 0.16 0.51 0.06 0.02 0.006
Myanmar 0.15 0.31 0.24 0.30 0.08 0.087
Thailand 0.09 0.59 0.11 0.22 0.24 0.008
Vietnam 0.23 0.59 0.11 0.06 0.26 0.014
Qinghai 0.00 0.00 0.00 0.00 0.12 0.000
Sichuan 0.69 0.23 0.07 0.01 0.08 0.003

Tibet 0.14 0.15 0.61 0.10 0.00 0.037

4.3.4. Validation of Drought Risk Assessment

Drought disaster is a direct consequence of drought, so data for past drought disasters were used
to validate the drought risk assessments for the LMR. Accordingly, based on the data for drought
disaster in the LMR from 1965 to 2017, Thailand, Cambodia, and Vietnam were the main areas of
drought disaster, and the drought risk levels in these areas were ranked as higher risk and high-risk.
By comparison, the results of the present study for the regions that have suffered disasters in the past
are also distributed mainly in the higher- and high-risk areas.

5. Conclusions

Based on assessment of the drought hazard and the drought vulnerability in the LMR, a conceptual
model of agricultural drought risk assessment has been established. The higher and high-drought
hazard areas are mainly distributed in large parts of Myanmar, Qinghai, Sichuan, and Yunnan, and in
western Thailand. Among them, the plains areas, which have intensive agricultural production, are
mainly located in the higher and high-hazard areas, and drought poses a great threat to agricultural
production. Furthermore, there is a certain mismatch in the spatial patterns between the distributions
of irrigation and drought hazard, which increases the risk of drought to some extent. The higher- and
high-vulnerability drought areas are mainly distributed in the south-central LMR, particularly in the
north-west, the north-east, northern Laos, and southwest Yunnan. The common feature of these areas
is that during the growing season, the water deficiency rate is relatively high with a low irrigation rate.

The drought risk for the LMR has a distribution pattern of high-risk areas in the central region,
with the adjoining areas being of low-risk, while the southern areas are high-risk and the northern
areas are low-risk. Overall, the proportion of high-risk areas is 12.8% of the total, and these areas are
distributed in the middle and northern part of each agricultural division. The higher-risk areas, the
middle-risk areas, and the low-risk areas account for 28.8%, 31.7%, and 26.3%, respectively, of the
drought-affected land. The results for the high-risk and the higher-risk drought areas were found to be
consistent with the historical drought data for the LMR.

We propose four suggestions related to agricultural production activities and relief measures
to minimize the drought risk. First, we recommend effective use and improve the related water
conservancy projects, such as hydropower dams. These water conservancy projects can store water
and divert floods, i.e., irrigating agriculture during dry periods and reducing the losses caused by
floods. Second, it is suggested to adjust the crop plantation. Priority should be given to planting
drought-tolerant crops in areas with high drought risk, and crops that require a lot of water to be
planted in low-and medium-risk drought areas. Third, we recommend speeding up the selection of
drought-tolerant crops. By planting crops with drought tolerance genes, water demand can be reduced.
Lastly, we suggest applying modern technology to agricultural drought prevention and control, such
as seawater irrigation and seawater crop planting (sea rice, etc.).
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