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Abstract: The exponential increase in aviation activity and air traffic in recent decades has raised
several public health issues. One of the critical public health concerns is runway safety and the
increasing demand for airports without accidents. In addition to threatening human lives, runway
accidents are often associated with severe environmental and pollution consequences. In this
study, a three-step approach is used for runway risk assessment considering probability, location,
and consequences of accidents through advanced statistical methods. This study proposes novel
models for the implementation of these three steps in Iran. Data on runway excursion accidents
were collected from several countries with similar air accident rates. The proposed models empower
engineers to advance an accurate assessment of the accident probability and safety assessment of
airports. For in-service airports, it is possible to assess existing runways to remove obstacles close
to runways if necessary. Also, the proposed models can be used for preliminary evaluations of
developing existing airports and the construction of new runways.

Keywords: aviation safety; airport safety; runway; accident risk assessment; airport design; runway
excursion; accident research; digital health; public health; mobility; transportation; airplane collision;
accident injuries prevention; accident modeling; air traffic

1. Introduction

Progress of the aviation industry and airport services is considered essential for economic and
social development [1]. Despite the numerous social and economic benefits, the expansion of air
transport is confronted with several public health challenges [2]. The aviation accident is one of
these problems. In addition to threatening human lives, accidents are often associated with severe
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environmental and pollution consequences [3]. Therefore, the environment and safety have always
been of interest to engineers in this industry [1–4]. Process optimization can be effective in solving
these problems and their impact on public health [2,5]. Accordingly, there is an increasing demand for
the development of environmentally friendly and sustainable airports with minimal environmental
impact [6]. On the other hand, the rapid transition of passengers and goods and developments of
countries are closely linked to the efficiency of their transportation systems. For example, transportation
activities allocate itself more than 9.1% of the Gross Domestic Product (GDP) and involve close to
3 million jobs in Iran. In various human societies, aviation is regarded as one of the key industries
in terms of features such as security, speed, and the attractiveness of the airline industry tourism [7].
As the space of take-off and landing aircraft, the runway is one of the most important parts of an
airport. Any accident at the runway will result in threaten public health, reducing airport functionality,
and resulting in service disruption. Also, accidents can harm the environment in the surrounding of
the runway [8,9]. The idea of getting air accident rates down to zero is very naive and unbelievable,
but trying to prevent them will increase air transportation safety. Therefore, identifying obstacles,
examining the location constraints, and determining the optimum location of the runway are among
the essential requirements of each country’s aviation organization. It is expected that there will be
perfectly safe conditions when landing and taking-off for each aircraft. Factors such as inclement
weather, poor visibility, obstacles, lack of familiarity with the airport, confusion, fatigue, and disruption
to Air Traffic Control (ATC) may cause an accident at the airport [10,11]. In general, runway accidents
are divided into two main categories [8,12–14]:

• Runway Incursion (RI)
These accidents occur due to the improper positioning of a plane, vehicle, or human in a protected

area for landing and take-off [15,16]. In other words, RI is an accident that occurs when a plane crashes
into another plane or vehicle, or human at the runway. The three main causes of RI accidents are
non-compliance with ATC instructions, lack of familiarity with the airport, and non-compliance with
standard operating procedures [17,18].

• Runway Excursion (RE)
RE means leaving the aircraft from the runway. This type of accident is likely to occur during

both the take-off and the landing [19]. According to the International Air Transport Association
Safety Report, REs caused 22% of all accidents over the 2010–2014 period [20]. According to aviation
authorities, about 80 percent of RE accidents occur in landing operations [3]. Several factors contribute
to a RE accident, the most important of which are weather, pilot, airport, and aircraft [19,21]. Depending
on the exit area of the runway, RE accidents are divided into two groups [22,23]: Veer-Off (VO) and
Over-Run (OR). In this paper, two types of RE accidents have been considered by the authors: Landing
Overrun (LDOR) and Landing Veer-off (LDVO).

Because of the geographical extent of Iran and the underdevelopment of the rail and road transport
systems, the appeal of using air transport has been increasing in this country during the last years.
Currently, the Iran aviation industry suffers from poor service quality, long service life, lack of advanced
navigation system, lack of proper planning, etc. Due to the exhaustion of the Iranian air fleet, the need
to use risk assessment models at the airports of this country is very urgent. Therefore, the main purpose
of this paper is to develop the final models for risk assessment in Iranian airports. The method of air
accident risk assessment in scientific literature consists of three parts [22]: Modeling the probability of
accidents, Modeling the location of accidents, and Modeling the consequences of accidents. For this
purpose, modeling of probability, location, and consequences of accidents has been performed. Due
to the limited number of data, all data were used in the model construction phase, and validation of
models was performed with the help of statistical tests: Analysis of Variance (ANOVA) and Residual
Diagnostic. For a practical examination of the models, two airports in Iran were evaluated by these
models, Mehrabad in Tehran and Hasheminejad in Mashhad. By using these models, engineers can
accurately analyze the existing runways and remove obstacles for reducing the number of accidents.
Therefore, proposed models can help to increase safety and public health. Also, in new airports,
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the models help engineers to evaluate proposed scenarios to select the optimal location of runways.
As a result, they can consider environmental aspects and choose the location where the future probably
accidents will have less damage to environmental elements such as wildlife parks, old trees, historical
monuments, etc. The rest of the paper is organized as follows: Section 2 presents the background
of the study. Section 3 introduces the materials and methods of this study. This section includes all
concepts related to accident modeling, how to collect data and introduce the airports under study.
Then, we show the results and discuss them in Section 4. Finally, Section 5 presents our conclusion.

2. Literature Review

Risk evaluations are used in many parts of aviation. Little information is available for evaluating
the risk of accidents at airports or near them. Previous relevant studies can be classified into four
parts [22]: operational risk, facility risk, airport design, and third-party risk. The focus of this paper is
on third-party risk. The most important and well-known examples of third-party risk are the Airport
Cooperative Research Program (ACRP) reports (Reports 3 [22] and 50 [24]). A review of relevant
studies is provided below. In 2001, the Norwegian Civil Aviation Authority evaluated the risk of
veer-off. They found that the probability function formation for veer-off accidents is exponential (see
Equation (1)) [25]:

P(x) = e−axn
(1)

where P is the probability that the aircraft at the end of the veer-off is x meters away from the
runway centreline, while a and n are coefficients that depend on the conditions at the examined
contour. The distance x is calculated from the center of gravity of the aircraft. Moretti et al. calculated
the coefficient constant of Equation (1) for two conditions, including take-off and landing (see
Equations (2) and (3)) [26]:

Plandings = e−0.0219x (2)

Ptake−offs = e−0.0143x (3)

In another study, Moretti et al. selected an airport in Italy as a case study and calculated a veer-off

risk assessment for 1500 points around that airport’s runway [27]. Their modeling results are presented
in Table 1. In this table, P is the frequency of an aircraft running beyond a certain distance, x, measured
from the runway centreline, according to the Cartesian system presented in Figure 1.

Table 1. Veer-off modeling.

Model Model Application

P = 1.37× 10−7
× e−0.0219x valid for landings on instrument runways

P = 9.72× 10−7
× e−0.0219x valid for landings on non-instrument runways

P = 6.96× 10−8
× e−0.0143x valid for take-offs from instrument runways

P = 6.82× 10−9
× e−0.0143x valid for take-offs non-instrument runways
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Kirkland et al. proposed a methodology for risk assessment of runway landing overruns.
Their proposed methodology included three main models as described in [28]:

• Modeling the probability of a landing overrun
• Modeling the wreckage location
• Modeling the damage consequences of overruns

Table 2 shows the details of this methodology.

Table 2. The proposed methodology for risk assessment of runway landing overruns.

Model Formula Description

A. Modeling the probability of
an overrun

P(landing overrun) = 1
1+e−(m+nD)

P(no landing overrun) = 1− P(landing overrun)

P is the probability of an overrun, D is either the
percent of excess distance available or percent of
maximum allowable weight, m and n are constants to
be determined.

B. Modeling the wreckage location L = 15 + 1.05 E

L is the normalized wreckage location relative to the
end of the normalized required landing distance
expressed as a percentage of the required landing
distance, E is the excess distance between the end of
the required landing distance and the runway end
expressed as a percentage of the required
landing distance.

C. Modeling the damage
consequences of overruns *

P(sd) = 1
e−(g+hB)

P(nm) = 1− P(sd)

P(sd) is the probability of the aircraft suffering
substantial damage or being destroyed, P(nm) is the
probability of the aircraft suffering no damage or
minor damage, B signifies if the aircraft strikes an
obstacle beyond the runway end (yes = 1, no = 0), g
and h are parameters.

P(d) = 1
e−(i+jB2+kS)

P(s) = 1− P(d)

P(d) is the probability of the aircraft being destroyed,
P(s) is the probability of the aircraft being seriously
damaged, B2 signifies if the aircraft struck a second
obstacle beyond the runway end (yes = 1, no = 0), S is
the runway exit speed in meters per second, and i, j,
and k are parameters.

* The most reliable predictors of whether the aircraft will suffer substantial damage or be destroyed are whether the
aircraft has struck a second obstacle beyond the runway end, and the runway exit speed, so the second stage model
is similar but with two variables.

In ACRP Report 3, Federal Aviation Administration (FAA) develops models for risk assessment of
the probability, location, and consequences of landing overruns (LDOR), landing undershoots (LDUS),
and take-off overruns (TOOR) accidents [22]. For this report, the study period was from 1982 to 2006
and in addition to the US, data from similar countries (Canada, Australia, France, Britain, New Zealand,
Singapore, Ireland, and Spain) were used. In this report, the three-part process shown in Figure 2 is
used to model the risk of accidents. Figure 2 was adapted from ACRP Report 3 [22].
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In this report, logistic regression and exponential function were used to model even probability
and location probability, respectively. For the third part, the probability of severe consequences
modeling was performed using frequency and location models [22]. Using the results of the ACRP
Report 3, Wong et al. conducted a risk assessment for the Runway Safety Area (RSA) and focused on
accident probability modeling. They investigated LDOR, LDUS, TOOR, and Crash after Takeoff (TOC)
accidents at US airports. The study period was from 1982 to 2002 and a total of 440 accidents were
selected, including 199 LDOR cases, 122 LDUS cases, 52 TOOR cases, and 67 TOC cases [29].

In 2011, the FAA published ACRP Report 50. This report presented an improved model of the
probability of accidents for LDOR, LDVO, LDUS, TOOR, and take-off veer-offs (TOVO). The study
used 1031 accidents and 383 incidents at airports of US and similar countries. Normal operation data
(NOD) from US airports, operations that did not cause any accidents or incidents, were also used in
this study [24]. In addition to adding the LDVO and TOVO accidents, the variables and their levels
have been modified in ACRP Report 50.

Based on the ACRP Reports 3 and 50, Ayres et al. (2013) have focused on two issues [30]:

• Presenting an airport risk assessment model to assess air traffic-related hazards at the airport
• Managing the RSA as a risk reduction measure.

In their study, five types of runway accidents including LDOR, LDVO, LDUS, TOOR, and TOVO
were analyzed and modeled. In terms of the status of accident distribution in the end and edges of
the runway, they used the exponential form to model the accident location [30]. The modeling results
performed by Ayres et al. are presented in Table 3.

Table 3. Coefficients of accident location model.

Type of Accident Type of Data Model R2

LDOR
X P{d > x} = e−0.00321x0.98494 0.998

Y P
{
d > y

}
= e−0.20983x0.48620 0.939

LDUS
X P{d > x} = e−0.00148x0.75150 0.987

Y P
{
d > y

}
= e−0.02159x0.77390 0.986

LDVO Y P
{
d > y

}
= e−0.02568x0.80395 0.915

TOOR
X P{d > x} = e−0.00109x1.06764 0.992

Y P
{
d > y

}
= e−0.04282x0.65957 0.987

TOVO Y P
{
d > y

}
= e−0.01639x0.86346 0.942

Jeon et al. investigated the impact of rainfall on runway accidents. Due to not considering the
effect of rainfall (rain and snow) on the RSA risk assessment in the existing studies, they attempted to
develop a new location model to account for this effect [31]. The results of their research for the types
of accidents are presented in Table 4.

Table 4. Advanced location model.

Type of Accident Type of Data Model R2

LDOR
X P{d > x} = e−0.00321x0.984932 0.998

Y P
{
d > y

}
= e−0.20983x0.48621 0.942

LDUS
X P{d > x} = e−0.01481x0.749897 0.986

Y P
{
d > y

}
= e−0.02159x0.78789 0.989

LDVO Y P
{
d > y

}
= e−0.2568x0.803984 0.994

TOOR
X P{d > x} = e−0.00109x1.06754 0.989

Y P
{
d > y

}
= e−0.04282x0.661398 0.991

TOVO Y P
{
d > y

}
= e−0.01639x0.874332 0.943
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The runway risk assessment studies have always faced a major challenge called the variety of
conditions affecting risk analysis. Various variables, including air traffic, aircraft type, and quality,
build quality of Infrastructures, budget, maintenance quality, weather conditions, etc., vary from region
to region. Because of these changes, engineers are forced to model for each region with the specific
conditions of that region. Due to the lack of a comprehensive and practical risk assessment system for
runways at Iranian airports, the authors were encouraged to address this gap. Therefore, the main
purpose of the present study is to evaluate the RSA risk concerning RE accidents at Iranian airports.
In terms of health and environmental problems due to air accidents, risk analysis and determination of
optimum location for constructing or developing runways can help reduce these problems. One of the
most important and valid methods of runway risk assessment is the method presented in the United
States, ACRP Report 50. After reviewing the collected data and comparing their dispersion pattern to
the American method, the authors decided to base their modeling process on this method.

3. Materials and Methods

In this study, risk assessment modeling for LDOR and LDVO accidents is performed in three
parts: Modeling the probability of accidents, Modeling the location of accidents, and Modeling the
consequences of accidents. A comprehensive flowchart representing the framework of this research is
presented in Figure 3. In the continuation of this section, the concepts related to runway risk assessment,
data collection process, and specifications of the airports under study are presented in detail.
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3.1. Risk Assessment of Runway Incidents

Runway Safety Area (RSA), Figure 4, is the sum of the area adjacent to the runway and the end
area of the runway, which is built to reduce air accident damage [32–36]. The RSA standard dimensions
have changed over the years and depend on the class of aircraft using the runway [24]. The standard
dimensions have increased historically to serve faster and larger aircraft and to improved the safety
of aviation users. The dimensions of RSA vary from 120 feet wide by 240 feet beyond the end of
the runway to 500 feet wide by 1000 feet beyond the end of the runway [37]. In the 1960s, the FAA
proposed an area that has 500 feet wide and extends 1000 feet beyond each end of the runway [24].
These dimensions are used as the standard in most runways. Based on Figure 4, areas (1) and (2) are
provided to reduce OR and VO accident consequences, respectively.
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as environmental factors. Logistic regression is similar to linear regression, except that in this type of
prediction, the result for the level or levels of the dependent variable is two solutions [22]. The basic
model used to create the accident probability model is as follows [22,24,31,38]:

P{Accident_Occurence} =
1

1 + e−(b0+b1X1+b2X2+b3X3+...)
(4)

where P{Accident_Occurence} is the probability (0–100%) of an accident type occurring given certain
operational conditions, Xi is independent variables (Table 5) including aircraft type, precipitation,
crosswind, visibility, ceiling, etc., and bi is regression coefficients. The values of bi coefficients are given
in Table 6. After obtaining the model coefficients (bi), by placing zero (base level) or one (other levels)
numbers as an alternative to each of the independent variables (Xi) in the model, it is possible to obtain
the probability of different accidents. Tables 5 and 6 were adapted from ACRP Report 50 [24].

Table 5. Independent variables (Xi) in the accident probability model.

Independent Variables (Xi) Levels of Variable

User Class

Commercial (C) (Base level *)

Cargo (F)

General Aviation (GA)

Taxi/Commuter (T/C)
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Table 5. Cont.

Independent Variables (Xi) Levels of Variable

Equipment Class based on Maximum Takeoff Weight (MTOW)

Large Jet (B737, A320, etc.) (C) (Base level)

Heavy Jet (B777, A340, etc.) (AB)

Large Commuter (Regional Jets, ERJ-190, CRJ-900, ATR42, etc.) (D)

Medium Aircraft (Biz Jets, Embraer120, Learjet35, etc.) (E)

Small Aircraft (Beech-90, Cessna Caravan, etc.) (F)

Engine Type
Jet (Base level)

Turboprop

Foreign Origin/Destination (Foreign O/D)
Domestic

Foreign

Ceiling Height

More than 2500 ft (Base level)

Less than 200 ft

Between 200 ft to 1000 ft

Between 1000 ft to 2500 ft

Visibility

Visibility is more than 8 miles (Base level)

Visibility is less than 2 miles

Visibility is between 2 miles and 4 miles

Visibility is between 4 miles and 8 miles

Crosswind (Xwind)

Less than 2 knots (Base level)

Between 2 knit and 5 knots

Between 5 knit and 12 knots

More than 12 knots

Tailwind

Less than 5 knots (Base level)

Between 5 knit and 12 knots

More than 12 knots

Air Temperature

Between 15 ◦C to 25 ◦C (Base level)

Less than 5 ◦C

Between 5 ◦C to 15 ◦C

More than 25 ◦C

Gust
Non-existence (Base level)

Existence

Thunderstorm
Non-existence (Base level)

Existence

Rain
Non-existence (Base level)

Existence

Snow
Non-existence (Base level)

Existence

Fog
Non-existence (Base level)

Existence

Icing Condition
Non-existence (Base level)

Existence

Frozen Precipitation
Non-existence (Base level)

Existence

Hub/Non-Hub Airport
Hub Airport (Base level)

Non-Hub Airport

Log Criticality Factor
CF < 0 (Base level)

CF > 0

Night Condition
It is not night (Base level)

It is night

* The base levels in this table do not affect the model and are part of the ideal conditions.
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Table 6. Values of bi coefficients for the accident probability model.

Variable LDOR LDVO LDUS TOOR TOVO

Adjusted Constant −13.065 −13.088 −15.378 −14.293 −15.612
User Class F - - 1.693 1.266 -
User Class G 1.539 1.682 1.288 - 2.094
User Class T/C −0.498 - 0.017 - -
Aircraft Class A/B −1.013 −0.770 −0.778 −1.150 −0.852
Aircraft Class D/E/F 0.935 −0.252 0.138 −2.108 −0.091
Ceiling less than 200 ft −0.019 - 0.07 0.792 -
Ceiling 200 to 1000 ft −0.772 - −1.144 −0.114 -
Ceiling 1000 to 2500 ft −0.345 - −0.721 - -
Visibility less than 2 SM 2.881 2.143 3.096 1.364 2.042
Visibility from 2 to 4 SM 1.532 - 1.824 −0.334 0.808
Visibility from 4 to 8 SM 0.2 - 0.416 0.652 −1.500
Xwind from 5 to 12 kt −0.913 0.653 −0.295 −0.695 0.102
Xwind from 2 to 5 kt −1.342 −0.091 −0.698 −1.045 -
Xwind more than 12 kt −0.921 2.192 −1.166 0.219 0.706
Tailwind from 5 to 12 kt - 0.066 - - -
Tailwind more than 12 kt 0.786 0.98 - - -
Temp less than 5 C 0.043 0.558 0.197 0.269 0.988
Temp from 5 to 15 C −0.019 −0.453 −0.710 −0.544 −0.420
Temp more than 25 C −1.067 0.291 −0.463 0.315 −0.921
Icing Condition 2.007 2.67 2.703 3.324 -
Rain - −0.126 0.991 0.355 −1.541
Snow 0.449 0.548 −0.250 0.721 0.963
Frozen Precipitation - −0.103 - - -
Gusts - −0.036 0.041 0.006 -
Fog - 1.74 - - -
Thunderstorm −1.344 - - - -
Turboprop - −2.517 - 0.56 1.522
Foreign OD 0.929 −0.334 1.354 - −0.236
Hub/Non−Hub Airport 1.334 - - - −0.692
Log Criticality Factor 9.237 4.318 1.629 - 1.707
Night Condition - −1.360 - - -

3.1.2. Accident Location Modeling

The likelihood of an accident in all areas around the airport is not equal. An accident near the
runway is more likely to occur than the high distances from the runway. Therefore, the probability of
accidents depends on the location of the accident. This dependence is expressed as a model of the
accident location. The accident location model is based on past accident data [22,24]. According to
the distribution of accidents towards the end and edges of the runway, the exponential function is
used for modeling the accident location. The axis locations for measuring distances are viewed in
Figures 5 and 6. The nose wheel of aircraft is the reference location. These figures were adapted from
ACRP Report 50 [24].
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The basic model for the longitudinal distribution of OR accidents is [22,24]:

P{Location > x} = e−axn
(5)

where P{Location > x} is the probability the OR distance along the runway centerline beyond the
runway end is greater than x and x a given distance beyond the runway end. a and n are regression
coefficients. Figure 7 showed a typical longitudinal location distribution. This figure was adapted
from ACRP Report 50 [24].
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Figure 7. OR incidents model.

Equation (6) is used for transverse location distribution of OR and VO accidents:

P
{
Location > y

}
= e−bym

(6)

where P
{
Location > y

}
is the probability that accident distance from the runway border (in VO accident)

or centerline (in OR accident) is greater than y and y is a given distance from the extended runway
centerline or runway border. b and m are regression coefficients. Figure 8 showed a typical transverse
location distribution. This figure was adapted from ACRP Report 50 [24].
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3.1.3. Accident Consequences Modeling

The consequences of an accident are a function of several factors. In modeling the consequences
of OR and VO accidents, the following variables are considered as effective factors in the accident
severity [24]:

• Type, size, and location of the obstacle
• Aircraft speed and wingspan
• The number of obstacles and their location distribution

Based on the maximum speed of the aircraft, which has the least damage and casualties if it
encounters an obstacle, obstacles are divided into four groups [24]:

Group one: Maximum speed is nill (such as cliff in RSA and concrete wall)

(1) Group two: Maximum speed is 5 knots (such as brick buildings)
(2) Group three: Maximum speed is 20 knots (such as ditches and fences)
(3) Group four: Maximum speed is 40 knots (such as frangible structure and approach lighting system)

The main idea in making the accident consequence model is to use models of accidents to estimate
the accidents in which the aircraft has a lot of energy when it encounters an obstacle, thus producing
severe consequences. This method was developed in ACRP Report 3 [22]. For a better understanding
of this approach, note Figure 9.
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Figure 9. Modeling approach for OR accidents consequences.

In Figure 9, D0 is the distance to obstacle and d is the distance between the stopped aircraft
and runway end. ∆ value is predicted based on the rate of decrease in speed at different types of
surfaces (paved, unpaved, and engineered materials arrestor system (EMAS)), the critical collision
speed, and the size and type of obstacle [30].

Based on Figure 9, this modeling has three approaches [24]:

(1) The aircraft does not collide with the obstacle (d < Do)
(2) The aircraft collides with the obstacle with low speed and energy (d > Do)
(3) The aircraft collides with the obstacle with high speed and energy (d > Do + ∆)

For completing the model, a link must be established between the longitudinal and transverse
location distribution of accidents with the location, type, and dimensions of existing obstacles (See
Figures 10 and 11). These figures were adapted from ACRP Report 50 [24].
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Based on Figures 10 and 11, three general conditions can be expected [24,30]:

(1) Medium consequences when part of the obstacle is in the yellow area
(2) Severe consequences when part of the obstacle is in the orange area
(3) No consequences when the obstacle is out of the orange and yellow areas

As can be seen in Figure 12, the W1 × L1 obstacle is located at a distance x and y of the runway
threshold. It can be assumed that if the aircraft encounters an obstacle in the distance between yc and
yf, it will have severe consequences [24,30].
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Based on the transverse distribution model of the accident location, the probability that the aircraft
will be at the mentioned distance when exiting from the runway is [24]:

Psc =
e−bym

c − e−bym
f

2
(7)

where Psc is the probability of high consequences, b and m are regression coefficients for transverse
location model, yc and yf are critical location closest to the extended runway axis and farther from the
extended runway axis, respectively.

By combining Equation (7), the longitudinal distribution model of accidents, and the possibility of
multiple obstacles, the risk of accidents with severe consequences is determined by Equation (8) [24]:

Psc =
N∑

i=1

(e−bym
ci − e−bym

fi )

2
× e−a(xi+∆i)

n
(8)

where N is the number of existing obstacles, a and n are regression coefficients of longitudinal
distribution model of accidents, and ∆i is the location parameter for obstacle i.

3.2. Data Gathering

In this study, accident modeling is performed with the help of accident statistics in similar
countries. According to the ACRP Report 3, the selection of similar countries has been done with the
help of the standard of similarity of accident rates. Accordingly, the countries of the world are divided
into eight separate regions [39]: Africa (AFI), Middle East and North Africa (MENA), Asia/Pacific
(ASPAC), North Asia(NASIA), Commonwealth of Independent States (CIS), Europe (EUR), Latin
America and the Caribbean (LATAM), and North America (NAM). Also, Table 7 shows the air accident
rates per one million operations performed during 2013 and 2014, as well as the average for 2009–2013.
Table 7 was extracted from the safety report 2014 [39].

Table 7. Air accident rates based on IATA zoning (per one million operations).

Zone Air accident Rates in 2013 Air Accident Rates in 2014 Average Air Accident Rates (2009–2013)

AFI 11.18 7.12 12.45
ASPAC 2.57 2.90 2.76

CIS 2.19 3.14 5.92
EUR 1.35 2.75 2.03

LATAM 2.73 1.98 3.36
MENA 3.47 3.05 5.43
NAM 1.00 1.55 1.38

NASIA 0.95 0.53 0.82

Based on Table 7 and due to the nearness of air accident rates, MENA (including Iran), CIS,
LATAM, and ASPAC zones have been selected as similar countries for RE accident data collection.
A total of 98 countries have been selected in these four zones, of which 19 are in MENA, 12 in CIS, 33 in
LATAM, and 34 in ASPAC. All RE accidents in the mentioned countries have been carefully examined
and finally, the data of 57 countries have been selected. Table 8 shows the list of selected countries and
the number of data extracted from each country. This table contains the data of LDOR, LDVO, TOOR,
and TOVO accidents between 1990 and 2015.
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Table 8. List of selected countries and the number of data usable from each country.

MENA Number of Data CIS Number of Data LATAM Number of Data ASPAC Number of Data

Iran 13 Russia 65 Brazil 21 Indonesia 47

Afghanistan 4 Ukraine 8 Colombia 11 India 13

Sudan 3 Kazakhstan 5 Argentina 8 Japan 8

Morocco 2 Tajikistan 2 Bolivia 6 Malaysia 7

Tunisia 2 Uzbekistan 2 Ecuador 6 Philippines 6

UAE. 2 Armenia 1 Mexico 6 Australia 5

Yemen 2 Georgia 1 Venezuela 3 Bangladesh 4

Algeria 1 Kyrgyzstan 1 Guatemala 2 Nepal 4

Iraq 1 Honduras 2 Pakistan 4

Saudi
Arabia 1 Nicaragua 2 Singapore 4

Peru 2 New
Guinea 2

The
Bahamas 1 South

Korea 2

Belize 1 Thailand 2

Chile 1 Vietnam 2

Cuba 1 Brunei 1

Dominican
Republic 1 Laos 1

Guyana 1 Maldives 1

Haiti 1 New
Zealand 1

Jamaica 1 Sri Lanka 1

Panama 1

SUM 31 SUM 85 SUM 78 SUM 115

Once the countries to collect data have been identified, three initial forms have been prepared
including Basic Information, Aircraft and Airport Information, and Weather Information. Figure 13
shows these forms.
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conditions information.

3.3. Airports Under Study

A study of the history of air accidents on Iranian airports shows that Mehrabad International
Airport in Tehran and Hasheminejad International Airport in Mashhad have the largest share. Therefore,
the accidents, the condition of the runways, and the obstacles around the runways of these two airports
have been carefully examined.

3.3.1. Mehrabad International Airport

Mehrabad International Airport was built in 1938 in the western part of Tehran. A study of
the presented statistics shows that in recent years, Tehran has been considered as the main, largest,
and most important city in Iran, and some cases as the center of national and international exhibitions.
The special conditions of Tehran have a direct impact on the performance and air traffic of the airport.
Mehrabad Airport is currently the first airport in the country to receive about 12 million passengers.
This airport has two parallel runways (see Figure 14).
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Table 9 was extracted from the International Civil Aviation Organization (ICAO) [37] and shows
the physical characteristics of runways in Mehrabad International Airport.

Table 9. Physical characteristics of Mehrabad International Airport runways.

Runway Dimensions (m) Pavement Type Stopway Strip RESA

11L 3989 × 45 Asphalt 122 × 45 - 226 × 150
29R 3989 × 45 Asphalt 194 × 45 - -
11R 4030 × 60 Asphalt 87 × 45 - -
29L 4030 × 60 Asphalt - - -

Note: RESA is Runway End Safety Area.

3.3.2. Hasheminejad International Airport

Hasheminejad International Airport, in Mashhad, was built in 1951. This airport is the second
busiest airport in the country after Mehrabad International Airport in Tehran. Hasheminejad
International Airport has two parallel runways (See Figure 15). Also, Table 10 shows the physical
characteristics of the runways. This table was extracted from ICAO [37].
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Table 10. Physical characteristics of Hasheminejad International Airport runways.

Runway Dimensions (m) Pavement Type Stopway Strip RESA

13L 3810 × 45 Asphalt 302 × 45 - -
31R 3810 × 45 Asphalt 303 × 45 - -
13R 3920 × 45 Asphalt 300 × 45 - -
31L 3920 × 45 Asphalt 296 × 45 - -

Note: RESA is Runway End Safety Area.

4. Results and Discussion

The collected data are from 1990 to 2015. Undoubtedly, the number of RE accidents and incidents
that occur during the period under review is much higher than the number of cases presented. However,
the lack of registration of information about some of the accidents and incidents has made it impossible
to use all of them in this research. A total of 309 events, including 168 accidents and 141 incidents,
have been collected and classified. Figure 16 shows how these events are distributed.
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Figure 16. The events distribution (based on the type of RE accident).

As can be seen, the frequency of TOOR and TOVO data is low. Therefore, it is not possible to
build a model based on this type of accident. As a result, further research is based on LDOR and
LDVO accidents. Each event consists of 18 variables (16 variables related to the probability model and
2 variables related to the location model). Failure to record some variables has led to missing data in
some collected cases. Finally, 128 and 143 data were used to construct the longitudinal and transverse
LDOR accident model, respectively. Also, 49 data were used to construct the LDVO accident model.
Since the probability model and the location model are made independently of each other, each of the
selected events is at least appropriate for one of the models. Because of the limitations in the number
of data, all of them were used in the construction of the model and the validation was done only by
statistical tests.

4.1. Accident Probability Model

Due to the lack of a suitable database for NOD flights in Iran, it is not possible to build a model for
the probability of RE accidents. Therefore, the studied airports will be analyzed based on the logistics
regression model presented in the ACRP Report 50. Details of this model are provided in Section 3.1.1.

4.2. Accident Location Model

4.2.1. Longitudinal Location Model for LDOR

In this section, the first location model for RE accidents is presented. The goal is to find FX(x) or the
probability of x ∈ (a, b) for any desired value of a and b. According to the statistical preliminary concepts:

FX(x) = P(X ≤ x) = 1− P(X ≥ x) (9)

where FX(x) is the probability function x and P(X ≤ x) is probabilities of occurrence of X less than x.
Figure 17 shows the location distribution of the studied LDOR accidents and incidents (indirect X) and
Figure 18 shows the x curve versus P(X ≥ x).
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Figure 17. LDOR distribution in the X direction (Horizontal axis shows the distance (meter) from
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Figure 18. x curve versus P(X ≥ x) for LDOR.

Given that the relationship between the two variables is exponential, it is predicted that the P(X ≥ x)
function can be estimated using exponential family regression. Based on Figure 18, the regression curve
is considered as P(X ≥ x) = e−b0xb1 + εi, in which b0 and b1 are unknown parameters. Tables 11 and 12
show the SPSS software output.

Table 11. Estimation of unknown parameters of the LDOR model in the X-direction.

Unknown
Parameter

Estimated Value
Standard Error of

the Mean (SE)

95% Confidence Interval

Lower Bound Upper Bound

b0 0.012 0.001 0.011 0.014
b1 0.804 0.011 0.781 0.827
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Table 12. Analysis of Variance (ANOVA) for the LDOR model in the X-direction.

Source of Variations Sum of Squares Degree of Freedom (df) Mean Squares

Regression 44.340 2 22.170
Residual 0.095 126 0.001

Uncorrected Total 44.434 128 -
Corrected Total 10.876 127 -

The R2 value of the model is equal to:

R2 = 1−
(

Residual Sum of Squares
Corrected Sum of Squares

)
= 1−

0.095
10.876

= 0.991 (10)

Based on the amount obtained for R2, it can be said that the adjusted regression can describe
99.1% of the sample information. Based on the calculations provided, the X-direction model of LDOR
accidents and incidents is as follows:

P(X ≥ x) = e−0.012x0.804
+ εi (11)

Figure 19 shows the fitted curve for the LDOR model in the X-direction. In this figure, the green
dots, the fitted values, and the blue dots are the initial values.
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Figure 19. LDOR longitudinal regression curve in the location accident model.

At this step, two conditions are considered for the adequacy of the fitted model: the variance
of the errors is constant and the errors are inconsistent. For this purpose, the scattering plot of the
independent variable is drawn versus the residuals (Figure 20). If the model is correct, the residuals
should not have a regular structure.
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Figure 20. x scatter plot versus the residuals for the LDOR model in the X-direction.

As can be seen, the model is shaky in the x > 650 range, which can be due to a lack of data
in this range, but given that almost all data is less than 650, the adequacy of the model can be
considered acceptable.

The probability of the plane overruns from the end of the runway, in the x-direction and during
the landing, and locates in the range a to b from the end of the runway is as follows:

FX(x) = 1− e−0.012x0.804
(12)

Consequently:

P(a ≤ x ≤ b) =
∫ b

a
0.0097x−0.196e−0.012x0.804

dx (13)

4.2.2. Transverse Location Model for LDOR

In this section, the second location model for RE accidents is presented. The goal is to find
FY(y) or the probability of y ∈ (a, b) for any desired value of a and b. According to the statistical
preliminary concepts:

FY(y) = P(Y ≤ y) = 1− P(Y ≥ y) (14)

where FY(y) is the probability function y and P(Y ≤ y) is probabilities of occurrence of Y less than y.
Figure 21 shows the location distribution of the studied LDOR accidents and incidents (indirect Y) and
Figure 22 shows y curve versus P(Y ≥ y).



Int. J. Environ. Res. Public Health 2020, 17, 6085 22 of 37

Int. J. Environ. Res. Public Health 2020, 17, x 22 of 36 

 

 
Figure 21. LDOR distribution in the Y direction (Horizontal axis shows the distance (meter) from 
runway centerline). 

 
Figure 22. y curve versus P(Y ≥ y) for LDOR. 

Like the model presented in the previous section, the relationship between the two variables is 
exponential, so it is predicted that the P(Y ≥ y) function can be estimated using family regression. 
Based on Figure 22, the regression curve is considered as P(Y ≥ y) = eିୠబ୷ౘభ + ε୧, in which b0 and b1 
are unknown parameters. Tables 13 and 14 show the SPSS software output. 

Table 13. Estimation of unknown parameters of the LDOR model in the Y-direction. 

Unknown 
Parameter 

Estimated 
Value 

Standard Error of the Mean 
(SE) 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

b0 0.932 0.018 0.897 0.966 
b1 0.275 0.005 0.264 0.286 

  

127

6 5 0 2 2 1
0

20

40

60

80

100

120

140

0 - 25 25 - 50 50 - 75 75 - 100 100 - 125 125 - 150 More than
150

Number of occurrences

Figure 21. LDOR distribution in the Y direction (Horizontal axis shows the distance (meter) from
runway centerline).

Int. J. Environ. Res. Public Health 2020, 17, x 22 of 36 

 

 
Figure 21. LDOR distribution in the Y direction (Horizontal axis shows the distance (meter) from 
runway centerline). 

 
Figure 22. y curve versus P(Y ≥ y) for LDOR. 

Like the model presented in the previous section, the relationship between the two variables is 
exponential, so it is predicted that the P(Y ≥ y) function can be estimated using family regression. 
Based on Figure 22, the regression curve is considered as P(Y ≥ y) = eିୠబ୷ౘభ + ε୧, in which b0 and b1 
are unknown parameters. Tables 13 and 14 show the SPSS software output. 

Table 13. Estimation of unknown parameters of the LDOR model in the Y-direction. 

Unknown 
Parameter 

Estimated 
Value 

Standard Error of the Mean 
(SE) 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

b0 0.932 0.018 0.897 0.966 
b1 0.275 0.005 0.264 0.286 

  

127

6 5 0 2 2 1
0

20

40

60

80

100

120

140

0 - 25 25 - 50 50 - 75 75 - 100 100 - 125 125 - 150 More than
150

Number of occurrences

Figure 22. y curve versus P(Y ≥ y) for LDOR.

Like the model presented in the previous section, the relationship between the two variables is
exponential, so it is predicted that the P(Y ≥ y) function can be estimated using family regression.
Based on Figure 22, the regression curve is considered as P(Y ≥ y) = e−b0yb1 + εi, in which b0 and b1

are unknown parameters. Tables 13 and 14 show the SPSS software output.

Table 13. Estimation of unknown parameters of the LDOR model in the Y-direction.

Unknown
Parameter

Estimated Value
Standard Error of

the Mean (SE)

95% Confidence Interval

Lower Bound Upper Bound

b0 0.932 0.018 0.897 0.966
b1 0.275 0.005 0.264 0.286
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Table 14. Analysis of Variance (ANOVA) for the LDOR model in the Y-direction.

Source of Variations Sum of Squares Degree of Freedom (df) Mean Squares

Regression 123.142 2 61.571
Residual 0.001 141 0.000

Uncorrected Total 123.143 143 -
Corrected Total 14.767 142 -

The R2 value of the model is equal to:

R2 = 1−
(

Residual Sum of Squares
Corrected Sum of Squares

)
= 1−

0.001
14.767

= 1.000 (15)

Based on the amount obtained for R2, it can be said that the adjusted regression can describe
100% of the sample information. Based on the calculations provided, the Y-direction model of LDOR
accidents and incidents is as follows:

P(Y ≥ y) = e−0.932x0.275
+ εi (16)

Figure 23 shows the fitted curve for the LDOR model in the Y-direction. In this figure, the green
dots, the fitted values, and the blue dots are the initial values.
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Figure 23. LDOR transverse regression curve in the location accident model.

At this step, two conditions are considered for the adequacy of the fitted model: the variance
of the errors is constant and the errors are inconsistent. For this purpose, the scattering plot of the
independent variable is drawn versus the residuals (Figure 24). If the model is correct, the residuals
should not have a regular structure.
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Figure 24. y scatter plot versus the residuals for the LDOR model in the Y direction.

As can be seen, the model is shaky in the x > 72 range, which can be due to a lack of data in this range,
but given that almost all data is less than 72, the adequacy of the model can be considered acceptable.

The probability of the plane overruns from the runway end, in the y-direction and during the
landing, and locates in the range a to b from the runway centerline is as follows:

FY(y) = 1− e−0.932y0.275
(17)

Consequently:

P(a ≤ y ≤ b) =
∫ b

a
0.2563y−0.725e−0.932y0.275

dy (18)

4.2.3. Lateral Location Model for LDVO

The third and final RE accident location model, the LDVO model, is presented in this section.
The goal is to find FY(y) or the probability of y ∈ (a, b) for any desired value of a and b. According to
the statistical preliminary concepts:

FY(y) = P(Y ≤ y) = 1− P(Y ≥ y) (19)

where FY(y) is the probability function y and P(Y ≤ y) is probabilities of occurrence of Y less than y.
Figure 25 shows the location distribution of the studied LDVO accidents and incidents (indirect Y) and
Figure 26 shows y curve versus P(Y ≥ y).
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Figure 25. Location distribution of LDVO accidents (Horizontal axis shows the distance (meter) from
runway edge).
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Figure 26. y curve versus P(Y ≥ y) for LDVO.

Like the previous models, the relationship between the two variables is exponential, so it is
predicted that the P(Y ≥ y) function can be estimated using family regression. Based on Figure 26,
the regression curve is considered as P(Y ≥ y) = e−b0yb1 + εi, in which b0 and b1 are unknown
parameters. Tables 15 and 16 show the SPSS software output.

Table 15. Estimation of unknown parameters of the LDVO model.

Unknown
Parameter

Estimated Value
Standard Error of

the Mean (SE)

95% Confidence Interval

Lower Bound Upper Bound

b0 0.048 0.006 0.036 0.061
b1 0.821 0.039 0.743 0.898
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Table 16. Analysis of Variance (ANOVA) for the LDVO model.

Source of Variations Sum of Squares Degree of Freedom (df) Mean Squares

Regression 17.461 2 8.731
Residual 0.118 47 0.003

Uncorrected Total 17.579 49 -
Corrected Total 4.078 48 -

The R2 value of the model is equal to:

R2 = 1−
(

Residual Sum of Squares
Corrected Sum of Squares

)
= 1−

0.118
4.078

= 0.971 (20)

Based on the amount obtained for R2, it can be said that the adjusted regression can describe
97.1% of the sample information. Based on the calculations provided, the model of LDVO accidents
and incidents is as follows:

P(Y ≥ y) = e−0.048y0.821
+ εi (21)

Figure 27 shows the fitted curve for the LDVO model. In this figure, the green dots, the fitted
values, and the blue dots are the initial values.
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Figure 27. LDVO regression curve in the location accident model.

At this step, two conditions are considered for the adequacy of the fitted model: the variance
of the errors is constant and the errors are inconsistent. For this purpose, the scattering plot of the
independent variable is drawn versus the residuals (Figure 28). If the model is correct, the residuals
should not have a regular structure.
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Figure 28 shows no significant violations of the defaults. Therefore, the selected regression model
is quite appropriate.

The probability of the plane veers off from the runway edge, in the y-direction and during the
landing, and locates in the range a to b from the edge of the runway is as follows:

FY(y) = 1− e−0.048y0.821
(22)

Consequently:

P(a ≤ y ≤ b) =
∫ b

a
0.0394y−0.179e−0.048y0.821

dy (23)

Table 17 summarizes the models presented in this section. It should be noted that in the proposed
models, the variables must be entered in the meter.

Table 17. Summarize of accident location model.

Accident Type Point Model Interval Model R2

LDOR (X) P(X ≥ x) = e−0.012x0.804
P(a ≤ x ≤ b) =

∫ b
a 0.0097x−0.196e−0.012x0.804

dx 0.991

LDOR (Y) P(Y ≥ y) = e−0.932y0.275
P(a ≤ y ≤ b) =

∫ b
a 0.2563y−0.725e−0.932y0.275

dy 1.00

LDVO P(Y ≥ y) = e−0.048y0.821
P(a ≤ y ≤ b) =

∫ b
a 0.0394y−0.179e−0.048y0.821

dy 0.971

4.3. Accident Consequence Model

As described in Section 3.1.3, the accident consequence model for both LDOR and LDVO
accidents is constructed according to the coefficients obtained in the accident location model. Based
on Equations (7) and (8), Table 18 shows the accident consequence model for both LDOR and LDVO.
All parameters of Table 18 are fully introduced in Section 3.1.3.
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Table 18. Accident consequence model.

Accident Type Interval Model

LDOR Psc =
∑ (e−0.932y0.275

c −e−0.932y0.275
f )

2 × e−0.012(xi+∆i)
0.804

LDVO Psc =
e−0.048y0.821

c −e−0.048y0.821
f

2

4.4. Practical Application of Proposed Models

Mathematical modeling of various phenomena is encountered with the success of society when it
can be proved by its practical and intuitive application. In this regard, this study also examines the
practical application of the proposed models. Mehrabad International Airport and Hasheminejad
International Airport have been selected as case studies to review the proposed models. The general
steps for using models are:

(1) Selection of the airport under review
(2) Select the runway to be examined and determine the obstacles around it
(3) Collection of NOD data related to the desired airports in at least one year, to update the accident

probability model
(4) Investigate different scenarios about bopping with existing obstacles
(5) Select the flight to be studied and determine the variables required in the models
(6) Calculate the probability of a RE accident
(7) Calculate the probability of a collision with an obstacle (accident location model)
(8) Calculate the consequence probability of an accident

After inspecting both airports, the Can river at Mehrabad Airport and a Radio antenna at
Hashemiehnejad Airport were selected as obstacles.

4.4.1. Risk Assessment of LDOR at Mehrabad International Airport because of Can River

The runways 11L and 11R of Mehrabad Airport overlap with the Can river which is crossed by a
bridge. Figure 29 shows this area of Mehrabad Airport. In this study, the runway 11R is considered.
The exact specifications of the runway 11R and the Can river are shown in Figure 30. Based on this
figure, in distance between 155 to 205 m, if the aircraft deviates 35 m from the centerline of the runway
to the right, it will fall into the Can river.
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Then we have to choose a flight to Mehrabad airport and determine its specifications. Table 19
includes the introduction of the selected flight. After selecting the desired flight, the variables related
to the probability model of accidents should be determined. Meteorological Aviation Routine Weather
Report (METAR) related to Iran’s daily flights can be obtained from www.irimo.ir. Table 20 shows the
variables for flight 2807.

Table 19. Selected flight specifications at Mehrabad Airport.

Origin Mashhad

Destination Tehran
Date 02.12.2016

Landing time in the destination 18:58
Flight number 2807

Airline Meraj
Aircraft type Airbus 320

Table 20. Variables related to the probability model of RE accidents for flight 2807.

Variable Value or Type Description

User Class C Commercial
Maximum Takeoff Weight

(MTOW) C Large Jet (B737, A320, etc.)

Equipment Class Jet -
Foreign Origin/Destination Domestic -

Ceiling Height +2500 More than 2500 ft
Visibility +8 More than 8 miles

Crosswind Between 2 and 5 3 knots
Tailwind Less than 5 3 knots

Air Temperature Between 5 and 15 6 ºC
Gust Do not exist -

Thunderstorm Do not exist -
Rain Do not exist -
Snow Do not exist -
Fog Do not exist -

Icing Condition Do not exist -
Frozen Precipitation Do not exist -

Hub/Non-Hub Airport Hub -
Log Criticality Factor CF > 0 Needed length is 6049 ft

Night Condition It is night -

www.irimo.ir
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Based on the logistics regression model presented in the Equation (4), the general form of the
accident probability model is as follows:

P{Accident_Occurence} =
1

1 + e−(b0+b1X1+b2X2+b3X3+...)
=

1
1 + e−Z

(24)

According to Tables 5 and 6, the value of Z for LDOR accident is calculated as follows:

Z = −13.065+ 1.539(G) − 0.498(T/C) − 1.013(A/B) + 0.935(D/E/F)
−0.019(Ceiling < 200ft) − 0.772(Ceiling 200 to 1000 ft)
−0.345(Ceiling 1000 to 2500 ft) + 2.881(Visibility < 2SM)

+1.532(Visibility 2 to 4 SM) + 0.200(Visibility 4 to 8SM)

−0.913(Xwind 5 to 12 kt) − 1.342(Xwind 2 to 5kt)
−0.921(Xwind ≥ 12 kt) + 0.786(Tailwind ≥ 12kt)
+0.043(Temp < 5 C) − 0.019(Temp 5 to15C)

−1.067(Temp ≥ 25 C) + 2.007(Icing Condition) + 0.449(Snow)

−1.344(Thunderstorm) + 0.929(Foreign OD)

+1.334(Hub/Non − Hub Airport) + 9.237(Log Criticality Factor)

(25)

Now, by replacing the model variables with values of 0 and 1 of the selected flight (according to
Table 20), the probability of an LDOR accident at Mehrabad Airport resulting from the flight number
2807 of Meraj airlines is obtained.

Z = −13.065+ 1.539(0) − 0.498(0) − 1.013(0) + 0.935(0) − 0.019(0) − 0.772(0)
−0.345(0) + 2.881(0) + 1.532(0) + 0.200(0) − 0.913(0)
−1.342(1) − 0.921(0) + 0.786(0) + 0.043(0) − 0.019(1)
−1.067(0) + 2.007(0) + 0.449(0) − 1.344(0) + 0.929(0)
+1.334(0) + 9.237(1) = −5.189
P(LDOR) = 1

1+e−Z = 1
1+e−(−5.189) = 5.547× 10−3 = 0.5547%

(26)

As a result, the probability of overrun from runway end for the Airbus 320 of Meraj airline is
0.55%. If the aircraft overruns from the runway end, the next step is to calculate the probability of
falling into the Can river. According to Table 17, the probability of falling in the Can river is equal to:

P(155 ≤ x ≤ 205) =
∫ 255

155 0.0097x−0.196e−0.012x0.804
dx = 0.0805 = 8.05%

P(Y ≥ 35) = e−0.932(35)0.275
= 0.0839 = 8.39%

(27)

The probability of the aircraft overrun from the runway end and falling into the Can river is
equal to:

P(CS) = P(LDOR) × P(155 ≤ x ≤ 205) × P(Y ≥ 35) = 3.7464× 10−5 (28)

Since the type of obstacle, in this case, is the river, so the consequences of the accident are expressed
as a fall and not a collision. The fall will occur only when the aircraft deviates 35 m from the runway
centerline. On the other hand, to calculate the accident with severe consequences, according to Table 18,
we need two critical values: yc and yf. Therefore, it is not possible to use the accident consequences
model in this case.

4.4.2. Risk Assessment of LDVO at Hasheminejad International Airport because of Radio Antenna

In this section, the possibility of colliding aircraft landing on the runways 31L and 31R with the
radio antenna between these two runways is examined. Figures 31 and 32 show the location of this
antenna relative to the desired runway. An input flight to Hasheminejad airport has been selected and
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its specifications are given in Table 21. Also, Table 22 shows the variables related to the probability
model of accidents on this flight.

Int. J. Environ. Res. Public Health 2020, 17, x 31 of 36 

 

 
Figure 31. Radio antenna between runways 31L and 31R in Hasheminejad airport. 

 
Figure 32. The exact location of the Radio antenna relative to runway 31L. 

Table 21. Selected flight specifications at Hasheminejad Airport. 

Origin Tehran 
Destination Mashhad 

Date 02.13.2016 
Landing time in the destination 20:03 

Flight number 6254 
Airline Taban 

Aircraft type McDonnell Douglas MD-88 

 

  

Figure 31. Radio antenna between runways 31L and 31R in Hasheminejad airport.

Int. J. Environ. Res. Public Health 2020, 17, x 31 of 36 

 

 
Figure 31. Radio antenna between runways 31L and 31R in Hasheminejad airport. 

 
Figure 32. The exact location of the Radio antenna relative to runway 31L. 

Table 21. Selected flight specifications at Hasheminejad Airport. 

Origin Tehran 
Destination Mashhad 

Date 02.13.2016 
Landing time in the destination 20:03 

Flight number 6254 
Airline Taban 

Aircraft type McDonnell Douglas MD-88 

 

  

Figure 32. The exact location of the Radio antenna relative to runway 31L.

Table 21. Selected flight specifications at Hasheminejad Airport.

Origin Tehran

Destination Mashhad
Date 02.13.2016

Landing time in the destination 20:03
Flight number 6254

Airline Taban
Aircraft type McDonnell Douglas MD-88
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Table 22. Variables related to the probability model of RE accidents for flight 6254.

Variable Value or Type Description

User Class C Commercial
Maximum Takeoff Weight (MTOW) C Large Jet (B737, A320, etc.)

Equipment Class Jet -
Foreign Origin/Destination Domestic -

Ceiling Height +2500 More than 2500 ft
Visibility Between 5 and 15 3.72 miles

Crosswind Less than 2 1 knot
Tailwind Less than 5 4 knots

Air Temperature Less than 5 −2 ◦C
Gust Do not exist -

Thunderstorm Do not exist -
Rain Do not exist -
Snow Do not exist -
Fog Do not exist -

Icing Condition Do not exist -
Frozen Precipitation Do not exist -

Hub/Non-Hub Airport Hub -
Log Criticality Factor CF > 0 Needed length is 5813 ft

Night Condition It is night -

Based on Equation (4), the general form of the accident probability model is as follows:

P{Accident_Occurence} =
1

1 + e−(b0+b1X1+b2X2+b3X3+...)
=

1
1 + e−Z

(29)

According to Tables 5 and 6, the value of Z for LDVO accident is calculated as follows:

Z = −13.088+ 1.682(G) − 0.770(A/B) − 0.252(D/E/F) + 2.413(Visibility < 2SM)

+0.653(Xwind 5 to 12 kt) − 0.091(Xwind 2 to 5 kt)
+2.192(Xwind ≥ 12 kt) + 0.066(Tailwind5 to 12kt)
+0.980(Tailwind ≥ 12 kt) + 0.558(Temp < 5 C)

−0.453(Temp 5 to 15C) + 0.291(Temp ≥ 25 C)

+2.670(Icing Condition) − 0.126(Gusts) + 0.548(Snow)

−0.103(Frozen Precipitation) − 0.036(Gusts) + 1.74(Fog)
−2.517(Turboprop) − 0.334(Foreign OD)

+4.318(Log Criticality Factor) − 1.360(Night Condition)

(30)

Now, by replacing the model variables with values of 0 and 1 of the selected flight (according to
Table 22), the probability of an LDVO accident at Mehrabad Airport resulting from the flight number
6254 of Taban airlines is obtained.

Z = −13.088+ 1.682(0) − 0.770(0) − 0.252(0) + 2.143(0) + 0.653(0) − 0.091(0)
+2.192(0) + 0.066(0) + 0.980(0) + 0.558(1) − 0.453(0)
+0.291(0) + 2.670(0) − 0.126(0) + 0.548(0) − 0.103(0)
−0.036(0) + 1.74(0) − 2.517(0) − 0.334(0) + 4.318(1) − 1.360(1)
= −9.572

(31)

P(LDVO) =
1

1 + e−Z
=

1
1 + e−(−9.572)

= 6.965× 10−5 = 0.006965% (32)
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As a result, the probability of deviation from the runway edge for flight 6254 of Taban airline is
0.01 percent. According to Table 17, if aircraft deviates from the runway, the probability of collision it
with the radio antenna is:

P(Y ≥ 50) = e−0.048(50)0.821
= 0.3038 = 30.38% (33)

Therefore:
P(CS) = P(LDVO) × P(Y ≥ 50) = 2.115× 10−3 (34)

Therefore, it can be said that the probability of Taban airlines flight 6254 deviates from the edge of
the runway and collides with the radio antenna of Hasheminejad airport is equal to 0.002115.

About the probability of an accident with severe consequences, critical transverse distances (yc

and yf) must first be obtained. These distances are determined with the help of aircraft dimensions
(See Figure 33).
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Figure 33. Dimensions of aircraft MD-88.

According to Figure 33, the wingspan of the aircraft MD-88 is 32.9 m. According to Figure 12,
the consequences of colling with an obstacle is severe when the obstacle is located in the orange area
(middle 1/3 wingspan). Figure 34 shows the critical positions of the obstacle over the MD-88 aircraft.
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As shown in Figure 34, yc is 77.525 m. With a similar argument, yf is equivalent to 88.475 m.
Based on the equations in Table 19:

Psc =
e−0.048y0.821

c − e−0.048y0.821
f

2
=

e−0.048(77.525)0.821
− e−0.048(88.475)0.821

2
= 0.0161 (35)

If the aircraft collides with the radio antenna, 1.61% of accidents will likely occur with severe
consequences. As a result, the probability of an accident with severe consequences due to the departure
of aircraft No. 6254 from the side of the runway 31L of Hasheminejad airport and collision with the
radio antenna is equal to:

P(LDVO Severe) = P(LDVO) × P(Y ≥ 50) × Psc = 3.40515× 10−5 (36)

The evaluation of Mehrabad and Hasheminejad airports verified that presented models can
be used well in Iran. After setting the risk threshold by the airport officials, it is possible to make
the necessary decisions and budget for the next steps. For example, the acceptable level of risk at
Mehrabad Airport may be such that a decision is made to cover the Can river. But the risk threshold
at Hasheminejad Airport may be such that there is no need to move the radio antenna. Therefore,
the models presented in this paper can be a good criterion for evaluating the obstacles around the
runway to prevent unprofessional, unsafe, and uneconomical decisions. In general, these accident
assessment models will improve the performance of the air transportation system, both in terms of
safety and economics. In other words, these models help engineers make the most optimal decisions
and always be in the position that has the safest and most economical conditions possible. Besides,
the models presented in this paper help to eliminate the permanent lack of a proper risk assessment
system for runways at Iranian airports.

5. Conclusions

In today’s world, the development and advancement of the air transportation industry are
evident. Airports are one of the most important and vital centers. Runways are also one of the main
physical parts of airports. Accidents on runways cause them to be blocked. Blocking the runway also
significantly reduces airport capacity (At airports with one runway, capacity drops to zero). Also,
these accidents may danger human lives and environmental elements. Therefore designing safer
runways is of utmost importance. The primary goal of this study is to achieve a risk assessment model
of RSA. A review of studies and research in this field showed that only the United States has been
able to achieve a comprehensive and complete model for assessing the risk of accidents and incidents
resulting from the departure of aircraft from runways. Therefore, an attempt was made to calibrate the
model for Iranian airports.

Focusing on RE accidents and carefully examining predictive models of the probability of
occurrence, location, and severity of consequences when smashing with obstacles have been the
mainstays of this study. Therefore, after reviewing much research conducted in this field, an attempt
was made to compile a well-written and complete process to collect data from modeling RE accidents
in Iran. In this way, the lack of systematic documentation and the lack of access to the codes of NOD
flights led to the inability to build a model of the probability of accidents. Subsequently, the accuracy of
the constructed models was confirmed by statistical tests. In the end, Mehrabad International Airport in
Tehran and Hasheminejad International Airport in Mashhad were examined by the models. Compared
to the comprehensive and famous model provided in the United States, the probability model in this
paper is the same because there was no suitable database for NOD flights in Iran. In location and
consequences models, the general form of the models was chosen similar to the American model,
but the model coefficients presented in this paper are different from the American model coefficients.
In fact, the model presented by the authors has been calibrated for Iran and allows the runway risk
assessment to be done more accurately. Now, using the presented models, we can assess the risk of
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obstacles around the runways of airports and decide about them based on the level of risk and the
requirements of the conditions. New airports can also be located in such a way that we have the least
risk in the event of aircraft accidents. This decision is very important in times of crisis because it can
have a significant impact on the continuity of airport services. In the long-term, these models will help
increase public health and protect the environment.

The most important limitation of this study was the lack of access to NOD flight data. Therefore,
for future studies, the authors suggest designing and setting up an accurate system for recording all
the necessary information. In this case, the model of the probability of accidents can be calibrated for
Iran. The authors also believe that adding new metrics such as obstacle type and dimensions, obstacles
density, etc. in future studies can improve models and make them more comprehensive. Another idea
that the authors have in mind for future studies is to develop their modeling so that other types of
accidents, including LDUS, TOOR, and TOVO, can be evaluated.
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2. Koščák, P.; Berežný, Š.; Vajdová, I.; Koblen, I.; Ojciec, M.; Matisková, D.; Puškáš, T. Reducing the Negative
Environmental Impact of Winter Airport Maintenance through Its Model Design and Simulation. Int. J.
Environ. Res. Public Health 2020, 17, 1296. [CrossRef] [PubMed]

3. Yousefi, Y. Runway Safety and Methods for Assessment of Accident Risk, Case Study: Some Airports in
Iran. Master’s Thesis, Department of Civil Engineering, Iran University of Science and Technology, Tehran,
Iran, 2016.

4. Henriksen, L.F.; Ponte, S. Public orchestration, social networks, and transnational environmental governance:
Lessons from the aviation industry. Regul. Gov. 2018, 12, 23–45. [CrossRef]
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