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Abstract: The IPAT/Kaya identity is the most popular index used to analyze the driving forces of
individual factors on CO2 emissions. It represents the CO2 emissions as a product of factors, such as
the population, gross domestic product (GDP) per capita, energy intensity of the GDP, and carbon
footprint of energy. In this study, we evaluated the mutual relationship of the factors of the IPAT/Kaya
identity and their decomposed variables with the fossil-fuel CO2 flux, as measured by the Greenhouse
Gases Observing Satellite (GOSAT). We built two regression models to explain this flux; one using
the IPAT/Kaya identity factors as the explanatory variables and the other one using their decomposed
factors. The factors of the IPAT/Kaya identity have less explanatory power than their decomposed
variables and comparably low correlation with the fossil-fuel CO2 flux. However, the model using
the decomposed variables shows significant multicollinearity. We performed a multivariate cluster
analysis for further investigating the benefits of using the decomposed variables instead of the
original factors. The results of the cluster analysis showed that except for the M factor, the IPAT/Kaya
identity factors are inadequate for explaining the variations in the fossil-fuel CO2 flux, whereas the
decomposed variables produce reasonable clusters that can help identify the relevant drivers of
this flux.

Keywords: IPAT/Kaya identity; GOSAT; CO2 flux; correlation; hierarchical cluster analysis

1. Introduction

IPAT/Kaya identity is used to analyze the input factors of CO2 emissions. The IPAT identity
estimates the human impact on the environment, and the Kaya identity represents the CO2 emissions
as the product of five factors such as, for example, the gross domestic product (GDP) and population.
It plays a crucial role in the construction of preliminary and future emission scenarios [1]. In addition
to its simplicity, IPAT/Kaya identity is very useful to find the most effective and critical criteria for
implementing carbon dioxide (CO2) emission reduction targets as it identifies the driving forces
with regard to CO2 emissions from anthropogenic activities [2,3]. According to the United Nations
Framework Convention on Climate Change (A/AC.237/18 (Part II)/Add.1 and Corr.1), CO2 emissions
can be defined as the release of CO2 and their precursors into the atmosphere over a specified area and
period of time. CO2 emissions can be expressed in terms of either inventory measurements or flux.
The IPAT/Kaya identity uses the inventory CO2 emissions as environmental impacts. Inventory CO2
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emissions present the quantity of CO2 estimated indirectly using the emission factors in units of weight.
They contain information about CO2 emitted into the atmosphere by an individual, an organization,
a process, a product, or an event from within the boundaries of a specific country [4]. Inventory CO2

emissions fluctuate depending on a variety of variables, such as the collection and reporting system of
the country’s energy statistics, data definition and data processing, level of detail, and specific local
conditions. Besides, accuracy, transparency, and uncertainty of inventory CO2 emission data vary
among countries owing to the differences in proficiency and level of development of statistics [5].
Thus, documented inventory CO2 emissions sometimes show large discrepancy with the actual CO2

directly emitted to the atmosphere [6,7].

1.1. Benefits of IPAT/Kaya Identity

In previous studies, the (linear) correlation between all five factors of IPAT/Kaya identity and
inventory CO2 emissions was empirically established and examined on a global scale [8]. At face value,
IPAT/Kaya identity suggests that inventory CO2 emissions grow linearly with the increases in these
factors. However, the driving forces of IPAT/Kaya identity are often not instructive because of the
great heterogeneity among countries. Examples are differences in demographics, economics, resources,
and technology with respect to inventory CO2 emissions [1,9]. A global aggregated correlation
analysis between the inventory CO2 emissions and IPAT/Kaya identity isolates the spatial and
temporal heterogeneity, particularly with respect to the distinctions between industrial and developing
countries [10]. Therefore, to ascertain the true driving forces of IPAT/Kaya identity for actual CO2

emissions, the correlation between IPAT/Kaya identity and the standardized CO2 directly emitted to
the atmosphere on a regional scale should be evaluated.

1.2. The Fossil-Fuel CO2 Flux

The CO2 flux represents the transfers of CO2 among different reservoirs of CO2 [11]. An example
is the combustion of fossil fuel: the fossil CO2 flux indicates the amount of CO2 transferred from one
reservoir (fossil fuel) to another (atmosphere). CO2 fluxes are usually expressed as a rate, that is, as an
amount of substance being transferred over a certain period of time in a certain area; in this case the
unit would be kgC km2 year−1. Thus, the fossil-fuel CO2 flux indicates the intensity of CO2 directly
emitted to the atmosphere in standardized units. Unlike inventory CO2 emissions, the fossil-fuel CO2

flux is the footprint and absolute data. It is a measure of the direct CO2 emissions from CO2 sources
on the ground to the atmosphere. Thus, this flux is objective with regard to the heterogeneity of
populations and environments of individual countries and considers only the existence and locations
of CO2 sources related to fossil-fuel combustion in a country.

1.3. Characteristics of the GOSAT Fossil-Fuel CO2 Flux

In the inversion frameworks, the fossil-fuel emissions are the most important reference for
analyzing the carbon budget among the three CO2 fluxes, namely, the biospheric and oceanic fluxes
and the fossil-fuel flux. The fossil-fuel emissions are given as known quantities, and these values
cannot be corrected via optimization because fossil fuel emissions are already measured on the basis of
the survey [12]. In this regard, literature suggests the application of satellite-observed CO2 data that
have a denser spatial coverage. Emission inventory with high spatiotemporal resolution is essential
for accurate inversion. The inventory CO2 emission data in national inventory reports (NIRs) contain
the net CO2 emission data only within a given national boundary. These data are not sufficient to
calculate regional fluxes. In contrast, satellite-based fossil-fuel CO2 flux data contain large amounts
of information on near-ground CO2 sources. The Japan Aerospace Exploration Agency Greenhouse
Gases Observing Satellite (GOSAT) fossil-fuel CO2 flux has high spatial resolution and employs the
Carbon Monitoring for Action (CARMA), which is a global database of CO2 emissions from power
plants and nighttime satellite imagery. The GOSAT fossil-fuel CO2 flux provides CO2 emissions in
terms of locations of CO2 sources and provides a measure of the direct exchange of CO2 between
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in situ CO2 sources and the atmosphere over CO2 sources located within an area. [13,14]. Thereby,
the satellite-based fossil-fuel CO2 flux has the advantage of monitoring and comparing the average
flux from the CO2 sources located in heterogeneous countries because the satellite measures the CO2

flux all over the world with the same standardized method and unit. Evaluating mutual relationships
between the factors of IPAT/Kaya identity and the satellite fossil-fuel CO2 flux can offer tangible
evidence to validate the actual driving forces of these factors with regard to the CO2 directly emitted
to atmosphere. Thus, the CO2 fossil flux is a simple, robust diagnostic property of the CO2 directly
emitted to the atmosphere. It can provide an independent validation reference to evaluate the mutual
correlation between the IPAT/Kaya identity and the CO2 directly emitted into the atmosphere from
ground CO2 sources [15,16].

1.4. Scope of this Paper

Nonetheless, the mutual correlation of the fossil-fuel CO2 flux with IPAT/Kaya identity is yet
to be validated. Raupach et al. [17] used the extended form of Kaya identity based on the airborne
fraction of CO2 to assess the relative effects of changes in the airborne fractions and anthropogenic
drivers of CO2 emissions on CO2 growth. They concluded that the growth of per capita income and
the decline in negative growth in the carbon intensity of the economy is greatly responsible for the
accelerated growth (post 2000) in the airborne fraction of CO2. Zhang et al. [18] demonstrated the
influence of subannual variations in fossil-fuel CO2 emissions, which were estimated using the Kaya
identity and used as the flux boundary condition, on simulated CO2 concentration and suggested that
inversion studies should consider these variations in the affected regions. Garrett [19] remarked about
the substantially narrowed visions of future emission scenarios for implementation in global circulation
models, which provide projections for future climate warming based on the evolution of the factors
of the Kaya identity, from a thermodynamic perspective. However, literature on the analysis of the
mutual correlation between the IPAT/Kaya identity and the CO2 fossil-fuel flux is lacking. This study
addresses this lacuna in research. Our objective is to identify the realistic driving forces of IPAT/Kaya
identity on the actual CO2 emitted to the atmosphere.

2. Materials and Methods

2.1. Study Area

The certainties and accuracy of the energy consumption data and CO2 emission data in NIRs
are relatively high for the countries listed in Annex 1 of the United Nations Framework Convention
on Climate Change (UNFCCC) due to their well-developed statistical systems and capacity to use
higher-tier methods [20]. Europe is the second-smallest continent in the world after Australia.
As 44 countries are densely located in this region, it is an ideal region for studying carbon emissions
among countries. Europe is also ideal for investigating the correlation between fossil-fuel CO2 flux and
IPAT/Kaya identity owing to the diversity in structure of the energy consumption, population, industry,
and economic scale [21]. To guarantee the accuracy of fossil-fuel CO2 flux data, a high accuracy of
preliminary data for CO2 emission is required. Analysis of the sum of Annex I reported emissions as
well as some independent estimates and inverse modeling results found an uncertainty of 6 percent
for fossil-fuel CO2 [20]. In this regard, GOSAT fossil-fuel CO2 flux is calibrated with accurate CO2

emissions data. From the list of Annex 1 countries, we selected 30 European countries excluding the
smallest and most remote ones. For example, we excluded Iceland, Monaco, Liechtenstein, and Malta
because these countries are either too far from the European continent or too small for using 1◦ × 1◦

scale GOSAT fossil-fuel CO2 flux data.
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2.2. IPAT/Kaya Identity

2.2.1. Description of IPAT/Kaya Identity

The IPAT identity is widely used to examine the drivers of CO2 emissions. The identity
(I = P × A × T) states that the human impact on the environment (I) is the product of population (P),
affluence (A), and technology (T). As shown in Equation (1), the Kaya identity distinguishes the factors
of P, A, and T with respect to CO2 emissions into four: (1) the size of the population, (2) GDP per
capita, (3) energy intensity of the GDP, and (4) carbon footprint of energy [1,22]. In Equation (1) we
additionally split up the factor T into energy divided by the GDP and CO2 divided by energy.

CO2 emissions = Population ×
GDP

Population
×

Energy
GDP

×
CO2 emissions

Energy
(1)

Using Equation (1), many studies extended the IPAT identity to the Kaya identity to explore the
energy sector in detail, as explained in Equation (2) [22–25]:

CO2 emissions = Population × GDP
Population ×

TEC
GDP ×

EC
TEC ×

CO2 emissions
EC

= P×G× I ×M× E,
(2)

where P is the population size; GDP, the gross domestic product; TEC, the total energy consumption;
and EC, the fossil fuel energy consumption. In this equation, E (CO2/EC) is the CO2 emission coefficient
related to fuel sources; M (EC/TEC), the portion of fossil-fuel consumption from the total energy
consumption; I (TEC/GDP), the energy intensity; G (GDP/P), per capita GDP; and P, population size [22].
In this study, we used the Kaya identity as described in Equation (2).

2.2.2. Data Sets for Computing the Decomposed Variables of IPAT/Kaya Identity

The International Energy Agency (IEA) collects energy supply and demand data not only for
the member countries of the Organization for Economic Cooperation and Development (OECD),
but also for non-OECD countries [26,27]. The original data are submitted by national administrations
of the OECD, European Union (EU), and United Nations Economic Commission for Europe (UNECE)
member states. The (final) joint IEA/OECD–Eurostat–UNECE questionnaire is the result of aggregating
a set of five individual questionnaires (for coal, oil, gas, electricity, and renewable energy) [28].
Then, the basic energy statistics with over 60 energy types in physical energy units such as ton and m3

are converted into energy units (ktoe). This disaggregated energy balance is combined into 13 energy
types (coal, crude oil, biofuels, nuclear, etc.). The sum of these 13 energy types gives the total energy
consumption [29,30]. We used the total final consumption sections from the IEA energy balance data
for TEC and the EC to calculate the I, M, and E factors of the Kaya identity from 2010 to 2017 [31].
The GDP and population data were acquired from World Bank data to calculate G, I, and P in the
IPAT/Kaya identity from 2010 to 2017 [32].

An NIR contains detailed qualitative and quantitative information and tables in a common
reporting format (CRF) for all Kyoto Protocol, such as carbon monoxide (CO), nitrogen oxides (NOx),
non-methane volatile organic compounds, and sulfur dioxide (SO2) [33,34]. The GOSAT Level 4a
fossil-fuel CO2 flux exclusively provides the annual CO2 flux derived from fossil-fuel combustions
with 1◦ × 1◦ spatial resolution. It is generally acknowledged that CO2 accounts for the most significant
portion of greenhouse gases, and the term CO2 is often used interchangeably with greenhouse gas.
To perform a correlation analysis between factors in the Kaya identity and GOSAT fossil-fuel CO2 flux
data, we used direct CO2 emissions (CRF Table 10s2 submitted to UNFCCC in 2018) from 2010 to 2017.
We excluded the CO2 emissions from land use, land use change, and forestry sectors since they are
associated with the variations in CO2 uptakes and emissions from the net CO2 sink (i.e., forests).

The a priori flux dataset for the GOSAT fossil-fuel CO2 flux data inversion comprises monthly
fossil-fuel CO2 emissions with the Open-source Data Inventory of Anthropogenic CO2 emissions
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(ODIAC). ODIAC data are obtained by merging the CARMA database, nighttime satellite imagery,
and the Carbon Dioxide Information Analysis Center (CDIAC) datasets [35,36]. The ODIAC inventory
dataset describes precisely the local spatial structures of large cities by using nighttime data. The ODIAC
dataset can depict the spatial variability in CO2 emission levels even in city centers with the
standard measurements from the Defense Meteorological Program—Operational Line-Scan System
(DMSP—OLS) instruments. Thus, a complete picture of the fossil-fuel emissions for the GOSAT
fossil-fuel CO2 flux is obtained [37]. The ODIAC-based GOSAT fossil-fuel CO2 flux provides improved
spatial distribution of fossil-fuel CO2 emissions because of the large point-source data and nighttime
observations employed.

In order to compare the factors’ fluctuations, we computed the coefficient of variation (CV),
which is the result of dividing the standard deviation of a data set by its mean. Hence, the CV indicates
the variation in relation to the average level of the respective factor. As displayed in Table 1, we see
that the standard deviations of both the P factor and population are larger than those of other factors.
However, considering the CV values, EC and TEC show the highest values. This is reasonable as, in this
study, we used data from 30 quite heterogeneous European countries. For examples, the Netherlands
(1.74 ktoe/km2) have the 29 times larger TEC than Latvia (0.06 ktoe/km2).

Table 1. Descriptive statistics for the Greenhouse Gases Observing Satellite (GOSAT) Level 4a gridded
fossil-fuel CO2 flux, five variables (G, I, M, E, and P) of the Kaya identity and the decomposed variables
of five variables in Kaya identity of 30 European countries from 2010 to 2017.

Category Min Max Mean STDEV CV (%)

Kaya identity

G factor (MM $/person) 0.00 0.10 0.03 0.02 0.70
I factor (ktoe/MM $) 0.03 0.56 0.11 0.09 0.81

M factor (ktoe) 0.34 0.80 0.62 0.11 0.18
E factor (kt CO2 Equation/ktoe) 0.41 14.76 5.22 2.22 0.42

P factor (MM person) 1.32 82.66 21.68 24.50 1.13

Decomposed variables
of Kaya identity

GDP (MM $/km2) 0.16 26.80 4.49 5.89 1.31
Population (person/km2) 13.39 507.89 123.32 104.24 0.85

TEC (ktoe/km2) 0.05 1.93 0.30 0.37 1.22
EC (ktoe/km2) 0.02 1.54 0.21 0.29 1.40

CO2 emission (kt CO2 Equation/km2) 0.10 5.40 0.88 1.03 1.17

Fossil-fuel CO2 flux (gC m2 day−1) 0.06 3.79 0.68 0.78 1.14

Min: Minimum, Max: Maximum, Mean: Average, CV: coefficients of variation, STDEV: Standard deviation,
TEC: total energy consumption, EC: fossil fuel energy consumption.

2.3. Multiple Regression and Cluster Analysis

To evaluate the mutual dependencies in our data sets, that is, the dependencies between the factors
of the IPAT/Kaya identity (or the corresponding decomposed variables of these factors), we established
a regression of the GOSAT fossil-fuel CO2 flux above-mentioned factors. The corresponding multiple
regression models are shown in Equations (3) and (4). They were calibrated using ordinary least
squares optimization:

Fossil-fuel CO2 flux = α0 + α1 × P + α2 × G + α3 × I + α4 ×M + α5 × E + ε1, (3)

Fossil-fuel CO2 flux = β0 + β1 × Population + β2 × GDP + β3 × TEC + β4 × EC + β5 × CO2 emissions + ε2 (4)

where αi, β j ∈ R, i, j = 1, . . . , 5, and ε1 and ε2 are Gaussian distributions with zero mean and standard
deviation σ > 0. Equations (3) and (4) show the regression models based on the five factors and the
decomposed variables of the factors in the IPAT/Kaya identity. The pairs of data per country are
eight years’ data from 2010 to 2017 and we used 240 samples per individual variable. Note that,
in order to be able to merge the datasets of these eight individual years to one large sample, we had
to demand the absence of autocorrelation. With autocorrelation we mean (partial) dependence of a
data set on its own past, that is, there is a correlation on the time axis. For this purpose, we applied
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the Durbin–Watson test. Autocorrelation might also occur if the functional form of the model itself is
incorrect. The Durbin–Watson statistic is an indicator of autocorrelation in the residuals of a regression
model: values greater than 0 but less than 2.0 indicate positive correlation; values close to 2.0 indicate
no autocorrelation; values from 2 to 4 indicate negative autocorrelation [38]. For the regression models
in Equations (3) and (4), the values of the test statistic are 2.13 and 2.07, respectively, and hence,
both satisfy the assumptions regarding the autocorrelation of the error term. Hence, we can fit both
models from Equations (3) and (4) using the merged dataset. Thereby, the decomposed variables are
fitted to annual net amounts, and the fossil-fuel CO2 flux is fitted to annual mean values.

Cluster analysis is an exploratory approach that intends to identify structures within a dataset by
segmenting it into disjoint sub-groups of similar (possibly multivariate) observations. Cluster analysis
methods can be applied to binary, nominal, ordinal, and scale (interval or ratio) data. Some of the
commonly used methods are hierarchical clustering, k-means, clustering large applications (CLARA),
or the Ward algorithm [39]. Thereby, cluster analysis is often used in conjunction with other methods
such as discriminant analysis. After clustering, the members within a group should have similar
properties and features, while those in different groups should have highly dissimilar properties
and features. This is achieved using certain distance measures. For example, in Ward’s method,
a hierarchical approach, analysis of variance is performed to evaluate the distances between the cluster
centroids; this method optimizes the minimum variance within clusters by using the sum of squared
deviations within the individual groups to evaluate cluster membership. Thereby, a meaningful data
structure can be applied to various types of data without prior information about the internal structure
of the dataset.

Note that a clustering algorithm does not distinguish between dependent and independent
variables. Hence, to use it in our study, we applied Ward’s method to multivariate observations
obtained by combining the country-specific fossil-fuel CO2 flux value with the input factors, that is,
the independent variables from Equations (1) and (2). We obtained various sets of multivariate
observations and performed a cluster analysis for each variable to explore the unknown patterns
and characteristics of both dependent and independent variables that influence the results of the
multiple regressions from Equations (1) and (2). If these variables have high positive correlation,
the different groups will be linearly located on the trend lines with distinctive range between different
groups. Thus, by performing a cluster analysis, we obtained more information about the structures
and characteristics of different groups of independent variables (i.e., the factors of IPAT/Kaya identity
and the decomposed variables of IPAT/Kaya identity) and their influence on the dependent variable,
that is, the fossil-fuel CO2 flux.

3. Model Estimation and Evaluation of Results

We employed the methods described in Section 2.3. and the variables derived in Section 2.2.:
we fit the multiple regression models from Equations (3) and (4) and applied Ward’s clustering.

3.1. Model Calibration

The data in Table 2 show that the multiple regression model from Equation (3) has a relatively
low explanatory power with an R2 of 0.38. Correlation and regression coefficient values are also
relatively low, except for the M factor. From the p-values of the regression coefficients, we see that
among the five factors of the Kaya identity (hereinafter, Decomposition 1), the coefficients of I and
E are statistically insignificant. Hence, their influence on the fossil-fuel CO2 flux cannot be proven
using the model in Equation (3). This is remarkable as the E factor, that is, the CO2 emissions from
fossil fuel/EC, was expected to be strongly and positively related to the fossil-fuel CO2 flux. However,
the p-value indicates the factor’s insignificance, and the correlation coefficient shows only a small
negative influence.
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Table 2. Results of the multivariate linear regression and Pearson correlation coefficients between
GOSAT fossil-fuel CO2 flux and the five factors of the Kaya identity.

Category Standardized Coefficient VIF T-Statistics Pearson Correlation
Coefficient

Kaya identity

G 0.26 ** 1.80 3.84 0.18 **
I 0.03 1.63 0.41 −0.18 **

M 0.66 ** 1.44 10.68 0.56 **
E 0.03 1.31 0.56 −0.23 **

Population −0.13 * 1.29 −2.18 0.16 **

R: 0.62; R2: 0.38; Durbin–Watson: 2.13; F-value (p-value): 29.22 (0.00); *: p ≤ 0.05, **: p ≤ 0.01.

In contrast, we see that the explanatory power of the multiple regression model based on the
decomposed variables of IPAT/Kaya identity factors (hereinafter, Decomposition 2) is comparatively
high (R2 = 0.83). In addition, the correlation coefficients between Decomposition 2 and the fossil-fuel
CO2 flux (0.64 to 0.90) are higher than the corresponding values of Decomposition 1 (−0.23 to 0.56).
The results for all the models are listed in Table 3. Interestingly, some factors of the IPAT/Kaya identity
and their decomposed variables differ in terms of the significance (p-value) of their regression models.
For example, the E factor in the model based on Equation (3) is insignificant with a p-value of 0.58.
However, its decomposed variables, namely, EC and CO2 emissions from fossil fuels, individually are
significant (p ≤ 0.01) in the model from Equation (4). The I factor is insignificant (p = 0.66) in the first
regression model, but the GDP, which is a component of the I factor, is significant (p≤ 0.01) in the second
model. The TEC value, again, which is another decomposed variable of the I factor, is statistically
insignificant due to its large p-value of 0.66. It is the only insignificant variable in the second model.
This finding suggests that changes in the TEC are not associated with changes in the response of the
fossil-fuel CO2 flux. An explanation may be that TEC contains the energy consumptions from 13 energy
types, from fossil fuels to nuclear and renewable energies, all converted to the energy units (ktoe).
Hence, the proportion of nonfossil fuels accounts for about 20% (Netherlands) to 67% (Sweden) in
TEC. However, as fossil fuel accounts for over 50% in the energy mix of all countries except for Estonia,
Finland, Latvia, Norway, and Sweden (from our data for 2010–2017), we still see a fairly positive
correlation of 0.64 with the fossil-fuel CO2 flux. This example proves that computing the correlation is
often not enough, and additional insight is gained by calibrating the model in Equation (4).

Table 3. Results of the multivariate linear regression and Pearson correlation coefficients between
GOSAT fossil-fuel CO2 flux and the decomposed variables of the five factors of the Kaya identity.

Category Standardized
Coefficient VIF T-Statistics Pearson Correlation

Coefficient

Decomposed variables of five
factors in Kaya identity

CO2 emission 0.30 ** 12.94 3.08 0.89 **
TEC 0.02 1.97 0.44 0.64 **
EC 0.56 ** 22.86 4.36 0.90 **

GDP −0.35 ** 7.28 −4.89 0.77 **
Population 0.38 ** 16.08 3.55 0.87 **

R: 0.91; R2: 0.83; Durbin–Watson: 2.07; F-value (p-value): 234.05 (0.00); *: p ≤ 0.05, **: p ≤ 0.01.

3.2. Using Cluster Analysis to Handle the Problem of Multicollinearity

Despite this knowledge gained by calibrating the model in Equation (4), a challenge persists:
we see significant multicollinearity, that is, the decomposed factors of the IPAT/Kaya identity are not
independent of each other. This fact has been well established in previous research [1,40,41]. We used
the variance inflation factors (VIFs) as indicators of multicollinearity. The general rule of thumb is that
VIFs > 4 warrant further investigation, while VIFs > 10 are signs of serious multicollinearity requiring
correction [3]. In the first model, the VIF values are all far below 10, whereas in the second model, three
out of five factors exceed 10. Multicollinearity is commonly observed along with high R2, as observed
in Table 3. Besides, when analyzing the correlation between the individual factors of Decomposition 2,
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we see some substantial interdependencies between the factors TEC and EC or between the population
and GDP (Table 4). These interdependencies make it difficult to interpret the results given in Table 3.
Hence, further analysis is required to support our deductions.

Table 4. Correlation between the decomposed factors of the IPAT/Kaya identity.

Category CO2 Emission GDP Population TEC EC

CO2 emission 1.000 0.325 0.037 −0.086 −0.221
GDP - 1.000 0.430 −0.196 −0.300

population - - 1.000 −0.091 −0.307
TEC - - - 1.000 −0.834
EC - - - - 1.000

For this purpose, we performed a multivariate cluster analysis for both Decomposition 1 and
2. The individual cluster pattern was derived based on a bivariate dataset (over all 30 countries and
years) consisting of the fossil-fuel CO2 flux on the one side and one of the five factors of the IPAT/Kaya
identity or their decomposed factors on the other side. Then, we could explore the disparity of the
results in Tables 2 and 3 without assuming a specific model. The property of multicollinearity is
also observed in the results of the cluster analysis performed using Ward’s method (see Section 2.3.).
Details of the clustering are provided in Tables A1 and A2, but the major results can be also obtained
by examining Figures 1 and 2, which show colored maps to visualize the clustering. In Figure 1a1,b1,
we show the resulting clusters for G and I, respectively, while in Figure 1a2,b2, we show the resulting
clusters for the corresponding decomposed variables. Each color represents a different cluster.
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and decomposed variables of G factor (GDP and population). (b1) Country cluster with the fossil-fuel 
CO2 flux and I factor. (b2) Country cluster with the fossil-fuel CO2 flux and decomposed variables of 
I factor (GDP and TEC). 

Figure 1. Distribution map of country clusters on the basis of fossil-fuel CO2 flux, Kaya identity (G and
I factors), and decomposed variables of G and I factor (GDP, population, TEC). (a1) Country cluster with
the fossil-fuel CO2 flux and G factor. (a2) Country cluster with the fossil-fuel CO2 flux and decomposed
variables of G factor (GDP and population). (b1) Country cluster with the fossil-fuel CO2 flux and I
factor. (b2) Country cluster with the fossil-fuel CO2 flux and decomposed variables of I factor (GDP
and TEC).
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see Table A1). Norway, Ireland, and Switzerland belong to the first cluster with the highest G factor 
values among the sample (0.07–0.08 MM $/person). However, the corresponding fossil-fuel CO2 flux 
values are not the highest in the sample (which would indicate a positive dependence). Besides, 
considering again the G factor-based clustering, the fossil-fuel CO2 flux values in Cluster 1 show a 
considerably large range (0.08–0.70 gC m2 day−1) which fully contains all values of Cluster 4 (0.25–
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Figure 2. Distribution map of country clusters on the basis of the fossil-fuel CO2 flux, Kaya identity
(M, E, and P factors), and decomposed variables of M, E, and P factors (EC, TEC, CO2 emissions
from fossil fuel, and population). (a1) Country cluster with the fossil-fuel CO2 flux and M factor.
(a2) Country cluster with the fossil-fuel CO2 flux and decomposed variables of M factor (EC, and TEC).
(b1) Country cluster with the fossil-fuel CO2 flux and E factor. (b2) Country cluster with the fossil-fuel
CO2 flux and decomposed variables of E factor (CO2 emissions from fossil fuel and EC). (c1) Country
cluster with the fossil-fuel CO2 flux and P factor. (c2) Country cluster with the fossil-fuel CO2 flux and
decomposed variables of P factor (population).

The maps on the left side show no clear structure or specific pattern, whereas the maps on
the right side indicate (strong) positive correlation, and we see reasonable clusters such as Central
Europe and Eastern Europe. Let us, for example, consider the clusters based on the factors G and I
(for details, see Table A1). Norway, Ireland, and Switzerland belong to the first cluster with the highest
G factor values among the sample (0.07–0.08 MM $/person). However, the corresponding fossil-fuel
CO2 flux values are not the highest in the sample (which would indicate a positive dependence).
Besides, considering again the G factor-based clustering, the fossil-fuel CO2 flux values in Cluster 1
show a considerably large range (0.08–0.70 gC m2 day−1) which fully contains all values of Cluster 4
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(0.25–0.37 gC m2 day−1). Cluster 2, again, has a considerably large range of fossil-fuel CO2 flux values
comprising the smallest and the largest values (0.05–3.80 gC m2 day−1). Hence, we cannot derive any
relation between the G factor and the fossil-fuel CO2 flux from this clustering result. Considering the
decomposed factors of the G factor, again we see more evidence for a relation. The Netherlands show
the highest values for GDP (24.66 MM $/km2), population (507.89 person/km2), and fossil-fuel CO2

flux (2.48 gC m2 day−1). With decreasing GDP, we also have tendentially a decreasing fossil-fuel CO2

flux, whereby there is a certain range in each cluster. Looking at the I factor, we have an (on average)
increasing pattern of fossil-fuel CO2 flux values from Cluster 1 (0.05–0.49 gC m2 day−1) to Cluster
4 (2.48–3.80 gC m2 day−1). The I factor values are slightly decreasing, whereas the ranges of values
within the individual cluster are fairly large and overlap each other. As a consequence, we can hardly
see any interdependency between the I factor and the fossil-fuel CO2 flux.

Similar conclusions can be drawn by analyzing Figure 2a1–c1, where we compare the clusters
for M, E, and P with the clusters of their decomposed variables (for details see Table A2). The ranges
of M factor values in all clusters overlap more or less, whereas the fossil-fuel CO2 flux values are
decreasing. E factor values, again, are decreasing where ranges of the cluster values hardly overlap.
However, the corresponding fossil-fuel CO2 flux values do. The fossil-fuel CO2 flux values of Cluster 3
range from 0.08 gC m2 day−1 to 1.73 gC m2 day−1, which completely includes the range of Cluster 2
(0.25–0.36 gC m2 day−1). In addition, considering the E factor, Germany, Norway, and Finland are in
the same group as Turkey, Belarus, and Romania, which have a lower efficiency of generating electricity
and where coal-fired power plants are dominant (Figure 2b1). The corresponding decomposed values
offer a more concrete clustering, however the fossil-fuel CO2 flux value increases from the first to
the second cluster. Apart from that, all input values as well as fossil flux values decrease, hence we
see a clear positive relationship. Most of the clusters identified based on the individual decomposed
variables show a distinctive pattern with quite homogeneous groups and fairly large distances between
the individual clusters. This reflects the heterogeneous characteristics of the individual countries in
Europe. Belgium, for example, always belongs to Cluster 1, in which the decomposed variables and
the fossil-fuel CO2 flux show the highest values among all four clusters; Germany and UK are always
in the same cluster. Northern and eastern European countries usually belong to the same Cluster as
well (Figure 1a2,b2, Figure 2a2,c2).

Thus, the results of the cluster analysis indicate that Decomposition 2 has a stronger explanatory
power for the fossil-fuel CO2 flux than Decomposition 1. Besides, except for the M factor and its
decomposed variables, the cluster results on the left side of Figures 1 and 2 differ significantly from
those on the right side (which are based on the decomposed variables). Note that the M factor is a
proportional factor that indicates the share of fossil fuels in total energy consumption [22]. Unlike
other factors of the IPAT/Kaya identity, the M factor has the same cluster members in both models,
that is, the model considering the correlation of M with the fossil-fuel CO2 flux and that considering
the correlation between its decomposed variables (EC and TEC) and the fossil-fuel CO2 flux.

3.3. Discussion

Consumption-based CO2 emissions differ from conventional production-based inventories due
to imports and exports of goods and services that entail CO2 emissions either directly or indirectly.
However, the CO2 emissions in the Kaya identity account for only those CO2 emissions produced
within national boundaries. It does not consider the CO2 emissions conveyed through international
trade. For instance, if oil is imported for electricity generation, this results in an increase in emissions
in the importing country. Whereas, if electricity as such is imported, it is not counted as emissions in
the importing country. In countries like Switzerland, Sweden, Austria, the United Kingdom, or France,
over 30% of consumption-based emissions were imported, with net imports to many Europeans of
over 4 tons of CO2 per person in 2004 [42]. TEC includes the imported energy from other countries.
European countries may have a low production of electricity but consume much more electricity that
was produced elsewhere (leading to a higher carbon footprint). Thus, the direct CO2 emissions may not
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agree well with the energy consumed. In this study, we do not involve the net effect of CO2 emissions
embodied in trade. This incongruence is not discussed in the current manuscript.

Besides, in the EU, 71% of the total energy is consumed by the end users. Transformation
and distribution losses account for 24% of the EU’s primary energy and about 5% by the energy
sector’s own consumption of energy. A 2% increase of transformation efficiency in traditional power
plants, given the same fuel mix, would save about 50 million tons of CO2 emissions per year in the
EU [43]. In this regard, we need further research about the driving forces of Kaya identity factors and
decomposed variables according to variations of efficiency in energy transformation and distribution.

4. Potential and Constraints in Utilizing Decomposed Variables

The hypothesis of the IPAT/Kaya identity is that its five factors can be used to discuss the primary
driving forces of inventory CO2 emissions [40]. However, in reality, these five factors are often not
instructive for discussing the primary driving forces on the CO2 directly emitted to the atmosphere.
Alternatively, as described in Section 3, the five factors of IPAT/Kaya identity can be decomposed
into five subcomponents, GDP, TEC, EC, CO2 emissions from fossil fuel, and population. However,
the multiple regression model based on these five subcomponents shows significant multicollinearity.
This limits the application of this model. Owing to the interdependencies among the decomposed
variables, the influence of each decomposed variable on the fossil-fuel CO2 flux may be overestimated.
A further drawback of the five decomposed variables is that, unlike the identity factors themselves,
the decomposed variables are not adequate for prioritizing targets to mitigate the domestic CO2

emission [1]. The decomposed variables cannot be used to identify specific categories of anthropogenic
activities such as social, economic, industrial, and biophysical activities. For instance, GDP and TEC
themselves do not provide any insights about the “targets” for reducing CO2 emissions because the
absolute numbers of both decomposed variables depend on population, economic scales, energy mix,
industrial structures, and so forth. Thus, the decomposed variables of IPAT/Kaya identity are not
adequately indicative of the major sectors that may help to mitigate the resulting CO2 emissions in
individual countries [44].

On the other hand, the decomposed variables have the advantage that they can be used to explain
and describe the heterogeneous country-specific characteristics and levels of CO2-emitting activities.
The decomposed variables contain instructive information about the anthropogenic CO2-emitting
activities. Many authors, for example, demonstrated that atmospheric CO2 concentrations grow
linearly with the five decomposed variables (GDP, TEC, EC, population, and CO2 emissions from
fossil fuel) [45–47]. They are the representative parameters related to the direct CO2 emitted from
anthropogenic activities. Thus, the decomposed variables facilitate a comparison of the intensities of
CO2-emitting anthropogenic activities from individual countries.

As described, the IPAT/Kaya identity is a concept of splitting up the inventory CO2 emissions into
five factors. Hence, the growth rates of the components are additive, that is, the total growth rate of the
inventory CO2 emissions related to energy is the sum of the growth rates of the individual factors.
When predicting future CO2 emissions, the inferred growth rates of the individual IPAT/Kaya identity
factors serve as input for predicting future CO2 emissions or designing various emission scenarios.
Thus, one of the important caveats of applying IPAT/Kaya to emission scenarios is that the five factors
of IPAT/Kaya identity on the right side of Equation (2) should not be considered as the fundamental
driving forces themselves [1]. The IPAT/Kaya identity assumes that each factor has the same importance
in explaining the driving forces behind inventory CO2 emissions. The fossil-fuel CO2 flux is a footprint
originating from the same CO2 sources as in the inventory CO2 emissions. Thus, the five factors of the
IPAT/Kaya identity should be positively correlated with this flux. However, in this study, all factors
of the IPAT/Kaya identity, except for the M factor, show low correlation with the fossil-fuel CO2 flux.
In contrast, four out of five decomposed variables show a high correlation with the flux. According
to this study, variations in the individual IPAT/Kaya identity factors do not always positively lead to
changes in the CO2 directly emitted to the atmosphere. The IPAT/Kaya identity factors are calculated by
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dividing two specific decomposed variables. This calculation process eliminates the multicollinearity
among the decomposed variables and reduces the influences of the decomposed variables on the
fossil-fuel CO2 flux. Ignoring the correlations of the decomposed variables with this flux during the
construction of the emission scenarios may lead to incorrect predictions of the actual CO2 emissions,
which reflect the variations in the CO2 directly emitted to the atmosphere. Therefore, the correlation
coefficients of the decomposed variables must be considered when building CO2 emission scenarios in
order to find realistic reduction targets for atmospheric CO2.

5. Conclusions

The evaluation of the mutual correlation between the factors of the IPAT/Kaya identity and their
decomposed variables with the fossil-fuel CO2 flux, which is the CO2 emitted from the in situ fossil-fuel
CO2 sources to the atmosphere, showed disparity between the two datasets. The decomposed variables
of the IPAT/Kaya identity have a substantially higher correlation with this flux than the factors of
the IPAT/Kaya identity. In addition, the individual factors of the IPAT/Kaya identity are statistically
insignificant when used in a regression model to explain this flux. In contrast, the decomposed variables
of the IPAT/Kaya identity are statistically significant, but show multicollinearity, when considering
their regression to explain the fossil-fuel CO2 flux. These results show that the influences and
multicollinearity of individual decomposed variables on actual CO2 emissions are not reflected in the
factors of the IPAT/Kaya identity and multiplicative calculations. However, the factors of IPAT/Kaya
identity are still important for policymakers since the decomposed variables cannot provide policy-wise
targets for reducing CO2 emissions at the national level. There are limitations to generalizing the
results of this study owing to the relatively short period of 8 years of (annual) observations and the
confined study area. Therefore, further research with a longer period of observations and worldwide
data is necessary to generalize the results of this study. In particular, a longer period of 20–25 years
(or even longer if possible) should be considered for the generalization of the results; many similar
studies have considered such longer periods.
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G GDP/P
GDP Gross domestic product
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M EC/TEC



Int. J. Environ. Res. Public Health 2020, 17, 5976 13 of 17

NIR National inventory report
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Appendix A

Table A1. Results obtained by the Ward methods in the hierarchical cluster analysis and comparisons of the members in individual cluster groups in terms of factors
of the Kaya identity (G and I factors) and the decomposed variables of the Kaya identity (GDP, population, and TEC). G factor: MM $/person, I factor: ktoe/MM $,
GDP: MM $/km2, Pop (Population): MM person/km2, TEC: ktoe/km2, Fossil-fuel CO2 flux: gC m2 day−1.

Cluster Level. Cluster 1 Cluster 2 Cluster 3 Cluster 4

Decomposed Variables of
G Factor

GDP: 24.66 GDP: 16.61–17.21 GDP: 4.72–11.02 GDP: 0.27–2.80
Pop: 507.89 Pop: 213.88–375.67 Pop: 69.78–273.05 Pop: 14.45–137.16
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
2.48 0.70–3.80 0.33–1.73 0.08–1.32

Countries Belonging to the
Cluster NET BEL, SWI AUS, FRA, GER, IRE, ITA, UK

BEL, BUL, CRO, CZE, EST, FIN,
GRE, HUN, LAT, LIT, NOR, POL,
ROM, SI, SK, SPA, SWE, TUR, UKA

G Factor
G: 0.07–0.08 G: 0.04–0.06 G: 0.01–0.03 G: 0.00–0.01
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
0.08–0.70 0.05–3.80 0.09–1.32 0.25–0.37

Countries Belonging to the
Cluster NOR, IRE, SWI AUS, BEL, DEN, FIN, FRA,

GER, NET, SWE, UK
CRO, CZE, EST, GRE, HUN, ITA,
LAT, LIT, POL, POR, SI, SK, SPA BLR, BUL, ROM, TUR, UKR

Decomposed Variables of
I factor

GDP: 24.66 GDP: 16.61–17.21 GDP: 4.72–11.02 GDP: 0.27–2.80
TEC: 1.74 TEC: 0.47–1.34 TEC: 0.16–0.65 TEC: 0.06–0.35
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
2.48 0.70–3.80 0.33–1.73 0.08–0.35

Countries Belonging to the
Cluster NET BEL, SWI AUS, FRA, GER, IRE, ITA, UK

BLR, BUL, CRO, CZE, EST, FIN,
GRE, HUN, LAT, LIT, NOR, POL,
ROM, SI, SK, SPA, SWE, TUR, UKA

I Factor
I: 0.05–0.54 I: 0.04–0.15 I: 0.06–0.13 I: 0.08–0.09
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
0.05–0.49 0.58–0.77 1.10–1.73 2.48–3.80

Countries Belonging to the
Cluster

BEL, BUL, CRO, DEN, EST, FIN,
GRE, HUN, IRE, LAT, LIT, NOR,
POR, ROM, SPA, SWE, TUR, UKR

AUS, FRA, ITA, POL, SI, SK,
SWI CZE, GER, UK BEL, NET
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Table A2. Results obtained by the Ward methods in the hierarchical cluster analysis and comparisons of the members in individual clusters in terms of the factors of
the Kaya identity (M, E, and P factors) and decomposed variables of the Kaya identity (GDP, population, TEC, EC, and CO2 emission from fossil fuel). M factor:
ktoe, E factor: kt CO2 Equation/ktoe, P factor: MM person, GDP: MM $/km2, Pop (Population): MM person/km2, TEC: ktoe/km2, EC: ktoe/km2, CO2 emission from
fossil fuel: kt CO2 Equation/km2, Fossil-fuel CO2 flux: gC m2 day−1.

Cluster Level Cluster 1 Cluster 2 Cluster 3 Cluster 4

Decomposed Variables of M Factor

EC: 1.03–1.37 EC: 0.22–0.45 EC: 0.15–0.30 EC: 0.02–0.16
TEC: 1.34–1.74 TEC: 0.35–0.65 TEC: 0.22–0.47 TEC: 0.06–0.33
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
2.48–3.80 1.10–1.73 0.49–0.77 0.08–0.41

Countries Belonging to the Cluster BEL, NET GER, UK, CZE HUN, AUS, FRA, ITA, POL, SI, SK, SWI DEN, IRE, BLR, BUL, CRO, EST, FIN, GRE, LAT,
LIT, NOR, POR, ROM, SPA, SWE, TUR, UKR

M Factor
M: 0.77–0.79 M: 0.63–0.75 M: 0.59–0.68 M: 0.34–0.75
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
2.48–3.80 1.10–1.73 0.49–0.77 0.08–0.41

Countries Belonging to the Cluster BEL, NET GER, UK, CZE HUN, AUS, FRA, ITA, POL, SI, SK, SWI DEN, IRE, BLR, BUL, CRO, EST, FIN, GRE, LAT,
LIT, NOR, POR, ROM, SPA, SWE, TUR, UKR

Decomposed Variables of E Factor

EC: 1.37 EC: 1.03 EC: 0.22–0.45 EC: 0.02–0.30
CO2: 4.88 CO2: 3.22 CO2: 1.37–2.29 CO2: 0.12–1.10
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
2.48 3.80 1.10–1.73 0.08–0.77

Countries Belonging to the Cluster NET BEL CZE, GER, UK
AUS, BEL, BUL, CRO, DEN, EST, FIN, FRA, GRE,
HUN, IRE, ITA, LAT, LIT, NOR, POL, POR, ROM,
SI, SK, SPA, SWE, SWI, TUR, UKR

E Factor
E: 13.44 E: 7.11–8.47 E: 4.75–6.59 E: 0.48–4.26
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
0.32 0.25–0.36 0.08–1.73 0.06–3.80

Countries Belonging to the Cluster EST BUL, GRE, UKR BLR, CZE, DEN, FIN, GER, IRE, NOR,
POL, POR, ROM, SI, SK, SPA, TUR

AUS, BEL, CRO, FRA, HUN, ITA, LAT, LIT, NET,
SWE, SWI, UK

Decomposed Variables of P Factor
Pop: 375.67–507.89 Pop: 205.81–273.05 Pop: 69.78–137.16 Pop: 18.13–46.81
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
2.48–3.80 0.70–1.73 0.25–1.32 0.05–0.32

Countries Belonging to the Cluster BEL, NET GER, ITA, SWI, UK
AUS, BUL, CRO, CZE, DEN, FRA, GRE,
HUN, IRE, POL, POR, ROM, SI, SK,
SPA, TUR, UKR

BLR, EST, FIN, LAT, LIT, NOR, SWE

P Factor
P: 81.10–82.66 P: 60.54–66.87 P: 37.97–46.59 P: 1.32–19.59
Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux: Fossil-fuel CO2 flux:
0.37–1.73 0.58–1.10 0.25–0.76 0.08–3.80

Countries Belonging to the Cluster GER, TUR FRA, ITA, UK POL, SPA, UKR
AUS, BEL, BLR, BUL, CRO, CZE, DEN, EST, FIN,
GRE, HUN, IRE, LAT, LIT, NET, NOR, POR, ROM,
SI, SK, SWE, SWI
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