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Abstract: Indoor air quality becomes more critical as people stay indoors longer, particularly children
and the elderly who are vulnerable to air pollution. Natural ventilation has been recognized as the most
economical and effective means of improving indoor air quality, but its benefit is questionable when the
external air quality is unacceptable. Such risk-risk tradeoffs would require evidence-based guidelines
for households and policymakers, but there is a lack of research that examines spatiotemporal
long-term air quality trends, leaving us unclear on when to ventilate. This study aims to suggest the
appropriate time for ventilation by analyzing the hourly and quarterly concentrations of particulate
matter (PM)10 and PM2.5 in seven metropolitan cities and Jeju island in South Korea from January
2015 to September 2019. Both areas’ PM levels decreased until 2018 and rebounded in 2019 but are
consistently higher in spring and winter. Overall, the average concentrations of PM10 and PM2.5
peaked in the morning, declined in the afternoon, and rebounded in the evening, but the second peak
was more pronounced for PM2.5. This study may suggest ventilation in the afternoon (2–6pm) instead
of the morning or late evening, but substantial differences across the regions by season encourage
intervention strategies tailored to regional characteristics.

Keywords: particulate matter; natural ventilation; indoor air quality; regional variation

1. Introduction

The quality of the air we breathe every day, both outdoors and indoors, is a matter of great
concern since it contains various polluting substances which have negative effects on human health
and on the environment [1]. According to the 2017 Global Burden of Disease Study, exposure to
outdoor air pollution is one of the leading risk factors for premature death, accounting for 3.4 million
deaths each year [2]. One of the most critical air pollutants is particulate matters (PM) which are
considered as one of major reasons for increased prevalence or exacerbation of respiratory diseases [3,4],
cardiovascular diseases [5], and diabetes [6]. The International Agency for Research on Cancer (IARC)
has designated the atmospheric PM as a carcinogen of the same class as asbestos and those found
in tobacco smoke [7]. However, a growing number of studies have reported that indoor PM could
be more harmful in comparison to outdoor air quality because potential air pollutants are built up
in confined environments [8,9]. Pollutants are endlessly generated in indoor environments due to
human activities and inflow of external air and the purification of contaminated indoor air quality is
difficult [10]. Due to a modern lifestyle in which people stay indoors for longer in most industrialized
countries [11], the health impacts of indoor PM have been reported to outweigh those of outdoor
air pollution, particularly for long-term exposure even at low concentration levels [12,13]. This is
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particularly relevant for susceptible groups such as children and elderly people who spend most of
their time indoors [14,15].

Policymakers and professionals have developed strategies to manage indoor air quality such
as improved ventilation and filtration, regulations and standard setting, routine monitoring and
inspection, etc. [16]. Natural ventilation has been considered as the most economical and effective
means of improving indoor air quality [17], which leads to improved productivity [18], mitigates
allergic diseases [19], and even reduces the risk of airborne contagion [20]. Although natural ventilation
may be less effective than mechanical ventilation in some settings [21], simply opening the windows for
10 min was found to be effective in achieving satisfactory indoor comfort conditions and air quality [22].
While natural ventilation is widely recommended for indoor air quality, its effectiveness depends
on the quality of outdoor air [23,24]. Various concerns have been reported regarding its application,
such as ambient particle concentration, indoor source intensity, indoor-outdoor air exchange rate,
and circulation of outdoor air within the building, but the largest concern centers on the entry of
polluted air from outdoors [25]. Due to the high filtration rate of particles from outdoors, the linkage
between indoor and outdoor particle concentrations is more pronounced for a very small particle such
as PM2.5 [26]. In particular, residential housing units are highly influenced by the quality of outdoor
air since they tend to depend more on natural ventilation even if mechanical ventilation units are
installed [27].

Considering a strong connectivity and dependency between indoor and outdoor air quality, natural
ventilation could generate negative health impacts where the outdoor air quality is not acceptable
for ventilating a building [28]. Despite the importance of risk-risk tradeoff between the exposure to
indoor and outdoor air pollutants [29], except for a few governmental reports [17] there is no research
that directly provides guidelines for the appropriate time and duration for natural ventilation based
on the detailed assessment of temporal trends of ambient air pollutants in multiple communities.
As hourly patterns of PM 2.5 and PM 10 could vary due to local characteristics such as major sources of
contamination and seasonal weather conditions, an empirical investigation of long-term, site-specific
air quality data is critical for developing evidence-based guidelines.

Despite the efforts of the Korean government to improve air quality during the past decades based
on several laws and regulations such as the Clean Air Conservation Act of 1991 and the Special Act
on the Improvement of Air Quality in Seoul Metropolitan Area of 2003, the problem of air pollution
is far from being solved in South Korea. The public’s concerns about the health risks associated
with particulate matter exposure have substantially increased recently in South Korea, particularly
after experiencing the record levels of outdoor PM 2.5 concentrations in many parts of the country in
February and March 2019 [30]. Soon after these events, the national assembly of South Korea passed a
series of bills which declared PM air pollution as a “social disaster” and provided emergency measures
to tackle the problem, such as mandatory installation of air purifiers in classrooms, distribution of
masks to vulnerable groups, and the promotion of low-emission vehicles [31]. It has been reported that
Koreans spend more than 20 h a day indoors, particularly the most vulnerable groups such as patients,
the elderly, and infants [32]. Although the Korea Ministry of Environment (KME) has provided several
guidelines to citizens in response to indoor PM exposure, including ventilation, indoor water cleaning,
and indoor air quality monitoring [33], they still lack details concerning how to actually implement
the measures.

Only a few research articles have reported the seasonal patterns of particulate matter in South
Korea, showing that PM10 and PM2.5 concentrations peak in spring and winter respectively, but both
were lowest in summer [34]. However, to our knowledge there is no recent study in South Korea
looking at hourly patterns of PM10 and PM2.5 concentrations by season in multiple regions based on
long-term data. In South Korea, most people do not ventilate frequently due to Asian dust and air
pollution problems attributed to industrial activities in China [35,36]. For this reason, indoor air quality
of dwellings in South Korea often becomes worse due to anthropogenic activity including cooking
which could lead to increases in the level of PM2.5 as well as NO2 [37]. In this regard, KME suggested
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ventilation for over 30 min three times a day during daytime to improve indoor air quality [33], but this
recommendation does not indicate a specific time and lacks tangible evidence of dynamic fluctuation
patterns of each pollutant. Therefore, this study aims to analyze the historical records of atmospheric
PM10 and PM2.5 concentrations in major cities and regions over the past five years (2015–2019) to
assess hourly trends of each pollutant for each season and discuss potential reasons behind the patterns.
The findings of this study should provide guidance on the most desirable and undesirable time during
the day for not only natural ventilation but also outdoor activities, which could reduce the level
of exposure to particulate matter and minimize the adverse effects of air pollution. Moreover, the
improved understanding of dynamic trends of PM concentrations and their variations across multiple
regions and seasons could help policymakers design a more effective strategy in identifying and
monitoring region-specific sources of atmospheric air pollution.

The structure of this paper is as follows: the next section gives an overview of the eight study
regions along with data collection and analytic processes. The following sections show the results
of the analyses focusing on hourly trends of outdoor PM concentrations by year, season and region,
followed by the discussion and conclusion sections that summarize the findings of this study and the
implications and limitations of these findings.

2. Materials and Methods

The hourly PM10 and PM2.5 concentration data supplied by Air Korea (www.airkorea.or.kr) for
KME were obtained for seven metropolitan cities (Seoul, Incheon, Daejeon, Daegu, Ulsan, Gwangju,
Busan) and Jeju Island, for the past five years from January 2015 to September 2019. Figure 1 shows the
mapped locations of the eight regions in South Korea and Table 1 summarizes the sociodemographic,
geographic, meteorological, traffic and other relevant information for each region.
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Table 1. Geographic, climatic, socio-economic and other notable characteristics in the eight regions.

Region Area
(km2)

Population Density
(people/km2)

Average
Temperature

(◦C)

Annual Average
Precipitation

(mm)

Number of
Monitoring Stations

Notable Characteristics
(Geographic, Meteorological and Mobility Patterns)

Seoul 605 15,964 13.5
(−10.9–36.8) 891.3 25 Capital of South Korea; located in the northwest of the country;

heavy traffic congestion during rush hours

Busan 770 4380 15.7
(−4.4–35) 1623.2 25 Located in the south; relatively warm; close to the sea; heavy

traffic congestion during rush hours

Daegu 883 2753 14.8
(−7.2–36.9) 995.7 15

Located inlands in south-central region; a basin-type city; high
summer temperatures and frequent heat waves; heavy traffic
congestion during rush hours

Incheon 1063 2769 13.2
(−10.4–36) 919.5 20

Located in the west; close to the sea; heavily influenced by the
northwest wind; contains an industrial complex; heavy traffic
congestion during rush hours

Gwangju 501 2980 14.7
(−5.9–34.8) 1085.9 9 Located in the southwest; heavily influenced by the northwest

wind in winter; heavy traffic congestion during rush hours

Daejeon 540 2796 14
(−9.6–36) 984.2 10 Located around the center; a basin-type city; power plants around

it; heavy traffic congestion during rush hours

Ulsan 1062 1080 14.9
(−5.3–35) 1045.1 17 Large-scale industrial complexes; close to the sea; distinct traffic

patterns during rush hours

Jeju 1850 356 16.8
(1–35.4) 1979.9 6

An island city located in the southernmost part of Korea; a large
number of tourists and no industrial facilities; constant traffic due
to tourism
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The observations from multiple monitoring stations in each region were integrated to calculate
the average; very few observations were missing due to impediment or equipment failures during the
period, and these were excluded from the analysis. Statistical analysis software (SAS for Windows
version 9.1; SAS Institute Inc., Cary, NC, USA) was used to calculate the geometric means of PM10
and PM2.5 concentrations (µg/m3) for each hour of a day (24 time slots) in each region, which were
then aggregated by year and season to investigate the annual and seasonal changes and variations.
Geometric means were chosen as the best summary statistic for the PM data since their distributions
were highly skewed. Four distinct seasons in Korea were classified as: spring (March–May), summer
(June–August), fall (September–November), and winter (December–February). A series of hourly time
graphs were created to illustrate the trends of PM concentrations over a day for each year, season
and region, in order to identify good and bad time slots for natural ventilation. Some additional
analysis and discussion followed to explain the potential sources of the patterns, including hourly
traffic volume in each region.

3. Results

3.1. Hourly Trends of Outdoor PM Concentrations by Year

Figure 2 shows the hourly patterns of PM10 and PM2.5 concentrations as an annual average
for each year between 2015 and 2019. For both pollutants, there has been a gradual reduction from
2016 until 2018, but they rebounded in 2019. The PM10 concentrations were mostly below the KME’s
annual average standard of 50 µg/m3 throughout a single day, while the PM2.5 concentrations were
way above the recently-strengthened annual average standard of 15 µg/m3 during the past five years.
Despite some annual fluctuations, the overall hourly patterns for both PM10 and PM2.5 show some
similarity throughout the five years; they peaked at 8–11am, declined in the afternoon and rose again
in the evening. The second peak in the evening until dawn appears more conspicuous in PM2.5
concentrations, which is due to insufficient air circulation via inversion layer caused by the temperature
drop on the earth’s surface during these time ranges [38].
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3.2. Hourly Trends of Outdoor PM Concentrations by Season

Figure 3 compares the hourly patterns of both pollutants across the four seasons, showing a
noticeable seasonal pattern: high in spring and winter and low in summer and fall. Similar to the
previous study [34], PM10 concentration was highest in spring while PM2.5 concentration was highest
in winter. Regardless of season, both PM10 and PM2.5 peaked between 9am–noon and decayed
afterwards. The slope of decline in the afternoon was much steeper for PM2.5 than PM10, except
for summer, when both concentration levels appear relatively stagnant throughout a day. The PM10
concentrations during spring and winter were above the KME’s annual average standard of 50 µg/m3

particularly between 8am and 2pm, while these were under the standard during summer and fall.
PM2.5 concentrations were, however, much higher than the annual average standard of 15 µg/m3

during all four seasons.
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3.3. Hourly Trends of Outdoor PM Concentrations by Season: Regional Variation

Figures 4 and 5 show regional variations of hourly and seasonal trends of PM10 and PM2.5
respectively, including Seoul (capital city of South Korea), six metropolitan cities (Incheon, Daejeon,
Daegu, Ulsan, Gwangju, Busan) and Jeju Island. As seen in Figure 4, the seasonal and hourly patterns
of PM10 are relatively similar across all regions, exhibiting high concentrations in spring and winter
and a peak between 7am and 1pm, but the height of the peak and the declining patterns after the peak
seem to vary by region. PM10 concentrations in Busan, Incheon and Ulsan were above the KME’s
annual average standard of 50 µg/m3 in the daytime period during spring, but its duration was much
longer in Incheon (9am to 6pm) than Busan (9am–1pm) and Ulsan (10–11am). During winter, however,
only Incheon and Daegu show PM10 concentration above the standard for a relatively short period
(10am to noon). As for PM2.5, illustrated in Figure 5, the regional variation appears more noticeable.
The PM2.5 concentrations are relatively similar between spring and winter in Seoul, Busan, Incheon,
Gwangju, Ulsan and Jeju Island, while the winter concentrations were substantially larger than the
spring concentrations in Daejeon and Daegu. For all eight regions, the spring and winter concentrations
of PM2.5 were above the annual average standard of 15 µg/m3 throughout a given day. However,
during the summer and fall seasons, the concentrations were above the standard only during the peak
time periods in some regions. Unlike PM10, all regions except for Daegu show two peaks: one in the
morning and the other in the evening or night.

The distinct patterns of PM10 and PM2.5 concentrations across the regions is mainly due to
different size of particles. Relatively speaking, PM10 is associated with dust on roads, while PM2.5, a
very tiny air particulate matter, even smaller than PM10, and relates to emission from vehicles such
as aerosol and nitrogen oxide (NOx) [39]. For instance, the hourly trends of PM2.5 concentrations in
Ulsan and Jeju Island look quite different from those of other regions, particularly in the afternoon
and evening, possibly because of its unique traffic patterns. Ulsan is an industrial city known for
factories and plumes leading to male-dominated demographics and workforce characteristics [40].
Thus, considering relatively less traffic congestion during commuting time in the city, air quality
might be related more to industrial emissions than local traffic emissions. Jeju Island is a famous
tourist destination located at the southern end of South Korea, exhibiting unique demographic, traffic
and environmental characteristics. To further investigate the impact of traffic volume on PM2.5
concentration, the traffic volume data were obtained for the same eight regions for three years between
2016 and 2018 and the average amount of traffic was calculates for each hour. Figure 6 shows somewhat
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similar hourly patterns to the PM2.5 patterns found in Figure 5, beginning to increase at around
6am, fluctuating during the day, and declining at 6pm. This degree of similarity could indicate the
level of contribution of traffic emissions on PM2.5 concentration trends, which should vary across the
regions depending on site-specific characteristics [31,41]. As mentioned above, the traffic volumes in
Ulsan and Jeju Island are substantially lower and flatter than the other regions due to their unique
sociodemographic and mobility patterns.
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4. Discussion

This study examined hourly and seasonal patterns of PM concentrations for multiple regions in
South Korea based on the recent five-year data in order to find desirable and undesirable times for
natural ventilation due to high levels of outdoor concentrations. Overall, the average concentrations of
both PM10 and PM2.5 peaked in the morning, declined in the afternoon, and rebounded in the evening
(particularly for PM2.5). The highest concentrations were generally found in spring (March to May)
and winter (December to February), but PM2.5 concentrations were more concerning since they were
above the KME’s annual average standard of 15 µg/m3 during peak times in all four seasons. Thus,
it is generally advisable that natural ventilation is recommended during the afternoon (2–6pm) but
should be avoided in the morning (9am to noon) or in the late evening (8–11pm). However, substantial
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differences were observed across the eight regions across the four seasons, suggesting intervention
strategies tailored to regional climate and emission patterns. Moreover, the actual decision on whether
ventilation is needed at a specific time should be based on a more comprehensive consideration of
both indoor and outdoor air quality conditions.

Our results were consistent with previous studies in other countries showing a bimodal pattern
with peaks during morning and evening rush hours [42]. This pattern was prominent in many other
metropolitan cities such as New York, Los Angeles, Beijing, and London, implying that it was mostly
attributed to anthropogenic activity, in particular motor vehicle traffic patterns [43–45]. Likewise, the
morning peak noticed in this study could be mostly due to enhanced anthropogenic activity during
commuting hours, while the afternoon valley is mainly due to a higher atmospheric mixing layer,
which is beneficial for air pollution diffusion [46]. The morning peak was relatively more rigorous
than the evening risk because, in South Korea, work starting time is relatively standard (around 8 or
8:30 am) but finishing time is more widely distributed due to variability in work schedule. This could
partly explain why the PM levels in the evening were somewhat lower than those in the morning in
this study.

The seasonal pattern of PM concentrations in South Korea is partly due to its unique geographic
and climatic characteristics. The average PM10 concentration was highest in spring mainly because
of yellow dust transported from northern China and the deserts of the Mongolian plateau by the
prevailing westerlies [47]. The low PM levels during summer time are attributed to rainout and
washout processes due to the rainy period as well as frequent typhoons, and rapid air circulation in the
fall helps in reducing PM concentrations [24,48]. Generally, PM2.5 can stay longer in the air compared
to PM10 due to a smaller size [49]. Local meteorological conditions (very low temperature, low wind
speeds, surface layer inversions) and weak wind circulation during winter make it difficult to remove
PM2.5 [50]. An increased usage of heating fuels during the winter raises PM levels, and they stay in
the air for a longer period of time due to the cold surface of the earth and a low mixture rate [51,52].
This could explain why PM2.5 concentrations, unlike PM10, were higher in winter than spring since
finer particles tend to be generated widely by man-made sources of emission such as solid fuel heating
in winter [38].

In general, the level of PMs within a big metropolitan city is affected by traffic volume, point
source pollution around the city (e.g., power plant), and weather conditions (especially wind direction)
by season [53]. Increased fuel consumption for heating during winter could contribute to increasing the
level of PM2.5, but other factors may also apply. The high winter concentrations of PM2.5 in Daejeon
and Daegu (shown in Figure 4) are found to be associated with region-specific seasonal factors, such as
the seasonal rise of bio-incineration via fuel use for household heating and cooking and emissions from
petroleum-related industries [54,55] and traffic emission and gas-form pollutants [34]. The studies
showed that the high level of PM2.5 during winter season in Daejeon area could be attributed to
emission pollutants from two big coal-fired power plants located in the northwest of the city under
the influence of the main wind direction during the winter season [56]. Similar patterns of PM2.5
concentrations over winter in Daegu could also be due to its geographic and climatic conditions.
During winter, wind blowing from the northwest causes pollutants from the industrial complex located
in the northwestern side of Daegu to enter the downtown area, and the particles remain stagnant in
the area due to the lack of air circulation in the basin-shaped city [57]. Of course, a number of other
geographic, climatic and socioeconomic factors specific to each region may contribute to PM trends as
well [23].

5. Conclusions

Controlling air pollution is a daunting task in all industrialized countries because so many factors
are involved and some of those even cross a country’s border. Eliminating or reducing the sources
of emission could bring other types of social conflict or dilemma which would require a long-term
effort and investment to be resolved. Natural ventilation could be considered as a simple and low-cost
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solution to diminish the level of exposure to indoor air pollutants, but only when the outdoor air
quality is acceptable. This study emphasizes the importance of thorough monitoring of ambient air
quality to be used in providing guidelines for when indoor environments should be ventilated in
different region. Despite substantial distinctions across the regions by season, this study provides
some general suggestions that the time between 2–6pm is most suitable for natural ventilation but it
is not desirable either in the morning or late evening, particularly during spring and winter. It also
highlights PM2.5 concentrations surpassing the KME’s annual average standard of 15 µg/m3 during
peak times in all four seasons and rebounding in size since 2019. Although further studies would be
needed to confirm this suggestion and implement solutions in practice, the results of this study can be
used as basic information for designing a comprehensive environmental health policy in consideration
of dynamic exposure to air pollution.

Of course, it would be ideal to consider simultaneously both indoor and outdoor PM values in
order to confirm the suggestions of this study. However, we believe that this study is valid in itself
because indoor PM data are not readily available in most of the households and, even if available, the
patterns would vary greatly vary according to building structure and lifestyle. This study aims to
provide a broad guideline on appropriate times for natural ventilation based on outdoor air quality,
particularly where indoor PM levels are unknown, but specific implementation should be carried out by
considering indoor-outdoor dynamics pertaining to each building or household. Future study should
be directed towards the confirmation of the trends found in this study based on actual experimental
data on indoor and outdoor PM concentrations measured in sample buildings in multiple regions,
instead of the public aggregated data. In addition, gathering more data on covariates indicating
geographic, sociodemographic, climatic, industrial and traffic patterns in each region would enable
multivariate analysis and modeling for the determinants of spatiotemporal and seasonal changes in
PM concentrations. In spite of limitations and the inability to explain some patterns, this study can
inform the public regarding the desirable or undesirable times for natural ventilation as well as outdoor
activities in each season and region. Moreover, it can encourage policymakers to design season-specific
environmental management strategies and practices tailored to regional climate and emission factors
such as regional traffic monitoring networks and air quality alert systems for ventilation, which may
promote a cost saving, by specialization of intervention, and enhance policy outcomes.
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