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S1. Numerical Method 

Standard k-ω model is chosen based on the Wilcox [1]  model, which incorporates modification of 

compressibility, low-Reynolds number effects and shear flow spreading. This model is also based on 

the the turbulence kinetic energy (k) and the specific dissipation rate (ω) transport equation. 

The k  and ω are obtained from the transport equations below: 

                                                                

(1) 

(1) 

and 

                                                            

(2) 

(2) 

where,  Gk  is the turbulence induced kinetic energy due to velocity gradients, Gω is the generation 

of ω .  Effective diffusivity of k and ω are Γk and Γω respectively.  Dissipation of k and ω are Yk and 

Yω respectively.  

The diffusivities of the model are; 

                                                                                                                            (3) 

where turbulent Prandtl numbers are defined by k  and  . Turbulent viscosity is t .      

 

Low- Reynolds correction is used for k-omega option. The coefficient 
*  is given by 

                                                                                                          (4) 

where         , , ,                                                          

 

(5) 

 

kkk

jj

i

i

SYG
x

k
k

x
ku

x
k

t


















  )()()( 




 SYG

xx
u

xt jj

i

i


















  )()()(














t

k

t
k










k
t

*

)
/Re1

/Re
(

*
0**

kt

kt

R

R




 






k
t Re 6kR

3

*
0

i  072.0i



S2. Particle Distribution  

Diesel exhaust particles are considered and the particle density 1,100 kg/m3 is used.  The spherical 

drag law is used for the particle. Previously known as the Weibull distribution, the Rosin and Rammler 

distribution (Rosin, 1933) is used to approximate the aerosol particle size distribution. 

                                                                                   (6) 

where, x is the particle size, P80 is the 80th percentile of the particle size distribution, m is the spreading 

distribution parameter.  

The inverse distribution is: 

                                                                                 (7) 

Where F is the mass fraction.  

The Rosin-Rammler distribution in Ansys (17.2) Fluent is the form of the Weibull distribution and 

requires the initial velocity, total flow rate, maximum, minimum and mean diameter, spread 

parameters. The spread parameter can be computed from the analytical equations 

                                                                                                                         
(8) 

where Yd is the mass distribution function. The final Rosin-Rammler distribution function used  is: 

                                                                                                                              
(9) 
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