Supplementary Information

The Influence of Ionic and Nonionic Surfactants on the Colloidal Stability and Removal of CuO Nanoparticles from Water by Chemical Coagulation

Rizwan Khan ¹, Muhammad Ali Inam ¹, Sarfaraz Khan ², Andrea Navarro Jiménez ², Du Ri Park ¹ and Ick Tae Yeom ^{1,*}

- ¹ Graduate School of Water Resources, Sungkyunkwan University (SKKU) 2066, Suwon 16419, Korea; rizwankhan@skku.edu (R.K.); aliinam@skku.edu (M.A.I.); enfl8709@skku.edu (D.R.P.)
- ² Key Laboratory of the Three Gorges Reservoir Region Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China; Sfk.jadoon@yahoo.com (S.K.); andrenavarrojimenez@gmail.com (A.N.J.)
- * Correspondence: yeom@skku.edu; Tel.: +82-31-299-6699

Received: 15 March 2019; Accepted: 7 April 2019; Published: date

Figure S1. (A) UV-Vis spectra of (10 mg/L) CuO NPs in DI waters; (B) Size distribution by the intensity of CuO NPs in DI; (C) ζ potential of CuO NPs as a function of pH.

Parameter	Unit	Value	
Density	g/cm ³	6.372	
Vendor-reported size	nm	<50	
DLS HDD measured in DI water (n = 10) see Figure S1B	Nm	225±38	
BET specific surface area measured (n = 3)	m²/g	29 ± 3	
pH _{iep} see Figure S1C		8.6	
Zeta potential in DI water ($pH = 7$)	(mV)	$+12.5 \pm 1.6$	
Purity by ICP-MS	wt %	98.81	
Moisture content by TGA	wt %	1.15	

Table S2. Properties of surfactants used in the present study.

Surfactant Type	Molecular weight (g/mol)	Chemical Structure	Formula
SLS (Anionic)	288.38	0 	CH3(CH2)11OSO3Na
NP-9 (Nonionic)	616.82	C ₉ H ₁₉ OH	C9H19C6H4(OCH2CH2)9OH

Materials and methods

1.1. Synthetic water preparation

The synthetic freshwater and domestic wastewater were prepared in the DI water according to previously described methods [1–4]. All salts used were ACS reagent grade and purchased from local suppliers. Before use all waters were filtered through 0.45 μ m glass fiber filter and stored in the dark at 4 °C.

Parameter	Unit	Tap water	Fresh water	Industrial Wastewater	Domestic Wastewater
pH ª	-	7.02	6.90	7.56	7.81
Conductivity ^a	us/cm	82.42	119	619	2280
IS	mM/L	0.002	0.79	8.90	34.0
TOC	mg/L	ND	4.5	35	25
HCO ₃	mg CaCO₃ /L	>80	12	-	56
PO ₄	mg/L	-	0.64	ND	2.71
Na+	mg/L	0.31	0	15.0	325.3
K*	mg/L	0.06	1.20	7.53	38.59
Cu	mg/L	-	0	0.39	0.08
Fe	mg/L	-	0	ND	0.35
Mg ²⁺	mg/L	0.19	3.49	27.1	77.0
As	mg/L	-	0	68.52	0
Ca ²⁺	mg/L	0.81	1.50	16.11	119.90
Cl-	mg/L	0.24	6.61	22.40	501
SO42-	mg/L	-	0	10.52	310
Sb	mg/L	-	0	58.77	0

Table S3. Natural and synthetic water characteristic.

-: Not Measured, ND = Not detected, ^a Measured in lab.

Figure S2. Size ratio of CuO NPs with and without surfactant in various environmental waters.

References

- Dickson, A.G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A. Oceanogr. Res. Pap. 1990, 37, 755–766.
- 2. Marine Biological Laboratory (Woods Hole, M.; Cavanaugh, G.M. Formulae and methods IV [i.e., 4th ed.] of the Marine Biological Laboratory Chemical Room. ; Woods Hole, Mass., 1956;
- 3. Schnabel, W.E.; Dietz, A.C.; Burken, J.G.; Schnoor, J.L.; Alvarez, P.J. Uptake and transformation of trichloroethylene by edible garden plants. *Water Res.* **1997**, *31*, 816–824.
- 4. United States Environmental Protection Agency Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms Fourth Edition October 2002. **2002**, 1–350.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).