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Abstract: This study provides diverse lines of evidence demonstrating that fluoride (F) exposure
contributes to degenerative eye diseases by stimulating or inhibiting biological pathways associated
with the pathogenesis of cataract, age-related macular degeneration and glaucoma. As elucidated
in this study, F exerts this effect by inhibiting enolase, τ-crystallin, Hsp40, Na+, K+-ATPase, Nrf2,
γ -GCS, HO-1 Bcl-2, FoxO1, SOD, PON-1 and glutathione activity, and upregulating NF-κB, IL-6,
AGEs, HsP27 and Hsp70 expression. Moreover, F exposure leads to enhanced oxidative stress and
impaired antioxidant activity. Based on the evidence presented in this study, it can be concluded
that F exposure may be added to the list of identifiable risk factors associated with pathogenesis
of degenerative eye diseases. The broader impact of these findings suggests that reducing F
intake may lead to an overall reduction in the modifiable risk factors associated with degenerative
eye diseases. Further studies are required to examine this association and determine differences in
prevalence rates amongst fluoridated and non-fluoridated communities, taking into consideration
other dietary sources of F such as tea. Finally, the findings of this study elucidate molecular pathways
associated with F exposure that may suggest a possible association between F exposure and other
inflammatory diseases. Further studies are also warranted to examine these associations.

Keywords: fluoride; age-related macular degeneration; cataract; glaucoma; molecular mechanisms;
heat shock proteins; FoxO proteins; BCL-2; Na+, K+-ATPase; NF-kB; Nrf2; IL-6; diabetes;
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1. Introduction

Age-related macular degeneration (AMD), cataracts and glaucoma are the leading causes of eye
diseases and blindness worldwide. AMD is caused by progressive degeneration of retinal pigment
epithelial (RPE) cells and neural retina. AMD is the leading cause for irreversible damage of the vision
of people over the age of fifty [1]. The pathogenesis of AMD, which covers a complex interaction of
genetic and environmental factors, is strongly associated with chronic oxidative stress that ultimately
leads to protein damage and degeneration of RPE [2]. Among the risk factors for AMD are diet,
smoking, obesity, hypertension, cardiovascular disease and diabetes [3–10]. Cataracts result from
the deposition of aggregated proteins in the eye lens and lens fibre cells plasma membrane damage
which causes clouding of the lens, light scattering, and obstruction of vision [11]. Cataract is a
multifactorial disease associated with age, diet, smoking, environmental exposure to UVB radiation and
inflammatory degenerative diseases such as diabetes, asthma or chronic bronchitis and cardiovascular
disease [12–15]. A recent meta-analysis also found that hypertension increases the risk of cataract [16].
It is important to note that a significantly higher prevalence of cataract is found in individuals with
Down syndrome [17–20], schizophrenia [21] and diabetes [22]. Worldwide, cataract remains the
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predominant cause of blindness and moderate to severe visual impairment (MSVI) and was the
second most common cause of blindness in 2010, after macular degeneration, in five world regions
(high income Asia Pacific, Australasia, Western Europe, Southern Latin America, and high-income
North America). Overall, one in three blind people was blind due to cataract, and one of six visually
impaired people was visually impaired due to cataract in 2010 [23]. Glaucoma can be viewed
as neurodegenerative disease involving a progressive loss of retinal ganglion cells (RGC) and
characteristic changes in neuroretinal rim tissue in the optic nerve head (ONH) which are accompanied
by visual field loss [24]. Hypertension and diabetes are associated with increased risk of glaucoma [25].

From a population health perspective, degenerative eye diseases place a significant burden on
society and the public health system. In the Republic of Ireland (RoI), it has been estimated that there
were nearly 224,832 people with vision impairment and blindness in 2010. The most common causes
of blindness were macular degeneration, glaucoma and cataracts. The total economic cost of vision
impairment and blindness was estimated to be €2.14 billion in 2010, which is projected to rise to nearly
€2.67 billion by 2020 [26]. In 2016, some 218,000 cataract surgeries took place in the RoI [27], however,
due to delays performing surgery and patient waiting lists an increasing number of Irish citizens are
travelling abroad for cataract operations A recent study found that the prevalence of AMD in adults
over 50 years of age in the RoI was 7.2% [28]. Elsewhere, Nolan et al. reported that the prevalence of
early AMD was 28% in a randomly selected sample of Irish subjects over 50 years of age [29].

In the EUREYE Study the prevalence of AMD in persons 65 years and older in seven European
countries including, Bergen, Norway; Tallinn, Estonia; Belfast, Northern Ireland, U.K.; Paris-Creteil,
France; Verona, Italy; Thessaloniki, Greece; and Alicante, Spain was 3.3%, with no significant
differences found among the participating countries. The prevalence of AMD in Belfast, Northern
Ireland among person over 65 years was 3.77% [30]. More recently, Colijn et al. reported in 2017
that the prevalence of early AMD among participants from 10 countries in Europe including Estonia,
France, Germany, Greece, Italy, Northern Ireland, Norway, Netherlands, Spain, Portugal, and the U.K.
was 3.5% among persons aged 55–59 years [31]. Previously, Owen et al. reported that the prevalence
of AMD in the U.K. among people aged 50 years or over is 2.4% (from a meta-analysis applied to
UK 2007–2009 population data). This increases to 4.8% in people aged 65 years or over, and 12.2% in
people aged 80 years or over [32]. In Iceland, it has been reported that the prevalence of AMD among
subjects 50 years and older is 2.3% [33], which is similar to that reported in Norway among subjects
51 years and older (2.9%) [34]. In the Netherlands, Klein et al. reported a prevalence of 1.2% for AMD
among the population under 85 years of age [35]. In the Japanese population, the prevalence of early
AMD in the Funagata Study was 3.5% among all participants 35 years and older and 4.3% in those
50 years and over [36].

Similar to the RoI, significantly higher prevalence rates of AMD have been reported in the United
States (U.S.). For example, Klein et al. reported that the prevalence of AMD among persons over
40 years was 6.5%. Among non-Hispanic whites the prevalence was 7.3% [37]. Previous US studies
reported that the prevalence of early AMD among non-Hispanic whites was 14.7% among adults
aged 60 years and over [38]. In addition to AMD, the prevalence of cataracts among individuals over
40 years of age in the US was 17.2% in 2004 [39]. Furthermore, by 2020, over 30.1 million people are
projected to have cataracts in the U.S. [39]. In 2015, some 9000 ophthalmic surgeons were performing
3.6 million cataract surgeries in the U.S. [40]. The average cost of cataract surgery in the U.S. has been
reported to be US $2525 [41]. This suggests that the costs associated with cataract surgery alone in the
USA may be in excess of 9 billion dollars annually. Elsewhere it has recently been reported that the
economic cost of treating diabetes is over 176 billion dollars a year in the United States, of which over
20% is spent on the ophthalmic complications [42]. As previously noted, diabetes is associated with
significantly increased risk of cataract, AMD and glaucoma.

A higher prevalence rate of AMD has also been reported in Australia. Recently Keel et al. reported
that the weighted prevalence among nonindigenous Australians 50 years and older was 14.8% for
early AMD and 10.5% for intermediate AMD. Among indigenous Australians 40 years and older,
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the weighted prevalence was 13.8% for early AMD and 5.7% for intermediate AMD. Among persons
aged 70–79 years the prevalence was 17.4% for early AMD and 14.7% for intermediate AMD [43].
In Australia a 2.6-fold increase in the total number of cataract procedures was also documented
between 1985 to 1994 [44]. Moreover, the rate of cataract surgery per thousand persons aged 65 years
or older doubled between the mid-1980s and mid-2000s [45]. McCarthy et al. previously reported that
the prevalence of cataracts among Australians over 40 years of age was 12.6% [46]. Rochtchina et al.
reported that by the year 2021 the number of people affected by cataract in Australia will increase by
63%, due to population aging [47]. In New Zealand, the prevalence of AMD is uncertain due to a lack
of appropriate studies, but it was estimated in 2014 that it affected 10% of people aged 45–85 years,
and 38% of people aged over 85 years [48]. It was further estimated that AMD accounts for 48% of
cases of blindness among adults aged 50 years and older in New Zealand and causes approximately
400–500 new cases of blindness per year [49,50]. Moreover, it is estimated that 370,000 of the population
have cataracts and 30,000 cataract surgeries are performed every year in New Zealand, [51].

As elucidated above, evidence tentatively suggests that the overall prevalence of degenerative
eye diseases, particularly AMD, is significantly higher in developed countries with water fluoridation;
including, the RoI, U.S., Australia and New Zealand, than in other developed countries without
fluoridation of drinking water. Within Europe, the 3-fold differences in prevalence rates for AMD
between the RoI the U.K. and mainland Europe are intriguing, especially considering the proximity of
the RoI to the U.K. and the shared landmass of the island of Ireland, along with similarities in diet and
genetic makeup. It is important to highlight that drinking water is artificially fluoridated in the RoI
since 1964, with currently over 80% of households provided with fluoridated water compared to <10%
in the U.K. In mainland Europe, drinking water is fluoridated in only one small region, principally the
Basque country of Spain since 1988.

Evidence in support of the hypothesis that fluoride (F) intake may be a contributory factor
to degenerative eye diseases include several studies documenting that F can accumulate to high
concentrations in the eye contributing to retinal toxicity [52–57]. An association between chronic
F exposure and cataracts has also been reported in human [58–63] and animal studies [64,65].
Furthermore, early in vitro studies by Nordmann et al. using calf lens confirmed that a blockage of the
breakdown of sugars by F is followed by cataracts [66]. Further in vitro studies examining metabolism
of the lens and of retina identified that F is an enzyme inhibitor in ocular tissue [67–69]. Consistent with
this finding, early research by Dickens and Simer observed that F significantly inhibited glycolysis in
the retina [70]. Previous human studies have also reported an association between chronic F intake and
iridocorneal angle hyperpigmentation and open angle glaucoma [71]. However, there is a paucity of
qualitative research in epidemiology in western countries to examine the possible association between
F intake, water fluoridation and degenerative eye diseases and no study until now has elucidated the
molecular mechanisms by which F intake may increase the likelihood of AMD, cataracts or glaucoma.
Given the high societal and economic costs of eye diseases in developed countries and globally, a review
of modifiable risk factors and the molecular mechanisms by which chronic F exposure may contribute
to degenerative eye diseases is therefore warranted. Although much information has become available
in recent decades, evidence of a causal relationship requires plausible biological mechanisms by which
chronic F exposure may contribute to degenerative eye diseases. Consequently, the purpose of the
present study is therefore to elucidate for the first time the key biological mechanisms underlying
how F exposure may contribute to degenerative eye diseases including AMD, cataracts and glaucoma.
This study therefore provides important insights into the molecular mechanisms by which F intake
contributes to degenerative eye diseases and complements the findings of previous human and animal
studies making it possible to reach definite conclusions. An understanding of the mechanisms can also
elucidate the conditions under which dietary intervention will be most effective and help to identify
target populations who may receive optimal benefits.
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2. The Role of Fluoride in Oral Health and Dietary Sources of Fluoride

Today, community water fluoridation and F toothpaste are considered the most common sources
of F exposure in the U.S. [72]. In countries such as the RoI, U.K., Australia and New Zealand,
where habitual tea drinking is commonplace, the major dietary source of F is tea consumption [73–75].
In addition to tea, fluoridated water, and toothpaste other sources of F exposure include other beverages
produced from fluoridated water (beers, coffee, soft drinks, and fruit juices); pesticide residues in foods,
foods processed or cooked in fluoridated water; foods grown in soil containing F or irrigated with
fluoridated water; consumption of foods with elevated F levels (i.e., seafood and processed chicken);
foods cooked in Teflon cookware; tobacco consumption; use of fluoridated mouthwash; use of medical
inhalers containing fluoridated gases, and fluoridated medications, in addition to other environmental
or occupational exposures to F [75].

F has no known essential function in human growth and development and no signs of F deficiency
have been identified [76]. However, F is considered to have played a major role in the reduction of
dental caries in the past decades in the industrialized countries. It is added as an anti-caries agent to a
variety of vehicles, particularly drinking water and toothpastes. Though F is not essential nutrient,
current views of its anti-caries action suggest that it is beneficial in the prevention of dental caries
when applied topically on the tooth surface and ingestion is not required [77,78]. However, caries is
not a F deficiency disease [76].

3. Molecular and Biochemical Markers Relevant to the Pathophysiology of Eye Diseases

Knowledge of type-specific risk factors of degenerative eye diseases is important for the
investigation of association between chronic F exposure and eye diseases.

3.1. The Role of Oxidative Stress and Antioxidants in Eye Disease

Overproduction of reactive oxygen species (ROS) or dysfunction of anti-oxidative enzymes can
result in oxidative stress and lead to cellular damages [79,80]. When anti-oxidant defence mechanisms
are impaired the mechanisms by which increased free radical production and oxidative stress can
cause cellular injury increase [81]. Excessive oxidative damage due to ROS and oxidative stress is
a major factor in the pathogenesis of many vision-impairing diseases such as age-related macular
degeneration, glaucomatous neurodegeneration, cataracts and diabetic retinopathy [82–95].

The lens is able to defend itself against oxidation using antioxidants from either enzymatic
or nonenzymatic systems to maintain lens transparency [82,96]. ROS are degraded through the
enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and
peroxidases [97–101]. Elevated oxidative stress and a decrease in antioxidant capacity results in retinal
dysfunction and cell loss leading to visual impairment [102]. It has also been shown that the antioxidant
enzymes such as superoxide dismutase (SOD) in cataractous lenses are decreased, suggesting a role
of antioxidant enzymes in the genesis of cataracts [103–106]. In a study conducted in Turkey, it was
reported that serum SOD concentrations were significantly lower and lipid peroxidation products
significantly higher in patients with AMD than in subjects without AMD [107]. However, these
findings are inconsistent as studies from China [108,109] and India [110], reported that serum SOD
levels were increased in patients with AMD.

What factors account for this discrepancy? Apart from genetic background, one possibility in
the observed differences in SOD may be related to differences in diet between the study populations.
For example, green tea, which is high in epigallocatechin gallate (EGCG) is consumed in China
and curcumin, a bioactive compound in turmeric, is a stable of the Indian diet. EGCG and
curcumin stimulate SOD activity [111–114]. A recent cross-sectional study in China reported that
the consumption of green tea, but not black tea, reduced the risk of age-related cataracts [115]. As I
previously elucidated, green tea contains significantly higher antioxidants, including EGCG than black
tea [75]. Elsewhere, it has been demonstrated that SOD deficiency has been found to be associated with
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glaucomatous optic neuropathy in human and animal models [116]. Oxidative stress has also been
proposed to contribute to retinal ganglion cell (RGC) death in glaucoma [117,118]. Previous studies
have also demonstrated that GSH, a tripeptide of glutamate, cysteine, and glycine, has a central role in
protecting RGCs against oxidative stress and that glutamate uptake is a rate-limiting step in glial GSH
synthesis [118,119]. Consistent with these findings, a reduction in GSH levels has been reported in the
plasma of human primary open-angle glaucoma (POAG) patients [120]. Of note, GSH has been found
to be decreased in cataractous lenses [121].

3.2. The Role of Na+, K+-ATPase Activity in Degenerative Eye Diseases

Previous studies have shown that inhibition of Na+, K+-ATPase activity has been found to
accelerate depletion of adenosine triphosphate (ATP), induce mitochondrial depolarization, suppress
reactive oxygen species (ROS) scavenging, and enhance ROS production and oxidative stress [122–124].
Loss of Na+, K+-ATPase activity is associated with cataract formation [125–129] and age-dependent
degeneration in photoreceptors [130]; suggesting a link between loss of Na+, K+-ATPase and AMD.

3.3. Nuclear Factor Erythroid-2-Related Factor 2 Nuclear Factor

Nuclear factor erythroid-2-related factor 2 Nuclear factor (Nrf2) is a key nuclear transcription
factor for the systemic antioxidant defence system [131,132]. Inhibition of dysregulation of Nrf2
pathway may contribute to a state of chronic inflammation with a diminished capacity to compensate
for conditions of increased oxidative stress [133]. Importantly, Nrf2 is considered as one of the main
cellular defence mechanisms against oxidative stresses and ocular diseases including cataracts and
AMD [79,134–139]. Consistent with this, an animal model for AMD found that Nrf2-deficient mice
developed retinal pathology that has similarities with human AMD including deregulated autophagy,
oxidative injury and inflammation [139].

3.4. Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB)

NF-kB plays a critical role in the expression of inflammatory cytokines, chemokines,
immunoreceptors, and cell adhesion molecules that are implicated in the initiation of immune,
acute phase, and inflammatory responses [140–143]. NF-κB is activated in corneal pathologies
involving increased plasma levels of LPS and Tumor Necrosis Factor-α (TNF-α), as well as direct UV-B
exposure [144]. The constitutive activation of NF- κB has been linked with a wide variety of human
diseases including AMD, cataractogenesis and glaucoma [142,145–149].

3.5. B-Cell Lymphoma 2 (BCL-2)

Bc1-2 serves an anti-inflammatory function through inhibiting the transcription factor NF-kB [150].
It must be emphasized that reduced Bcl-2 mRNA expression and activity is associated with severe
neurodevelopmental disorders such as Down syndrome [151,152] and schizophrenia [153,154].
Hence, this elucidates why the highest prevalence of cataracts are found in individuals with Down
syndrome and schizophrenia. In diabetic patients, downregulation of Bcl-2 is associated with a
proinflammatory status, enhanced expression of KF-kb, nitric oxide synthase (iNOS) and other
inflammatory biomarkers [155]. Hence, downregulation of Bcl-2 in diabetic patients also elucidates
why patients with diabetic retinopathy have a higher risk of progressive disease.

3.6. Forkhead Box Protein FoxO Proteins

Forkhead box O (FoxO) subfamily of transcription factors regulate expression of target genes
involved in DNA damage repair response, apoptosis, metabolism, cellular proliferation, stress
tolerance, and longevity [156,157]. Notably, FoxO proteins regulate the expression of intracellular
antioxidant enzymes, manganese-superoxide dismutase (SOD) and catalase (CAT) [158–160].
In response to oxidative stress, FoxO activity is regulated primarily through regulation of its protein
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levels, subcellular localization and post-translational modifications. In the aging lens Fox1 and FoxO3a
levels are decreased significantly which suggests that age-related down regulation of FoxO1 and
FoxO3a expression may contribute to degenerative eye disorders such as cataract formation [161].

3.7. Interleukin 6

Interleukin 6 (IL-6) is a proinflammatory cytokine produced by leukocytes, adipocytes, endothelial
cells, fibroblasts, and myocytes. IL-6 induces the production of mediators for the release of cytokines
such as TNF and IL-1, which drive the inflammatory reaction [162]. IL-6 has been shown to be a key
player in chronic low-grade systemic inflammation [163], and IL-6 levels are elevated in inflammatory
diseases [164]. The expressions of IL-6 is significantly correlated with the inflammation index in
cataract patients [165]. IL-6 levels are increased in schizophrenia [166,167], obesity [168–170] and Type
2 diabetes [171,172] which, as previously elucidated, are risk factors for cataracts, AMD and glaucoma.

3.8. Paraoxonase 1

Paraoxonase 1 (PON1) plays an essential role in detoxifying the body and reducing oxidative
stress [173]. Recently it has been shown that the expression of human PON1 can prevent diabetes
development through its antioxidant properties [174,175]. Several studies have reported an association
between low PON1 activity and AMD [176–178]. Low PON1 activity has also been found to be
associated with the pathogenesis of cataracts [179].

4. Molecular Mechanisms Underlying Fluoride Contribution to Eye Diseases

Building on the results of these studies, it is necessary to identify the key molecular mechanisms
by which chronic F exposure may contribute to degenerative eye diseases. Herein, I identify and
investigate some of the key molecular mechanisms by which F exposure contributes to eye diseases as
summarized in Table 1.

Table 1. Summary of molecular mechanisms by which fluoride contributes to eye diseases.

Factor Effect of F Contribution to Degenerative Eye Diseases

Enolase ↓
Loss of enolase induces cataractogenesis. τ-Crystallin, heat shock proteins,
hypoxic stress proteins and c-Myc binding proteins possess enolase activity.
These proteins are essential for lens function repair and protection.

Heat Shock Proteins
Hsp 40 ↓ Hsp 40 has been found to protect the lens from stress induced denaturation.
Hsp 27 ↑ Hsp27 expression associated with AMD and cataracts.
Hsp 70 ↑ Hsp70 expression associated with increased risk of cataracts and glaucoma

FoxO proteins ↓
FoxO proteins regulate antioxidant enzymes. Down regulation of FoxO1 and
FoxO3a expression contributes to degenerative eye disorders such as cataract
formation.

Na+, K+-ATPase ↓

Inhibition of Na+, K+-ATPase leads to enhanced ROS production and oxidative
stress. Loss of Na+, K+-ATPase associated with cataractogenesis and
age-dependent degeneration in photoreceptors, suggesting a link between loss
of Na+, K+-ATPase and AMD. Loss of Na+, K+-ATPase linked to hypertension.
Hypertension is a risk factor for cataracts, AMD and glaucoma.

PON1 ↓ PON1 is an antioxidant and reduces oxidative stress. Low PON1 activity
associated with AMD and cataracts.

IL-6 ↑ IL-6 has been shown to be a key player in chronic low-grade systemic
inflammation. Associated with cataracts, AMD and glaucoma.

Nrf2 ↓
Inhibition of dysregulation of Nrf2 pathway contributes to a state of chronic
systemic inflammation with a diminished capacity to compensate for
conditions of increased oxidative stress. Loss of Nrf2 is associated with AMD.

NF-kB ↑ NF-kB plays a critical role in the expression of inflammatory cytokines.
Expression of NF-kB linked to AMD, cataracts and glaucoma.

BCL-2 ↓ Has anti-inflammatory properties, reduced expression associated with
pathological states and degenerative eye diseases.

Antioxidants ↓ Impaired antioxidant activity leads to oxidative stress. Oxidative stress
strongly associated with AMD, cataracts and glaucoma.

Table 1 summarises key molecular pathways by which F contributes to eye diseases. Hsp: Heat shock protein;
FoxO: Foxhead box ‘Other’ proteins; PON1: Paraoxonase 1; N2f2: Nuclear factor erythroid-2-related factor 2 Nuclear
factor; IL6: Interleukin 6; NF-Kb: Nuclear Factor kappa-light-chain-enhancer of activated B cells; BCL-2: B-cell
lymphoma 2.
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4.1. Fluoride Inhibition of Carbohydrate Metabolism

Of all the theories advanced to explain the pathogenesis of cataract, the one which seems to have
stood the test of time most satisfactorily is that which ascribes the opacification to a defect in the
carbohydrate metabolism of the lens [66]. As previously noted, early in vitro studies by Nordmann et al.
confirmed that a blockage of the breakdown of sugars by F is followed by cataracts [66]. Further in vitro
studies examining metabolism of the lens and of retina have shown that F is an enzyme inhibitor of
ocular tissue [67–69] and inhibits glycolysis in the retina [70]. Enolase enzymes are known for their role
in glucose metabolism [180]. It has been known for many decades that enolase is particularly sensitive
to F inhibition [181–183]. Furthermore, it is known that the inhibition of enolase results in the formation
of advanced glycation end products (AGEs) [184]. AGEs are a significant factor in the pathogenesis
of retinopathy and cataracts [185,186]. Consistent with this, recent in vivo studies demonstrated that
chronic long-term exposure for six months to F at high and low doses via drinking water significantly
increased expression of receptors for advanced glycation end products (RAGE), increased RAGE
proteins and increased levels of AGEs in cells. A significant increase in the expression NADPH oxidase
2 (NOX2) was also observed among specimens exposed to fluorine for 6 months. Notably these effects
were found to occur at concentrations of just 5 mg/L in drinking water, which is the equivalent to
approximately 0.5 mg/L in drinking water for humans. Simultaneous in vitro research with SH-SY5Y
cells originating from human neuroblastoma confirmed these results [187]. It is important to note that
the NADPH oxidase system participates in generating ROS in the lens [90].

Beyond glucose metabolism, enolase enzymes have been reported to have a number of other
non-glycolytic functions, including being a τ-crystallin protein [188], a heat-shock protein [189],
hypoxic-stress protein [190], c-Myc binding and transcription protein [191] among others. As F is
known to inhibit enolase by binding to active sites within the enolase structure, thereby altering
its activity [183] it is therefore plausible that F may alter the activity of non-glycolytic enolase
enzymes involved in lens development, repair and protection. For example, crystallins comprise
80–90% of the water-soluble proteins of the transparent lens [192] and are essential determinants
of the transparency and refractivity required for lens function [193]. Moreover, τ-crystallin has
a distinct function as a lens structural protein [193]. In addition, heat shock proteins are found
throughout the various tissues of the eye where they are thought to confer protection from disease
states such as cataract, glaucoma, and cancer [194]. Of note, Hsp 40 has also been found to protect
the lens from stress induced denaturation [195], while Hsp27 expression is thought to play a role in
age-related macular degeneration [196] and cataractogenesis [197]. In addition, variants of Hsp70
have been found to serve as genetic susceptibility factors for susceptibility to cataract and glaucoma
in humans [198–200]. Moreover, c-Myc binding proteins play an essential role in promoting lens
growth and differentiation [201,202] and inactivation of c-myc results in severe eye and lens growth
impairment and anterior chamber malformation [202,203].

4.2. Fluoride and Heat Shock Proteins

In vivo studies using animal models have found that chronic F exposure can modulate
the expression of heat shock proteins in cardiac tissue, liver, kidney and testes [204–206].
Recently, Panneerselvam et al. demonstrated that F significantly downregulated the expression
of heat shock protein 40 (Hsp40) within living mammalian cells in vivo and upregulated HsP27 and
Hsp70 [204]. Consistent with this, Zhao et al. also found that F upregulated mRNA and proteins levels
of Hsf27 [205]. Moreover, Chen et al. showed that F exposure significantly increased the expression of
Hsp70 in human subjects exposed to F [207]. In this study, the urinary F concentrations in subjects
with fluorosis was approximately 2.10 mg/L compared to <1.0 mg/L in controls [207]. Taken together,
this data suggests that F has the potential to alter non-glycolytic enolase enzymes activity and protein
expression, particularly heat shock proteins that contribute to degenerative eye diseases including
cataracts, AMD and glaucoma.
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4.3. Fluoride Inhibition of Na+, K+-ATPase Activity

The molecular mechanisms by which F inhibits Na+, K+-ATPase enzyme activity have recently
been described [208]. As previously elucidated loss of Na+, K+-ATPase enzyme activity is associated
with impaired ROS scavenging, enhanced ROS production [122–124], cataract formation [125–129]
and age-dependent degeneration in photoreceptors [130]. It is long known that F is an inhibitor of the
Na+, K+-ATPase enzyme activity [209–220]. However, of fundamental importance, evidence from
epidemiological studies confirm this association and provide a biological gradient by which serum F
levels may inhibit Na+, K+-ATPase activity in humans. This effect has been found to occur at serum
F levels < 5.0 µM in adults [221,222]. Furthermore, it is important to note that AGEs have also been
shown to inhibit Na+, K+-ATPase enzyme activity [223]. As previously described, inhibition of enolase
leads to the production of AGEs and AGEs are a significant factor in the pathogenesis of retinopathy
and cataracts [185,186]. Of interest, inhibition of Na+, K+-ATPase is also a causative factor in the
pathogenesis of hypertension [208]. As previously elucidated, hypertension is an established risk
factor for the development of cataracts, AMD and glaucoma. Taken together, these findings suggest
that one of the key molecular mechanisms by which chronic F exposure may contribute to degenerative
eye diseases is via inhibition Na+, K+-ATPase.

4.4. Fluoride Inhibition of Nrf2

Recent in vivo studies have shown that chronic F exposure significantly downregulates mRNA
expression of Nrf2 and its downregulatory target genes γ-glutamyl cysteine synthetase (γ-GCS),
NAD(P)H quinone dehydrogenase 1 (NQO1) and heme oxygenase 1 (HO-1) [113,224]. It is important
to note that the first and rate limiting step in the synthesis of GSH is catalysed by γ-GCS [225] and
decreased γ-GCS in turn leads to reduced levels of GSH [226]. As F has been found to downregulate
γ-GCS expression, this may elucidate in part one of the molecular mechanisms by which F exposure
has been found to decreases GSH activity. Further, HO-1 induction plays an important role in
cellular protection against oxidant injury. Overexpression of HO-1 provides protection against
inflammation-mediated injury, whereas deficiency in its expression is associated with a chronically
inflamed state [227]. In in vivo studies it has been shown that HO-1 protects against rhabdomyolysis
(the breakdown of damaged skeletal muscle) and kidney failure. Conversely, inhibition of HO activity
exacerbates kidney dysfunction [228,229]. Moreover, HO-1 alleviates ocular surface and corneal
inflammation while accelerating wound repair after injury. Wound healing in the cornea is unique
because of the need to maintain transparency. The same is true for corneal inflammation, which is
intimately linked to the reparative effort [227]. A recent study showed that a deficiency in HO activity,
as in HO-2 null mice, exacerbates ocular surface inflammation; increased cell infiltration, expression of
inflammatory genes, and production of proinflammatory lipid mediators and impaired wound healing,
allowing an acute inflammation to become chronic with the stigma of chronic corneal inflammation
such as neovascularization, ulceration, and perforation [230].

4.5. Fluoride Activation of NF-Kb Expression

Tiwari et al. demonstrated that F inhibits vitamin D receptor (VDR) mRNA expression [231]
and low levels of VDR in turn leads to increased levels of NF-kB expression [232]. Consistent with
this finding, several in vitro and in vivo studies have demonstrated that F upregulates NF-κB gene
expression in in monocytes [233], peripheral blood mononuclear cells [234], macrophages [235,236],
as well as kidney [224–237], lung [238], spleen [239] and brain tissue [240,241]. This stimulatory effect
has been observed at F concentrations of 2.5 µM [233]. In a study by Misra et al. the authors examined
the effect of very low concentrations of beryllium fluorides and found that concentrations as low as
0.002 µM significantly upregulated the activation of NF-κB in macrophages. The effects demonstrated
in this study show that beryllium fluorides complexes have much greater cytotoxicity and genotoxicity
than other beryllium complexes such as beryllium chloride [242].
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4.6. Fluoride Downregulates BCL-2, FoxO1 mRNA and Protein Activity and Upregulates IL-6 mRNA
Expression and Activity

In in-vivo animal studies chronic exposure to F has consistently been found to significantly
reduce Bcl-2 activity induce NF-kB expression and impair antioxidant activity [243–248].
Furthermore, numerous studies have demonstrated that F downregulates FoxO1 gene and protein
expression resulting in enamel hypomineralization and dental fluorosis [249–252]. Finally, in regard
to IL-6, the seminar research of Liu et al. found that F exposure mediated the expression of over
1000 genes in humans and was found to upregulate specifically the expression of interleukin 6 (IL6) in
leucocytes [253]. These findings are in agreement with previous in vitro and in-vivo animal studies
which also found that F can induce IL-6 mRNA expression and protein levels [254–258].

4.7. Fluoride Inhibits Anitoxidant Activity Including SOD and PON1 Activity

As previously elucidated decreased SOD activity has been reported to be associated with the
pathogenesis of cataracts and there is some evidence to suggests it may be associated with AMD in
certain populations. In addition, loss of PON1 activity is associated with the pathogenesis of both
cataracts and AMD. Sufficient evidence has indicted that consumption of drinking water containing
1ppm F administered to experimental animals contributes to ROS, lipid peroxidation and impaired
biological activity of major antioxidant enzymes including SOD, catalase (CAT), and glutathione
peroxidase (GPx) [259–262]. It has been reported that F inhibits production of SOD as a result of
the direct action of F ion binding to the enzyme leading to a diminished catalytic activity [263–265].
Consistent with these findings, Varol et al. found that the total antioxidant capacity was significantly
lower and oxidative stress index significantly higher in subjects (35 males and 44 females; mean age
44.0 + 11.9 years) with a mean urinary F level of 1.91 mg/L compared to healthy controls with a mean
urinary F level of 0.49 mg/L [266]. Chen et al. similar found that activity of SOD, CAT and GSH-Px
were significantly lower and the concentration of malondialdehyde, a biomarker of oxidative stress
and lipid peroxidation, was significantly higher in subjects with fluorosis compared to healthy controls.
Notably, the mean SOD level in controls were 86.65 ± 9.20 U/mL compared to 55.56 ± 4.93 U/mL
in the high F exposed group. The mean urinary F concentrations in subjects with fluorosis was
approximately 2.10 mg/L compared to <1.0 mg/L in controls [207]. These results are consistent
with Kalyanalakshmi et al. who also observed enhanced oxidative stress and impaired antioxidant
activity in adult male subjects (25–40 years of age) with increasing F exposure [267]. Several other
studies have also reported decreases in the activities of SOD, CAT, glutathione-S-transferase (GST),
and GPX in humans with increasing F exposure [268–270]. Reddy et al. also showed that the activity
of malondialdehyde was significantly higher in subjects with fluorosis with mean urinary F levels of
5.94 mg/L compared to controls without fluorosis with mean urinary F levels of 0.41 mg/L [271].

Of fundamental importance, a recent cross-sectional study conducted in a F endemic region of
India, observed significant increases in lipid peroxidation and protein carbonylation in both serum and
crystalline lens of patients with cataracts residing in an endemic fluorosis area compared to controls
with cataracts residing in a non-F endemic area. In addition, serum F was significantly increased,
and antioxidant activities as measured by SOD and GSG were markedly reduced in patients from the
endemic fluorosis area compared to controls. The authors concluded that F ingestion may directly
influence cataractogenesis by increased oxidative burden [71]. Furthermore, a recent in vitro study
using goats eye lens found that exposure to excessive F resulted in oxidative stress through induced
lipid peroxidation and reduced antioxidant activity via reduced GSH, SOD and CAT. On the basis
of the results, the authors concluded that uptake of excess consumption of F may be linked with
increased oxidative burden which may lead to lens opacification, progression and the development of
cataract [65].
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4.7.1. Fluoride Inhibits PON1 Activity

Previous investigations have also demonstrated that F exposure significantly inhibits PON-1
activity in humans. The activity of Pon1 was found to decline significantly in a dose dependent manner
with increasing serum F concentrations [221]. At 6.8 µM serum F levels the activity of PON1 was found
to decline by approximately 30% compared to controls with a serum F level of 3.6 µM. At serum F
levels of 14.75 µM Pon1 activity was found to decline by approximately 60% [221].

4.7.2. Fluoride Inhibits Glutathione

Previous studies have shown that GSH levels are significantly lower in subjects (19–30 years old)
with mild and moderate dental fluorosis compared to healthy controls. Treatment with antioxidant
therapy was found to partially restore imbalance of the anti-oxidative defence in patients with
fluorosis [272].

5. Discussion

The previous sections have described some of the key mechanisms by chronic F exposure can
contribute to the pathogenesis of degenerative eyes diseases including cataracts, AMD and glaucoma.
In summary, evidence is provided to show that F increases the susceptibility to degenerative eye
diseases via multiple pathways and biological interactions. F acts to inhibit enolase, τ-crystallin, Hsp40,
Na+, K+-ATPase, Nrf2, γ-GCS, HO-1 Bcl-2, FoxO1, SOD, PON-1 and GSH activity, and upregulates
NF-κB, IL-6, AGEs, HsP27 and Hsp70 expression. Moreover, F exposure leads to enhanced oxidative
stress and impaired antioxidant activity. Evidence is provided to show that each of these biochemical
markers play a role in the pathogenesis of degenerative eye diseases. Collectively, these findings
support the hypothesises that chronic F exposure has a causative association in the development and
progression of degenerative eye diseases.

A crucial observation which has emanated from this study, is the explanation as to why among
the general population, the prevalence of degenerative eye diseases is highest among individuals with
Down syndrome, schizophrenia and diabetes. It is important to note that the association between
chronic F exposure and risk of cataracts in Down syndrome was first reported in the 1950s [58–60].
The prevalence of diabetes [273,274] and psychiatric disorders [275–280] are also significantly higher
in people with Down syndrome. Furthermore, the association between schizophrenia and diabetes
has been recognized for more than a century [281]. It is known that the prevalence of diabetes is
increased 2- to 3-fold in patients with schizophrenia [282,283]. However, to the authors knowledge
the mechanisms underlying why the physio pathological features of Down syndrome, schizophrenia
and diabetes are associated with higher odds of developing degenerative eye diseases have not been
reported previously.

In the present study, I have elucidated the role of genetics and environmental exposures in
degenerative eye diseases, specifically, how aberrant expression of BCL-2 expression is associated
with the pathophysiology of Down syndrome, schizophrenia and diabetes. I have elucidated how
BCL-2 serves an anti-inflammatory function through inhibiting the transcription factor NF-kB [150]
and how activation of NF-kB has been linked to AMD, cataractogenesis and glaucoma. I have
further elucidated that F downregulates BCL-2 and induces NF-kB expression. The importance
of these observations is self-evident, and in particular elucidates the reason why the burden and
prevalence of degenerative eye diseases is significantly higher among individuals with Down
syndrome, schizophrenia and diabetes. Taken together, this evidence suggests the possibility that
individuals with Down syndrome, schizophrenia and diabetes are genetically predisposed to increased
sensitivity to F induced toxicity. However, it is also important to note, that reduced BCL-2 expression
is also associated with autism spectrum disorders [284–286], which further suggests the possibility
that individuals with ASD are a high-risk subgroup for F induced toxicity.
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Aside from the ability of F to alter gene expression and protein activity, F has also been shown
to accumulate in human cataract lenses and has previously been reported to be a causative factor in
the incidence of senile cataract [61]. A recent cross-sectional study conducted in a F endemic region of
India, observed significant increases in lipid peroxidation and protein carbonylation in both serum and
crystalline lens of patients with cataracts residing in an endemic fluorosis area. In addition, serum F was
significantly increased, and antioxidant activities as measured by SOD and GSG were markedly reduced
in patients from the endemic fluorosis area compared to controls. The authors concluded that F ingestion
may directly influence cataractogenesis by increased oxidative burden [63]. Macular degeneration and lens
opacifying disease have also been observed in workers exposed occupationally to F intoxication [287,288].
It is also known that individuals with lens opacifying disease have an increased risk for AMD compared
to those who had no lens opacities [289]. There is also evidence to suggest that chronic F exposure
is associated with iridocorneal angle hyperpigmentation and open angle glaucoma [62]. The authors
suggested that the trabecular endothelium may be exposed to F toxicity and that heavy trabecular
hyperpigmentation appearance may be a feature of endemic fluorosis. It was also reported that the
changes underlying the augmentation of trabecular hyperpigmentation observed in subjects may play a
role in the development of glaucoma. Interestingly, in this study the mean urinary F level in patients with
fluorosis was 2.1 ± 0.60 mg/L compared to 0.38 mg/L in controls [62].

Based on these findings, and those mentioned previously demonstrating that F was an inhibitor
of enzymes in ocular tissue, further studies examining the possible association between increasing
F intake, including water and salt fluoridation and the prevalence of degenerative eye diseases are
considered highly desirable. Importantly, the findings of this study, and an understanding of the
mechanisms by which F can contribute to degenerative eye diseases, elucidate that certain subgroups
of the population may be at increased risk of degenerative eye diseases and suggest that dietary
intervention in minimising F intake may reduce the occurrence or severity of AMD, cataracts and
glaucoma and related health care burden.

6. Additional Perspectives

The current study has elucidated the role of NF-κB in inflammatory eye diseases and the activation
of NF-κB by F. It is important to note that in addition to inflammatory eye diseases, other inflammatory
health diseases associated with NF-κB activation include asthma, COPD, atherosclerosis, rheumatoid
arthritis, inflammatory bowel disease, diabetes, osteoporosis and cancer [143,149,290–294]. NF-κB
activation has also been linked to autism [295–298], Alzheimer’s disease [299–302], Parkinson’s
disease [303,304] and multiple sclerosis [305,306].

The current study has further elucidated for the first time the role of two heat shock proteins,
Hsp27 and Hsp70 in inflammatory eye diseases and the activation by F of their gene expression.
In addition to their role in inflammatory eye diseases, activation of Hsp70 gene is implicated in
the development of schizophrenia [307,308], autism spectrum disorders [309], asthma [310,311],
autoimmune diseases [312–315], childhood acute lymphoblastic leukaemia [316], breast cancer [317],
colon cancer [318], liver cancer [319,320], prostate cancer [321,322], oesophageal cancer [323] and
cervical cancer [324]. In addition, recent studies with animal cancer models provided experimental
evidence to suggest that Hsp70 is critical for cancer development [325]. Human studies have
also shown that overexpression of Hsp27 is associated with several types of human cancer
including breast [326,327], ovarian [328], gastric [329], prostate [330], colorectal cancer [331,332],
endometrial [333], liver [319], bladder [334], leukaemia, osteosarcoma and lung cancer [335,336].
Moreover, overexpression of Hsp27 in breast, ovarian, gastric, and prostate cancer is associated
with aggressive growth and resistance to chemotherapy or radiotherapy, and hence with a poor
prognosis [326–330]. There is also considerable evidence indicating that overexpression of Hsp27
enhances tumorigenicity [335]. Furthermore, overexpression of Hsp27 and Hsp70 are implicated in
brain tumours [337].
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Based on these findings, further studies are warranted to examine the association between F
intake and the epidemiology of degenerative chronic disorders including neurodegenerative diseases
and cancer.

7. Conclusions

In conclusion, this study provides diverse lines of evidence demonstrating that F exposure
may contribute to degenerative eye diseases by stimulating or inhibiting biological pathways
associated with the pathogenesis of cataract, AMD and glaucoma. As elucidated in this study,
F exerts this effect by inhibiting enolase, τ-crystallin, Hsp40, Na+, K+-ATPase, Nrf2, γ-GCS,
HO-1 Bcl-2, FoxO1, SOD, PON-1 and GSH activity, and upregulating NF-κB, IL-6, AGEs, HsP27
and Hsp70 expression. Moreover, F exposure leads to enhanced oxidative stress and impaired
antioxidant activity. This observation offers another potential relationship to consider when examining
the global burden of inflammatory eye diseases including AMD, cataracts and glaucoma worldwide.
Based on the evidence presented in this study, it can be concluded that F exposure may be added to the
list of identifiable risk factors associated with pathogenesis of degenerative eye diseases. The broader
impact of these findings suggests that modifying or reducing F intake may lead to an overall reduction
in the modifiable risk factors associated with degenerative eye diseases particularly among persons
with Down syndrome, schizophrenia and diabetes. Further studies are required to examine this
association and determine differences in prevalence rates amongst fluoridated and non-fluoridated
communities, taking into consideration other dietary sources of F such as tea. Finally, the findings
of this study elucidate molecular pathways sensitive to F exposure that may suggest a possible
association between F exposure and other inflammatory diseases including, pulmonary diseases,
neurodegenerative diseases, neurodevelopmental disorders and cancer. Further studies are also
warranted to examine these associations.
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