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Abstract: Since air pollution is an important factor hindering China’s economic development, China
has passed a series of bills to control air pollution. However, we still lack an understanding of
the status of environmental efficiency in regard to air pollution, especially PM2.5 (diameter of fine
particulate matter less than 2.5 µm) pollution. Using panel data on ten major Chinese city groups
from 2004 to 2016, we first estimate the environmental efficiency of PM2.5 by epsilon-based measure
(EBM) meta-frontier model. The results show that there are large differences in PM2.5 environmental
efficiency between cities and city groups. The cities with the highest environmental efficiency are the
most economically developed cities and the city group with the highest environmental efficiency is
mainly the eastern city group. Then, we use the meta-frontier Malmquist EBM model to measure
the meta-frontier Malmquist total factor productivity index (MMPI) in each city group. The results
indicate that, overall, China’s environmental total factor productivity declined by 3.68% and 3.49%
when considering or not the influence of outside sources, respectively. Finally, we decompose the
MMPI into four indexes, namely, the efficiency change (EC) index, the best practice gap change (BPC)
index, the pure technological catch-up (PTCU) index, and the frontier catch-up (FCU) index. We find
that the trend of the MMPI is consistent with those of the BPC and PTCU indexes, which indicates
that the innovation effect of the BPC and PTCU indexes are the main driving forces for productivity
growth. The EC and FCU effect are the main forces hindering productivity growth.

Keywords: PM2.5; epsilon-based measure model; meta-frontier Malmquist index; city group;
directional distance function

1. Introduction

China’s air pollution has seriously affected the country’s international image and social
development [1]. Air pollution, especially PM2.5 pollution (diameter of fine particulate matter less
than 2.5 µm), also threatens the health of people in China. According to Chen et al. [2], in China,
statistics show that the total particulate matter pollution has increased by 100 µg/m3, leading to
a reduction in average life expectancy of 3 years. Since 2012, central government policymakers in
Beijing have also recognized the seriousness of haze pollution and formulated a series of measures
to control haze pollution. For example, China has proposed a new Ambient Air Quality Standard
(GB3095-2012) and issued a new Air Pollution Prevention and Control Action Plan to reduce heavy
pollution weather through five years of hard work. In addition, China is also facing the pressure of
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economic transformation. China’s past high energy consumption-high pollution-high growth model
is no longer sustainable. However, haze pollution is an obstacle to high-quality economic growth in
China [3]. As the world’s second-largest economy, sustainable economic growth in China is also very
necessary [4]. The question of how to control haze pollution without hindering economic growth is
important. Measuring and assessing the environmental efficiency of China in recent decades under
haze pollution would be very useful [5].

In the nearly 40 years since the reform and the opening up of China to international trade,
China’s urbanization process has accelerated, accompanied by the rapid development of China’s
economy. Some cities in China have formed city groups through regional linkages and coordinated
development. However, from the perspective of the distribution of heavily hazed polluted areas,
China’s haze pollution has a typical regional distribution and pollution aggregation characteristic.
The haze pollution in key city groups, such as the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta
(YRD), and Pearl River Delta (PRD) city groups and ChengYu, has always been very serious compared
to other regions. Therefore, studying haze pollution from the perspective of city groups would be
very meaningful.

To properly assess environmental efficiency and productivity in China from the perspectives of
PM2.5 pollution and city groups, this paper uses panel data on PM2.5 pollution in China’s ten major
city groups, including 100 prefecture-level cities and municipalities. Based on our existing findings,
this study is the first to research Chinese PM2.5 pollution environmental efficiency from a regional
perspective. For a better measurement of environmental technology efficiency and productivity in
regard to the city groups, the meta-frontier model is very suitable. This paper is also the first to
use the epsilon-based measure (EBM) meta-frontier model. In addition, PM2.5 pollution is different
from general pollutants such as CO2 and SO2. The PM2.5 concentration not only is produced by local
areas but will spread across regions [6]. Therefore, measuring the PM2.5 concentration and PM2.5

efficiency from a cross-regional perspective would also be very meaningful. To accurately measure
environmental efficiency under PM2.5 pollution, this paper is the first study to consider the impact of
external pollution sources on PM2.5 pollution.

Following this introduction, the rest of the paper is structured as follows: Section 2 is the literature
review; Section 3 introduces the EBM meta-frontier model; Section 4 describes the data source and
descriptive statistics; Section 5 presents the empirical results, and the last section is the conclusion and
policy implications.

2. Literature Review

Multiple input–output efficiency evaluation is mainly based on parametric and non-parametric
methods. The parametric methods are divided into index methods and stochastic frontier analysis
(SFA) methods. Both the index methods and the SFA methods need to set a specific production
function form. The difference between the two methods is that the index methods must artificially set
parameter values, and the SFA methods must estimate the parameter values based on an econometric
method. In contrast, non-parametric methods based on data envelopment analysis (DEA) do not need
to set specific function forms, nor do they need to estimate specific parameter values. Thus, the use
of DEA methods is more convincing. An increasing number of scholars have used DEA methods
to conduct energy and environmental efficiency (E&E) studies. Zhou et al. [7] reviewed more than
100 environmental efficiency studies using the DEA method. More recently, Sueyoshi et al. [8] provided
a survey of 693 E&E studies using the DEA methodology from the 1980s to 2010s. The number of articles
on DEA applications for energy and the environment has increased dramatically, especially since the
2000s. According to Sueyoshi, Yuan and Goto [8], previous research focused on energy electricity, oil,
coal, gas, heat, renewables, energy efficiency or energy saving, the environment or sustainability.

Traditional DEA models, do not consider the effect of an undesirable output on the desirable
output, which is unsuitable for practical production. Based on traditional DEA models, an extended
directional distance function (DDF) model was proposed by Chung et al. [9]. The major advantage of
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this DDF model is that it can simultaneously expand the desirable output and reduce the undesirable
output and exploit the weak disposability of the undesirable output [10]. The DDF model can measure
E&E more accurately than traditional DEA models [11,12]. Therefore, an increasing number of E&E
studies have used the DDF model to evaluate Chinese environmental efficiency in different areas.
For example, Watanabe and Tanaka [13] used the DDF model to measure the environmental efficiency
of Chinese industry at the provincial level from 1994 to 2002. A similar study can also be found in
Yuan et al.’s [14] research on Chinese industry. Wang et al. [15] used a multi-DDF model to measure
Chinese regional energy and emissions efficiency. There are also studies using the DDF model for
a certain industry. He et al. [16] used a DDF model to measure energy efficiency and productivity
change in China’s iron and steel industry. Zhang and Choi [17] evaluated fossil fuel power plants for the
2005 to 2010 period in China. For more papers in regard to a literature review, see Zhang and Choi [10].

However, the traditional DEA models, such as the DEA–BCC [18] model and the DEA–CCR
model [19], are all radial models, which means that they calculate efficiency by measuring
an inefficiency score that represents the projection distance from the observed decision-making units
(DMUs) to the efficiency frontier according to Sueyoshi and Goto [20]. In addition, traditional radial
DDF models require the input variables, desirable output variables, and undesirable output variables
to vary by the same proportion. However, the radial models cannot avoid efficiency overestimation
due to the existing slack variables of the output or input. In contrast, as the slacks represent inefficiency,
non-radial models can evaluate overall efficiency by measuring a total amount of slack. Tone [21,22]
proposed a slack-based measure (SBM) model that enters the slack variable directly into the objective
function and solves the problem of efficiency evaluation under the input slack and output slack,
as well as avoiding the influence of radial and oriented choice. There are many studies using
SBM models to evaluate E&E in China from different perspectives. Zhou et al. [23] measured the
environmental efficiency of industrial sectors in China by an improved SBM model. Li et al. [24] utilized
a super-efficiency SBM model to evaluate China’s regional E&E. Zhang and Choi [25], who measured
China’s regional economies from 2001 to 2010, performed a similar study. Xiao et al. (2018) used
a super-efficiency SBM model with undesirable outputs (S-U-SBM) to evaluate the E&E of 31 sectors in
China. Zhang et al. [26] used the duality theory of SBM models to measure the environmental efficiency
and shadow price of the Poyang Lake Ecological Economics Zone in China. Deng et al. [27] used the
SBM model to estimate the water use efficiency of 31 provinces in China in 2004 to 2013.

However, although SBM models consider the existence of slacks, they do not assume a proportional
adjustment of inputs and outputs; they assume that the non-radial slack change is too loose to lose
the original information on inputs and outputs. In the linear programming solution process, the SBM
model is exposed as insufficient; that is, the optimal solution of the zero value and the positive value are
significantly different. Most importantly, the SBM model has some difficulty in understanding economic
meaning. Therefore, it is necessary to combine the radial model and the non-radial model into a composite
model to obtain a more accurate measure of efficiency. Thus, a hybrid distance model, namely, the EBM
model, was first proposed by Tone and Tsutsui [28]. The EBM model combines the advantages of radial
and non-radial measures into a hybrid linear programming framework, and it can better overcome the
disadvantages of radial and non-radial models. In recent years, an increasing number of articles have used
it to measure energy efficiency. For example, a global EBM model was used by Qin et al. [29] to measure
the energy efficiency in China’s coastal regions. Cui and Li [30] used dynamic EBM models to measure
the efficiency of 19 airlines. Xu and Cui [31] also proposed a new network EBM model to evaluate airline
energy efficiency. Therefore, due to the advantages of the EBM model in measuring efficiency, this paper
attempts to use the EBM model to obtain a more accurate environmental efficiency evaluation under PM2.5

constrictions. To the best of my knowledge, this study is the first attempt to use the EBM model to evaluate
PM2.5 efficiency. This study can provide some new evidence and strategies for this kind of problem.

Both the EBM model and SBM model are based on cross-sectional data and are used to measure
the environmental efficiency of the DMU in a certain period. However, in this case, efficiency
cannot be compared across periods. The Malmquist productivity index (MPI), proposed by Caves
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et al. [32], can be used for inter-temporal comparisons. Fare et al. [33] extended the MPI and
decomposed it into an efficiency change (EC) index and a technological change (TC) index. However,
the MPI does not consider the existence of undesirable outputs. Therefore, Färe et al. [34] and
Chung, Färe and Grosskopf [9] formulated a Malmquist–Luenberger productivity index (MLPI) that
can compare environmental efficiencies under an undesirable output. Nonetheless, in the above models,
such as the MPI or MLPI, the DMUs are usually considered as an element of the same production
set with the same technology. However, in fact, DMUs tend to be technologically heterogeneous.
Therefore, according to Oh [35], the production efficiency of different production sets cannot be directly
compared. Thus, Oh and Lee [36] first proposed a meta-frontier Malmquist model and decomposed
it into three different indexes, namely, the EC index, the best practice gap change (BPC) index and
the technology gap change (TGC) index. Chen and Yang [37] extended the meta-frontier Malmquist
productivity and decompose the catch-up index into the pure technological catch-up (PTCU) index
and the frontier catch-up (FCU) index. Because the meta-frontier model can takes into account
technological heterogeneity, an increasing number of studies use this model to measure environmental
efficiency. Zhang and Choi [17] used the meta-frontier non-radial Malmquist index (MNMCPI) to
measure total factor CO2 emissions performance in China. Munisamy and Arabi [38] incorporated an
SBM index and meta-frontier MLPI to evaluate the productivity change in 48 Iranian thermal power
plants. A new meta-frontier Malmquist index was adopted by Yao et al. [39] to estimate China’s
CO2 emissions performance and to decompose the index into three indexes to analyse its driving
force. Feng et al. [40] utilized a three-hierarchy meta-frontier data envelopment method to evaluate
the energy efficiency and energy-saving potential of China. There are also many studies based on
a certain sector or industry. For example, Long et al. [41] evaluated the environmental efficiency of
the YRD’s 192 thermal power plants. Li et al. [42] measured the environmental efficiency of fossil fuel
power plants across provinces using meta-frontier Malmquist indexes. A similar study with power
plants can also be found in Wang et al. [43]. Fei and Lin [44] measured China’s agricultural efficiency
by applying the meta-frontier framework. Feng et al. [45] and Tian and Lin [46] performed similar
research on China’s metal industry and light industry sectors.

According to previous studies, we find that there is scarce research that focuses on air pollution
and environmental efficiency, to say nothing of Chinese air pollution. There are only a few papers
focused on this area. For example, Sueyoshi and Yuan [47] used a radial DEA model to measure the
efficiency of cities in China, with PM2.5 and PM10 as undesirable outputs. Xu et al. [48] examined
the key driving forces of PM2.5 emissions in China by a non-parametric additive regression model.
Wei et al. [49] also investigated the key sectors contributing to air pollutant emissions and test the
characteristics of the regional heterogeneity of air pollution in China. Zhou et al. [50] measured the air
quality of 31 main cities using a zero-sum gain DEA approach and daily air quality index (AQI) data.

The position of this study: Motivated by the proposed research gaps, this paper will evaluate
environmental efficiency under PM2.5 constrictions by considering the technology heterogeneity in
different city groups. The research in this paper can be summarized based on the following innovations,
all of which are found by comparing the aforementioned research summarized above. First, few studies
have considered the influence of PM2.5 as an undesirable output for E&E studies. In cases in which
air pollution has become very serious, the previous research on China’s environmental problems is
clearly inconsistent with China’s reality. Currently, people in Chinese have long suffered from air
pollution. Therefore, the practical significance of previous research is insufficient to discuss Chinese
environmental issues. The proposed study is the first research effort to incorporate the most serious
undesirable outputs that are the by-products of Chinese economic growth. Second, unlike previous
studies on air pollution efficiency measurement, this study is the first to analyse the impact of outside
sources on internal PM2.5. Third, city groups are used to analyse PM2.5 efficiency because the diffusion
of PM2.5 and Chinese air pollution always have regional characteristics. It is very important to analyse
PM2.5 in city groups, and unlike most efficiency gap studies, we use city groups to classify the group
frontier. Finally, a new meta-frontier DEA EBM model that can model radial and non-radial measures
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properly and that exhibits the weak disposability of the desirable and undesirable outputs and can be
used for a group frontier and a meta-frontier is proposed. To the best of my knowledge, this study is
the first research to use this model to analyse air pollution in China.

3. Model

We assume that there are K DMUs. Each DMU uses M input vectors x = (x1k,x2k, . . . , xMk) to

jointly produce q1 desirable output vectors y =
(

y1k,y2k, . . . , yq1k

)
and q2 undesirable output vectors

b =
(

b1k,b2k, . . . , bq2k

)
. According to Chambers et al., (1996), multi-output production technology can

be defined as follows:
P(x) = {(y, b) : x can prodcue (y, b)} (1)

To exclude the loss of generality, production technologies must also satisfy the following properties:

(1) P(0) = (0, 0).
(2) if (y, b) ∈ P(x) and b = 0, then y = 0.
(3) if (y, b) ∈ P(x), then for 0 < θ < 1, (θy, θb) ∈ P(x).
(4) if (y, b) ∈ P(x), then for y′ ≤ y, (y′, b) ∈ P(x).
(5) if x′ ≥ x, then P(x) ⊆ P(x′).

The first and second properties represent the null jointness of the desirable and undesirable
outputs, respectively; that is, the bad outputs are not avoidable during production. The third
property represents weak disposability (i.e., any proportional decrease in satisfying and unsatisfying
outputs simultaneously is feasible). The fourth property represents a desirable output that is strongly
disposable, which implies that the directional output distance function is monotonic in the desirable
outputs. The fifth property represents the inputs that are freely disposable.

Similar to Färe et al. [51], the production set (S) satisfying with all of the above properties as well
as the constant returns to scale (CRS) assumption can be expressed as follows:

S = {(y, b) |x ≥ Xλ, y ≤ Yλ, b = Bλ, λ ≥ 0} (2)

where λ is an intensity vector for weighting each element. X; Y, and B represent the matrix of input
index, desirable outputs index, and undesirable outputs index, respectively.

The DDF is a generalized form of the Shephard distance function, which was first proposed by
and developed by Chung, Färe, and Grosskopf [9]. According to Chung, Färe, and Grosskopf [9],
the input-oriented DDF model under the CRS (constant returns to scale) assumption can be defined
as follows:

min θ

ss.t.

Xλ ≤ θx
Yλ ≥ y
Bλ = b
λ ≥ 0

(3)

where λ represents the Lagrange multiplier vector and θ denotes the input-oriented efficiency measure.
We can also give the ∑ λ = 1 constraint for the DDF model to meet the assumption of the variable
returns to scale (VRS) conditions.

Similar to Equation (3), the output-oriented DDF model can be defined as follows:

D0(x, y, b; g) = max ϕ

ss.t.

Xλ ≤ x
Yλ− ϕy ≥ y
Bλ + ϕb ≤ b
λ ≥ 0

(4)
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where ϕ denotes the output-oriented DDF efficiency measure.
According to Tone [22], to better address the existence of input excesses and output shortfalls as

well as the slacks of DMUs, the SBM model is suitable for efficiency evaluation. Thus, based on the
assumption of CRS and weak disposability, the SBM model is formulated as follows:

min ρ =
1− 1

m

m
∑

i=1
s−i /xik

1+ 1
q1+q2

( q1
∑

r=1
s+r /yrk+

q2
∑

n=1
sb−

n /bnk

)

s.t.

Xλ + s− = xk
Yλ− s+ = yk
Bλ + ss.t. b− = bk
s− ≥ 0, s+ ≥ 0, sb− ≥ 0, λ ≥ 0

(5)

where s−i , s+r , and sb−
n are slack variables that represent the input excess, desirable output shortfall,

and undesirable output excess, respectively.s−, s+, and sb− indicate the vector form of the s−i , s+r ,
and sb−

n variables. As mentioned above, m represents the number of inputs, q1 represents the number
of desired outputs, q2 represents the number of undesired outputs. The objective function value (ρ) is
the efficiency estimator, which ranges from zero to one.

As we can see from the previous DDF and SBM models, the traditional DDF model always
represents a radial measure, and the SBM model represents a non-radial measure. The traditional
DDF model mainly deals with a proportionate reduction in input or output resources. In contrast,
the non-radial SBM model can obtain the maximum rate of reduction in inputs and allows independent
changes to the associated slacks. The main shortcoming of the traditional DDF model is that it neglects
non-radial slacks in evaluating the efficiency score, while the projected DMU in the SBM model may
lose proportionality in the original inputs because the slacks are not necessarily proportional to the
inputs; thus, it is difficult to explain the economic implications of the SBM efficiency estimator.
To integrate the advantages and deal with the disadvantages of radial and non-radial models,
Tone and Tsutsui [28] developed a hybrid distance composite model, the EBM, which combines both
radial and non-radial features in a unified framework.

The no-oriented EBM model under the CRS assumption can be combined with the Equations (4)
and (5), and expressed as follows:

min ρ =
θ−ε− 1

∑m
i=1 ω−i

m
∑

i=1
ω−i s−i /xik

ϕ+ε+× 1
2

(
1

∑
q1
r=1 ω+

r

q1
∑

r=1
ω+

r s+r /yrk+
1

∑
q2
n=1 ω−b

q2
∑

n=1
ω−b sb−

t /bnk

)

s.t.

Xλ + s− = θxk
Yλ− s+ = ϕyk
Bλ + ss.t. b− = ϕbk
s− ≥ 0, s+ ≥ 0, sb− ≥ 0, λ ≥ 0
θ ≤ 1, ϕ ≥ 1

(6)

where ω−i , ω+
r , and ω−b denote the weights of the ith input, the rth good output, and the nth bad

output and satisfy
m
∑

i=1
ω−i = 1,

q1

∑
r=1

ω+
r = 1, and

q2

∑
n=1

ω−b = 1. The weights are the relative importance

of each input, good output or bad output measurement. ε− and ε+ are key parameters.ε− indicates the
relative importance of the non-radial slacks over the radial θ, and ε+ indicates the relative importance
of the non-radial slacks over the radial ϕ; the range of ε− and ε+ is [0,1], which is equivalent to the
radial model when ε− and ε+ are equal to zero and to the non-radial model when ε− and ε+ are equal
to one.
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Measure of the Group Technology Gap

The EBM model is a static measurement. To discover the dynamic trend of environmental
efficiency, the Malmquist–Luenberger meta-frontier approach model was introduced. According to
O’Donnell et al. [52], DMUs with the same technology are categorized as the same group, and all
DMUs can be divided into J groups with different technologies.

To begin with the definition and decomposition of the meta-frontier MPI, three different
technology sets should be defined. Suppose that there are t = 1, . . . , T periods: a reference
production set at each point is named the contemporaneous benchmark technology set, according
to Pastor and Lovell [53], for group j in period t as Pj

t =
{(

yj
t, bj

t

)
: xj

t can prodcue
(

yj
t, bj

t

)}
.

According to Oh and Lee [36], an inter-temporal benchmark technology set I is defined as
PI

j =
{

P1
j ∪ P2

j ∪ . . . ∪ PT
j

}
, j = 1 . . . J, and a global benchmark technology set G is defined as

PG =
{

PI
1 ∪ PI

2 ∪ . . . ∪ PI
J

}
. According to O’Donnell, Rao and Battese [52], combining with Equation

(4), the technology gap ratio can be defined as follows:

0 ≤ TGR(.t) =
DG(.t)
DI(.t)

=
TEI

TEG ≤ 1 (7)

Equation (7) indicates that the meta-frontier is an envelopment of the group frontiers. DG(.t)
and DI(.t) represent the DDF measure under the conditions of the global frontiers and meta-frontier
measure in period t. Because the decomposition in this section requires many notations, we replace all
distance function D(xt, yt, bt) as D(.t) to save space. TEI is the technological efficiency measure based
on the group frontiers, and TEG is the technological efficiency measure based on the meta-frontier.
TGR is the technology gap ratio, which represents the ratio between the group and global technology;
it ranges from [0,1]. The closer the TGR is to one, the closer the group technology is to the global
technology. The value of the TGR tends to zero, which means that the group technology is farther
away from the global technology.

As developed by Caves, Christensen and Diewert [32], a contemporaneous Malmquist
productivity index (MPI) measuring the productivity change between periods t and t + 1, is defined as:

MPI(.t, .t+1) =

[
Dt(.t+1)

Dt(.t)
×

Dt+1(.t+1)
Dt+1(.t)

] 1
2

(8)

where Dt(.t+1) represents the DDF measure in t periods, DMUs based on the t + 1 periods technology,
and other distance function variables have the same meanings.

Here, we define the MMPI (the meta-frontier Malmquist total factor prouctivity index) based on
the global technology set (G) as follows:

MMPI = MG(.t, .t+1) =
DG(.t+1)

DG(.t)
(9)

Similar to Oh (2010), we can decompose the MMPI as follows:

MMPI = DG(.t+1)
DG(.t) = Dt+1(.t+1)

Dt(.t) ×
{

Dt(.t)
Dt+1(.t+1)

× DG(.t+1)
DG(.t)

}
= Dt+1(.t+1)

Dt(.t) ×
{

Dt(.t)
Dt+1(.t+1)

× DI(.t+1)
DI(.t)

}
×
{

DI(.t)
DI(.t+1)

× DG(.t+1)
DG(.t)

}
= TEt+1

TEt × BPGI,t+1

BPGI,t × TGRt+1

TGRt

= EC× BPC× TGRC

(10)

where EC (the efficiency change index) denotes the efficiency change, and BPC (the best practice gap
change index) stands for the best practice gap change, which measures the technology gap between



Int. J. Environ. Res. Public Health 2019, 16, 675 8 of 22

the current technological frontier and the inter-temporal period technological frontier. Therefore, it
also represents the effect of technological progress or technological degradation. The BPC index equals
one if and only if the particular DMU is located on the inter-temporal frontier. TGRC (the technology
gap ratio change index) stands for the technological gap change, which represents the change in
technology leadership. Due to technological changes, the technology gap between the group and
global technology will also change.

Similar to Chen and Yang [37], the TGRC index can be further decomposed as follows:

TGRC =
[

TGRt+1(.t+1)
TGRt(.t) × TGRt(.t+1)

TGRt+1(.t)

] 1
2

= TGRt+1(.t+1)
TGRt(.t) ×

[
TGRt(.t+1)

TGRt+1(.t+1)
× TGRt(.t)

TGRt+1(.t)

] 1
2

= PTCU × FCU

(11)

where PTCU (the pure technological catch-up index) denotes pure technological catch-up because it
purely captures the catch-up in technology without the elements of technological inefficiency from the
view of a group frontier; FCU (the frontier catch-up index) denotes frontier catch-up because the FCU
index captures the velocity of change of the meta-frontier relative to that of the group frontier.

Combined with Equations (10) and (11), we can decompose the MMPI into the following:

MMPI = EC× BPC× PTCU × FCU (12)

4. Data

4.1. City Group Classification

As the economic strength and the population density of the central cities increase, the central
cities have a driving force effect on the surrounding area, which, in turn, forms a city circle; then,
with the development of traffic conditions, such as highways, the boundaries of the urban circle have
become blurred, and the adjacent urban circles have spread to form a city group with closer economic,
demographic, environmental, and social relationships. China’s haze pollution has typical city group
characteristics. As China’s urbanization accelerates, cities become increasingly dense, and the distance
between cities becomes smaller and smaller, which is not conducive to the spread of atmospheric
pollutants. Taking the city groups in south Jiangsu and central Liaoning as examples, it is said that
there is almost no gap between cities. As a result, it is difficult for each city not only to purify its
own pollutants but also to “separate” from each other. At the same time, the city groups reduce the
amount of open space, and atmospheric circulation is hindered, making the pollutants stay in the
cities longer. Therefore, China’s air pollution is no longer a problem for one city. Air pollution is
becoming a common regional problem [54]. The mutual influence of air pollution between cities is
becoming increasingly obvious, and the changes in air pollution between cities are also significantly
synchronized [55].

This paper uses city panel data to analyse China’s environmental efficiency and technology gap
under the influence of PM2.5 pollution. China’s top ten city groups basically cover the areas where
most of China’s regional economic development is relatively high. The top ten city groups in China
and the cities that they contain are defined as follows (see Table 1):
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Table 1. The city group classification of the ten major city groups in China.

City Group Group ID Cities Included in the City Group

Yangtze River Delta 1
Zhenjiang, Taizhou (in Jiangsu), Hangzhou, Huzhou, Shaoxing,
Suzhou, Hefei, Taizhou (in Zhejiang), Changzhou, Nantong, Wuxi, Jiaxing,
Yangzhou, Yancheng, Shanghai Jinhua, Nanjing, Zhoushan, Ningbo

Pearl River Delta 2 Zhaoqing, Jiangmen, Shenzhen Huizhou, Dongguan, Zhongshan, Zhuhai, Foshan

Beijing-Tianjin-Hebei 3 Cangzhou, Handan, Beijing, Langfang, Tianjin, Shijiazhuang, Zhangjiakou, Xingtai,
Tangshan, Chengde, Hengshui, Baoding, Qinhuangdao

Central and southern
Liaoning 4 Benxi, Tieling, Shenyang, Liaoyang, Panjin, Dandong, Dalian Fushun,

Anshan, Yingkou
Shandong Peninsula 5 Weihai, Jinan, Dongying, Qingdao Zibo, Rizhao, Weifang, Yantai
Cheng Yu 6 Chengdu, Deyang, Chongqing, Mianyang, Neijiang, Zigong, bSuining, Luzhou
West coast of the
Taiwan Strait 7 Zhangzhou, Ningde, Putian, Xiamen, Quanzhou, Fuzhou

Central Henan 8 Pingdingshan, Xinxiang, Jiaozuo, Luohe, Zhengzhou, Xuchang, Kaifeng, Luoyang
Middle reaches of
the Yangtze River 9 Ezhou, Suizhou, Yueyang, Jingmen, Huanggang, Jingzhou, Huangshi, Xianning,

Wuhan, Xinyang, Jiujiang, Xiaogan
Guanzhong 10 Weinan, Shangluo, Xianyang, Tongchuan, Baoji, Xi’an

4.2. Data Sources

This paper uses labour (L) and physical capital (K) as the input variables, using the gross regional
product (GRP) of each city as the desirable output variable and the PM2.5 concentration (b) as the
undesired output variable. Except for the PM2.5 concentration data, the variables are mainly derived
from the China City Statistical Yearbook (2004–2016):

Labour input (L). The labour input generally uses the full-time equivalent of the practitioner as
a proxy variable. However, due to the lack of data on the working hours of labourers, the number of
employees in each city is used.

Physical capital investment (K). Physical capital investment must be represented using the stock
variable rather than the flow variable. Physical capital always uses the perpetual inventory method
to transfer physical capital investment to physical capital stock [56,57]. Based on the data available,
physical capital investment uses fixed asset investment as a proxy variable. Similar to Coe and
Helpman [58] and Coe et al. [59], 5% is taken as the depreciation rate. Due to the lack of fixed asset
investment price indexes in each city, we use the fixed asset price index of the corresponding provinces
for each city.

Gross regional product (GRP). GRP is used as the output variable because the China City Statistical
Yearbook reports the gross regional product only at the current price index. We use the GRP index of
the corresponding provinces in each city to deflate the gross regional product to the 2004 constant price.

PM2.5 concentration data (PM2.5). Obtaining data on the PM2.5 concentration is a major difficulty
in this paper. The Socioeconomic Data and Applications Center at Columbia University provides
data on the PM2.5 average concentration based on satellite data using aerosol optical thickness
(AOD) methods [60]. Ma et al. [61] used a two-stage approach based on ground data and satellite
data, providing more accurate PM2.5 data. Therefore, our PM2.5 data are mainly derived from this
method. However, Ma’s data are available only until 2013. The Information Centre of the Ministry
of Environmental Protection of China provides official PM2.5 data after 2013, and the PM2.5 data
after 2014 to 2016 come from the Environmental Protection Information Website of the Ministry of
Environmental Protection.

Actual PM2.5 concentration data (Actual PM2.5). In addition, because PM2.5 has a strong spatial
correlation, locally produced fine particulate contaminants are likely to spread to other regions through
the effects of air and wind flow [55]; therefore, we must calculate whether PM2.5 is affected by outside
sources of pollution in other regions [62]. Xue et al. [63] developed a transport matrix of PM2.5

and its chemical components from 31 provinces (sources) and 333 cities (receptors) by applying
particulate source apportionment technology (PSAT) via the CAMx model. They obtained a PM2.5

mutual transmission matrix between 31 provinces and cities; finally, they obtained the contribution of



Int. J. Environ. Res. Public Health 2019, 16, 675 10 of 22

external sources to PM2.5 and its chemical components for all provinces (see Table 2). We assigned
these provincial-level data to the city level.

Table 2. Contribution of outside sources to PM2.5 (diameter of fine particulate matter less than 2.5 µm) (%).

Province Contribution Province Contribution

Beijing 37 Hubei 42
Tianjin 42 Hunan 39
Hebei 36 Guangdong 35
Shanxi 31 Guangxi 46

Inner Mongolia 22 Hainan 71
Liaoning 33 Chongqing 31

Jilin 48 Sichuan 28
Heilongjiang 20 Guizhou 37

Shanghai 54 Yunnan 36
Jiangsu 50 Tibet 1

Zhejiang 48 Shaanxi 31
Anhui 42 Gansu 33
Fujian 41 Qinghai 13
Jiangxi 48 Ningxia 35

Shandong 41 Xinjiang 0
Henan 37 National Mean 36

Finally, the descriptive statistics for each variable of China’s ten major city groups are shown
in Table 3.

Table 3. Descriptive statistics for each variable of China’s ten major city groups.

Variable Unit Obs Mean Std. Dev. Min Max

GRP Billion yuan 1287 2254.01 2782.91 58.90 23,423.39
Capital stock Billion yuan 1287 741,092.30 896,380.40 6078.33 6,892,826.00

Labour 10 thousand persons 1287 83.58 112.85 9.07 986.87
PM2.5 Concentration µg/m3 1287 68.89 21.39 23.14 125.33

Actual PM2.5 Concentration µg/m3 1287 42.24 14.17 12.83 80.22

5. Results and Discussions

5.1. Environmental Efficiency of the EBM Model

The EBM model uses a hybrid distance function to estimate the efficiency of environmental
technology. It combines the advantages of the SBM model and the radial model in the presence of
undesired outputs so that more accurate estimates can be obtained from the EBM model. This section
uses the EBM model to estimate environmental efficiency in the case of PM2.5 as an undesired output.

5.2. PM2.5 Environmental Efficiency

Environmental efficiency represents the public’s attitude towards air pollution, which requires
reducing PM2.5 pollution, not excessively damaging economic growth, and achieving coordinated
development between the environment and economic growth. Table 4 lists PM2.5 environmental
efficiency with or without considering the impact of external sources and its ranking in major cities
using Equation (6).

Table 4 shows that, on average, the overall annual environmental efficiency of PM2.5 is 0.525 without
the external source impact and 0.531 with the external source impact. PM2.5 environmental efficiency is
relatively low due to China’s extensive economic growth model. In addition, due to the spatial correlation
of haze pollution, the actual PM2.5 in each city will be reduced after considering the influence of external
sources, resulting in an increase in PM2.5 environmental efficiency.
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Table 4. The PM2.5 environmental efficiency and its ranking under meta-frontier during 2004 to 2016.

DMU PM2.5 Rank Actual PM2.5 Rank DMU PM2.5 Rank Actual PM2.5 Rank

Anshan 0.625 18 0.624 21 Qinhuangdao 0.498 53 0.498 55
Baoji 0.435 80 0.434 82 Qingdao 0.712 13 0.727 13

Baoding 0.371 95 0.372 95 Quanzhou 0.872 5 0.889 5
Beijing 0.685 14 0.670 15 Rizhao 0.533 40 0.534 42
Benxi 0.435 81 0.435 81 Shangluo 0.402 88 0.401 90

Cangzhou 0.657 15 0.658 16 Shanghai 0.964 3 1.000 1
Changzhou 0.553 34 0.589 26 Shaoxing 0.463 72 0.497 57

Chengdu 0.486 62 0.467 72 Shenzhen 0.991 1 0.984 2
Chengde 0.469 68 0.470 70 Shenyang 0.570 29 0.562 34

Dalian 0.747 10 0.730 12 Shijiazhuang 0.489 60 0.490 62
Dandong 0.492 56 0.492 60 Suzhou 0.790 8 0.852 7
Deyang 0.586 27 0.585 28 Suizhou 0.551 35 0.553 37

Dongguan 0.906 4 0.906 4 Suining 0.464 71 0.464 74
Dongying 0.577 28 0.580 29 Xiamen 0.541 39 0.552 38

Ezhou 0.465 70 0.466 73 Taizhou (in Zhejiang) 0.506 50 0.550 41
Foshan 0.871 6 0.871 6 Taizhou (in Jiangsu) 0.480 64 0.488 64
Fuzhou 0.615 21 0.633 19 Tangshan 0.783 9 0.787 10
Fushun 0.525 42 0.525 45 Tianjin 0.728 12 0.755 11

Guangzhou 0.966 2 0.958 3 Tieling 0.443 77 0.443 78
Handan 0.512 49 0.513 51 Tongchuan 0.369 96 0.369 96

Hangzhou 0.619 20 0.645 18 Weihai 0.459 75 0.473 69
Hefei 0.445 76 0.450 77 Weifang 0.441 78 0.457 76

Hengshui 0.254 99 0.254 99 Weinan 0.428 83 0.428 84
Huzhou 0.350 98 0.360 97 Wuxi 0.729 11 0.816 8

Huanggang 0.395 90 0.397 92 Wuhan 0.554 33 0.577 30
Huangshi 0.490 58 0.491 61 Xi’an 0.357 97 0.351 98
Huizhou 0.498 54 0.498 56 Xianning 0.436 79 0.437 79

Jinan 0.514 48 0.519 46 Xianyang 0.403 87 0.402 89
Jiaxing 0.386 93 0.418 86 Xiaogan 0.410 86 0.411 88

Jiangmen 0.594 25 0.594 25 Xinxiang 0.375 94 0.375 94
Jiaozuo 0.463 73 0.463 75 Xinyang 0.391 92 0.391 93
Jinhua 0.393 91 0.432 83 Xingtai 0.420 84 0.421 85

Jingmen 0.491 57 0.493 58 Xuchang 0.551 36 0.552 39
Jingzhou 0.478 66 0.479 67 Yantai 0.598 23 0.614 22
Jiujiang 0.431 82 0.435 80 Yancheng 0.489 59 0.501 53
Kaifeng 0.566 31 0.567 33 Yangzhou 0.506 51 0.515 50

Langfang 0.481 63 0.481 65 Yingkou 0.478 67 0.477 68
Liaoyang 0.595 24 0.595 24 Yueyang 0.623 19 0.625 20
Luzhou 0.493 55 0.492 59 Zhangjiakou 0.480 65 0.480 66

Luoyang 0.524 43 0.525 44 Zhangzhou 0.646 17 0.654 17
Luohe 0.517 47 0.517 49 Zhaoqing 0.551 37 0.551 40

Mianyang 0.501 52 0.499 54 Zhenjiang 0.542 38 0.554 36
Neijiang 0.587 26 0.586 27 Zhengzhou 0.487 61 0.489 63
Nanjing 0.523 44 0.571 32 Zhongshan 0.529 41 0.529 43
Nantong 0.466 69 0.518 48 Chongqing 0.520 45 0.502 52
Ningbo 0.647 16 0.677 14 Zhoushan 0.415 85 0.418 87
Ningde 0.569 30 0.571 31 Zhuhai 0.517 46 0.518 47
Panjin 0.397 89 0.397 91 Zibo 0.461 74 0.467 71

Pingdingshan 0.558 32 0.559 35 Zigong 0.792 7 0.791 9
Putian 0.603 22 0.607 23 Mean 0.525 — 0.531 —

Notably, there are also large differences in PM2.5 environmental efficiency between cities. Without
the impact of outside sources, the cities with the highest PM2.5 environmental efficiency are Shenzhen,
Guangzhou, and Shanghai, followed by Dongguan, Quanzhou, and Foshan. With the impact of
outside sources, the cities with the highest PM2.5 environmental efficiency are Shanghai, Shenzhen,
and Guangzhou, followed by Dongguan, Quanzhou, and Foshan. These cities with the highest
environmental efficiency are all eastern cities. Among the four first-tier cities (Beijing, Shanghai,
Guangzhou, Shenzhen) in China, only Beijing’s PM2.5 environmental efficiency is relatively low
because Beijing is an inland city, unlike the other three cities, which are coastal cities. Geological
conditions also determine that it is difficult for the PM2.5 pollution in Beijing to spread. Therefore,
the PM2.5 pollution in Beijing is more serious than in the other three cities, which also leads to its
relatively low environmental efficiency. Shanghai’s performance is particularly noteworthy; without
the influence of outside sources, Shanghai ranks third, but with the influence of outside sources,
it ranks first. This finding indicates that Shanghai’s haze pollution is more susceptible to outside
pollution sources, and its PM2.5 environmental efficiency drops significantly when considering outside
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sources. In PM2.5 environmental efficiency, Hengshui, Xi’an, Huzhou, and Tongchuan have the lowest
rankings. These cities are second- and third-tier cities in the central and western regions of China.
The economic aggregates in these regions are not very large, and the economic structure is dominated
by pollution-intensive industries. Therefore, the PM2.5 pollution in these cities is very serious, and the
coordination between environmental pollution and economic growth is still insufficient; these cities
face greater pressure to reduce emissions. The Chinese government still needs to boost its efforts to
narrow the economic development between the central and western regions and the eastern region.

In addition, measuring PM2.5 environmental efficiency and the frontier cities based on the ten
different city groups is very meaningful; the results are shown in Table 5.

Table 5. The PM2.5 environmental efficiency frontier cities based on the group-frontier during 2004
to 2016.

City Group Group ID City

Yangtze River Delta 1 Shanghai
Pearl River Delta 2 Shenzhen
Beijing-Tianjin-Hebei 3 Beijing, Tangshan, Tianjin
Central and southern Liaoning 4 Dalian
Shandong Peninsula 5 Dongying, Jinan, Qingdao
Cheng Yu 6 Chengdu, Deyang, Chongqing, Zigong
West Coast of Taiwan Straits 7 Quanzhou, Zhangzhou
Central Henan 8 Kaifeng, Luoyang, Xuchang, Zhengzhou
Middle reaches of the Yangtze River 9 Wuhan, Yueyang
Guanzhong 10 Baoji, Xi’an

The environmental efficiency frontier represents the most environmentally efficient cities
compared to the other cities in the city group. These are also the cities with the most coordinated
environmental pollution and economic growth. Table 5 shows that the frontiers of environmental
efficiency in the group are generally the central cities of the city groups with relatively high economic
development, such as provincial capitals. Under the administrative system of China, the central city
not only has economic and natural resource-related advantages but can also transfer environmental
pollution to peripheral cities through a series of administrative means, such as industrial transfer;
as a result, the coordination of environmental and economic growth in central cities is higher than that
in peripheral cities. Take Beijing as an example; although Beijing’s PM2.5 environmental efficiency
under the meta-frontier is not very high, it is an environmental frontier city in the BTH city group.
Notably, Xi’an ranked 97th under the meta-frontier, but in its group, it is an environmental frontier city.
Environmental efficiency shows the greatest difference not only within the city group but also between
city groups.

The TGR reflects the technological distance between the meta-frontier and the group frontier.
The group frontier represents the optimal environmental efficiency that can be achieved in a certain
city. The meta-frontier is the envelope curve of the group frontier, which represents the optimal
environmental efficiency that can be achieved in all samples. The greater the TGR is, the farther the
distance between the group frontier and the meta-frontier, indicating that the overall environmental
efficiency of this area is relatively low and that the environmental regulation of this area needs to
be increased.

As shown in Table 6, overall, the average TGR is 0.661 and 0.666 with or without considering
the impact of outside sources, respectively. In addition, regardless of whether the impact of outside
sources is considered, the technology gaps are relatively small. The city groups that consider outside
sources with higher environmental efficiency than those that do not consider outside sources include
the YRD, BTH, Shandong Peninsula, the west coast of the Taiwan Strait, the Central Plains, and the
middle reaches of the Yangtze River. Specifically in the YRD city group, considering the impact of
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outside sources is closer to the environmental frontier. This finding indicates that the pollution of the
YRD city group is more easily affected by outside sources.

Table 6. Technology gap ratio under PM2.5.

City Group Group ID TGR (PM2.5) TGR (Actual PM2.5)

Yangtze River Delta 1 0.695 0.735
Pearl River Delta 2 0.990 0.988

Beijing-Tianjin-Hebei 3 0.712 0.713
Central and southern Liaoning 4 0.692 0.689

Shandong Peninsula 5 0.588 0.598
Cheng Yu 6 0.599 0.593

West coast of Taiwan Strait 7 0.699 0.709
Central Henan 8 0.559 0.560

Middle reaches of the Yangtze River 9 0.646 0.647
Guanzhong 10 0.434 0.432

Mean 0.661 0.666

There are also great gaps in the TGR between the ten major city groups. Among them, the PRD
city group ranks first, followed by the west coast of the Taiwan Strait, which are both located in the
eastern region. This finding means that these city groups are not experiencing excessive environmental
pollution despite experiencing rapid economic growth. The Guanzhong city group and the Central
Plains city group are ranked lower; these city groups are both located in the central and western
regions. This finding indicates that the economic and environmental development of these areas has
not been achieved harmoniously and that it is necessary to intensify efforts to carry out environmental
remediation and pollution protection for these city groups.

Figure 1 shows the trend of the annual average TGR and its decomposition for annual average
environmental efficiency under the meta-frontier and the group frontier. From the perspective of time
trends, the TGR and environmental efficiency under the meta-frontier of the major city groups formed
a turning point in 2012. Both the TGR and environmental efficiency declined slowly in 2004 to 2012 and
gradually increased after 2013 to 2016. The PM2.5 problem in China has been the concern of public and
government departments since 2012. Therefore, after 2012, the major city groups have begun to increase
efforts to control air pollution. China has also introduced plans for air pollution prevention and control to
reduce haze pollution. As a result, environmental efficiency began to increase gradually after 2012.
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5.3. Analysis of the Meta-Frontier Malmquist Productivity Index

Equation (10) is used to measure the MMPI of each city group. The results are shown in Tables 7 and 8.
Tables 7 and 8 show that, overall, China’s environmental total factor productivity presents

a significant downward trend. China’s overall environmental total factor productivity declined by
3.68% and 3.49% with and without the influence of outside sources, respectively. This conclusion fully
shows that China’s economic growth over the past decade has come at the expense of air pollution.
In addition, this conclusion is different from some studies in which the undesirable output is carbon
emissions. Yao et al. [64] suggest that China’s environmental total factor productivity exhibits a slow
upward trend. Fei and Lin [44] also believe that China’s agricultural productivity shows an upward
trend. We speculate that there are two main reasons for the difference in results: On the one hand,
there are differences in measurement methods. The measurement of carbon emissions is based on the
production process, but the measurement of PM2.5 pollution is mainly based on satellite data. On the
other hand, haze pollution is a more complex type of pollution that may be affected by many factors
other than carbon emissions.

Table 7. Changes in the meta-frontier Malmquist total factor productivity index (MMPI) in ten major
city groups under PM2.5 constrictions.

Year
Group ID

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Mean

2004–2005 0.9890 1.0296 0.9372 0.9390 0.9749 0.9201 0.8975 0.8552 0.8495 0.9282 0.9305
2005–2006 1.0198 1.0034 0.9431 0.8658 1.0138 0.9587 0.9974 0.8582 0.9123 0.8983 0.9453
2006–2007 0.9522 1.0076 0.9138 0.9097 1.0466 0.9619 0.9184 0.8677 0.9006 0.9182 0.9383
2007–2008 0.9819 1.0243 0.9644 0.9185 1.0306 0.9401 0.9768 0.9143 0.9313 0.9165 0.9590
2008–2009 1.0246 1.0142 0.9042 0.8732 0.9719 0.8745 1.0441 0.8550 0.8919 0.9328 0.9363
2009–2010 1.0170 1.0918 0.9608 0.9824 1.0113 0.9345 1.0124 0.8918 0.8863 0.9009 0.9669
2010–2011 0.9776 0.9326 0.9380 0.9323 0.9794 0.9490 0.9263 0.9274 0.8992 0.8862 0.9344
2011–2012 0.9947 1.0243 1.0125 0.9506 1.0173 0.9445 0.9566 0.9180 0.9391 0.9709 0.9722
2012–2013 0.9133 0.8813 0.9941 0.9777 0.9785 0.8755 0.9585 0.8938 0.9293 0.8858 0.9278
2013–2014 1.0288 1.0121 1.0319 0.9723 1.1102 1.0662 0.9802 1.0137 0.9744 1.0453 1.0227
2014–2015 1.0479 1.0436 1.0482 1.0394 1.0641 0.9936 1.0612 0.9941 0.9993 1.0220 1.0310
2015–2016 1.0588 0.9869 1.0549 1.0575 1.0370 1.0113 1.0434 1.0070 1.0310 0.9754 1.0259

Mean 0.9997 1.0030 0.9740 0.9499 1.0189 0.9511 0.9798 0.9147 0.9274 0.9387 0.9651

Table 8. Changes in the MMPI in ten major city groups under actual PM2.5 constrictions.

Year
Group ID

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Mean

Year 1.0364 0.9416 0.9328 0.9691 0.9174 0.9074 0.8529 0.8547 0.9279 0.9318
2005–2006 1.0216 1.0082 0.9480 0.8724 0.9989 0.9566 0.9926 0.8568 0.9128 0.8881 0.9439
2006–2007 0.9514 1.0124 0.9166 0.9134 1.0466 0.9612 0.9208 0.8535 0.9034 0.9090 0.9373
2007–2008 0.9848 1.0219 0.9635 0.9128 1.0362 0.9378 0.9827 0.9118 0.9331 0.9135 0.9588
2008–2009 1.0251 1.0070 0.9024 0.8701 0.9672 0.8738 1.0371 0.8529 0.8891 0.9286 0.9331
2009–2010 1.0292 1.0621 0.9572 0.9687 1.0073 0.9275 1.0082 0.8911 0.8876 0.8977 0.9619
2010–2011 0.9748 0.9406 0.9390 0.9219 0.9795 0.9487 0.9302 0.9259 0.8918 0.8852 0.9333
2011–2012 0.9883 1.0154 1.0147 0.9418 1.0219 0.9325 0.9612 0.9177 0.9436 0.9578 0.9688
2012–2013 0.9289 0.8804 0.9842 0.9593 0.9829 0.8717 0.9763 0.8922 0.9316 0.8887 0.9287
2013–2014 1.0299 1.0126 1.0362 0.9740 1.1077 1.0533 0.9889 1.0095 0.9669 1.0186 1.0190
2014–2015 1.0594 1.0294 1.0412 1.0402 1.0566 0.9802 1.0731 0.9886 0.9889 1.0251 1.0278
2015–2016 1.0706 0.9710 1.0488 1.0568 1.0434 1.0167 1.0289 0.9999 1.0199 0.9744 1.0225

Mean 1.0039 0.9987 0.9733 0.9454 1.0173 0.9468 0.9828 0.9111 0.9259 0.9334 0.9632

At the same time, from the perspective of city groups, we can find that the environmental efficiency
changes between city groups also show great heterogeneity. However, the environmental efficiency
of most city groups shows a downward trend. When considering external sources, only the PRD
and Shandong Peninsula city groups showed an upward trend. When the external sources are not
considered, only the YRD city group and the Shandong Peninsula city group show an upward trend.
The total factor productivity of the other city groups has declined to varying degrees. In particular,
some city groups, such as city group 8, show a significant decline in the MMPI. The declines were
as high as 8.53% and 8.89% with or without the impact of outside sources, respectively. This finding
further confirms our conclusion that most cities in China have not achieved coordinated development
between the environment and economic growth. This conclusion is also very important for government
decision makers. The MMPI shows the difficulty of improving environmental efficiency. We need to
do more to control air pollution in cities with a lower MMPI.
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From a dynamic perspective, we found that China’s overall MMPI showed a downward trend
before 2013. In some years, such as 2004–2005 and 2010–2011, the decline trend is more obvious,
and only after 2014 is an upward trend shown. From the perspective of city groups, most city groups
have basically shown the same dynamic trends as those of city group 1, city group 2, and city group 5.
This conclusion is roughly the same as that for the environmental efficiency trend.

5.4. Analysis of the Driving Factors of Meta-Frontier Malmquist Productivity Index

Furthermore, to analyse the causes of environmental efficiency changes, we decompose
environmental efficiency utilizing Equation (12), and the measurement results are shown in Table 9.

(1) Efficiency change (EC) index. We find that there is also a large difference between the changes
in the EC index. Overall, efficiency showed a large downward trend, and the overall efficiency was
0.9976, which means that efficiency decreased by 0.24%. This finding indicates that the catch-up
process of the existing technological frontier is declining and that the environmental efficiency of
each city group has not increased significantly. From the perspective of city groups, only the EC
index of city groups 2, 3, and 4 showed a small increasing trend, with growth rates of 0.2%, 0.4%,
and 0.8%, respectively. This finding means that there is still a great deal of space for catching up with
the technology frontier.

In terms of the time trend, as shown in Figure 2, the EC index increased only by 0.80% in 2006–2007,
increased by 0.21% in 2008–2009, and increased by 0.40% in 2012–2013. In other years, there was
a significant decline, demonstrating that the chasing effect of the common technology frontiers in
various groups in China is not ideal.

(2) Best practice gap change (BPC) index. The BPC index indicates the technology gap movement
between the current technological frontier and the inter-temporal technological frontier. Overall,
the BPC index also shows a downward trend; the BPC index is 0.9876 and 0.9873 with and without
the impact of outside sources, respectively, which indicates that the environmental frontier is moving
farther from the inter-temporal frontier at a decrease rate of 1.24%. This finding also shows that the
technology of China’s major city groups is declining. From the perspective of city groups, only city
group 1 and city group 5 have increased by 0.50% and 0.75%, respectively, which indicates that
technological progress has been achieved. However, the technology progress of other city groups has
not been significantly realized.

From a dynamic trend perspective (see Figure 3), overall, similar to the MMPI and EC trends,
the growth in the BPC index is roughly similar to that in the MMPI, but it fluctuates greatly. In addition
to achieving a growth of 0.15% in 2007–2008, before 2013, a growth rate of only 0.15% was achieved in
2007–2008, but growth has also been achieved since 2013, indicating that the technological progress
effect was mainly achieved after 2013.

(3) Pure technological catch-up index (PTCU). According to Equation (11), we can divide the
TGC index into the PTCU and FCU indexes. The TGC index measures the technology gap between
the global environment frontier and the inter-temporal environmental frontier. The PTCU index
purely captures the catch-up in technology without the elements of technological inefficiency from the
view of a group frontier. As seen from our measurement results, the PTCU index increased by 0.44%
when considering external sources and increased by 0.40% when not considering external sources.
This finding indicates that PTCU has a positive effect on the MMPI. Overall, this index is the only
growth indicator among the four indicators. In regard to PTCU, the positive effect of the total factor
productivity of the environment is more obvious.

From a dynamic perspective (see Figure 4), the trend of the PTCU index is consistent with the
MMPI. The PTCU index showed a downward trend before 2012 and began to rise after 2012.

(4) Frontier catch-up (FCU). It is easier to determine if the FCU index captures the velocity of
change of the meta-frontier relative to that of the group frontier. When the upward shift of the group
frontier is faster than that of the meta-frontier, the FCU index will exhibit a value less than unity.
Overall, with and without the impact of outside sources, the FCU index decreased by 2.47% and
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2.53%, respectively. The downward trend of this indicator is the largest among the four indicators,
demonstrating that the meta-frontier has a slower catch-up trend with respect to the group frontier and
that the group frontier efficiency of some city groups is growing faster. Accordingly, we can observe
that the decline in environmental total factor productivity is mainly due to the decline in FCU.

As shown in Figure 5, unlike the other indexes, the FCU index shows a different trend; except for
the rises in 2004–2005, 2009–2010, and 2014–2015, most years showed a downward trend.

Table 9. The decomposition of MMPI in each city group.

Group ID
PM2.5 Actual PM2.5

EC
(PM2.5)

BPC
(PM2.5)

PTCU
(PM2.5)

FCU
(PM2.5)

EC
(APM2.5)

BPC
(APM2.5)

PTCU
(APM2.5)

FCU
(APM2.5)

Group 1 0.9930 1.0050 1.0100 0.9918 0.9929 1.0043 1.0068 1.0000
Group 2 1.0004 0.9905 1.0070 1.0051 1.0004 0.9905 1.0075 1.0003
Group 3 1.0004 0.9835 1.0096 0.9806 1.0004 0.9834 1.0101 0.9794
Group 4 1.0008 0.9778 0.9961 0.9745 1.0008 0.9778 0.9963 0.9698
Group 5 0.9988 1.0075 1.0227 0.9901 0.9988 1.0075 1.0215 0.9897
Group 6 0.9986 0.9913 1.0035 0.9575 0.9986 0.9911 1.0040 0.9529
Group 7 0.9955 0.9988 0.9980 0.9873 0.9955 0.9988 0.9951 0.9933
Group 8 0.9983 0.9723 0.9883 0.9536 0.9983 0.9723 0.9884 0.9496
Group 9 0.9932 0.9665 1.0068 0.9597 0.9921 0.9652 1.0075 0.9596

Group 10 0.9973 0.9834 1.0025 0.9548 0.9973 0.9834 1.0026 0.9493
Mean 0.9976 0.9876 1.0044 0.9753 0.9975 0.9873 1.0040 0.9742
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Figure 2. The dynamic trend of efficiency change (EC) index under PM2.5 (diameter of fine particulate
matter less than 2.5 µm) and actual PM2.5.
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5.5. Further Discussion

As have been mentioned before in Section 2, DEA has been employed in a number of studies
to measure the performance of China’s environmental efficiency (Sueyoshi, Yuan, and Goto [8]).
The meta-frontier approach has also been used in China to do efficiency measurement in many
aspects while most of them incorporated the CO2 emissions as undesirable output (Yao, Guo, Shao,
and Jiang [39], Fei and Lin [44], Zhang, Wang, and Chen [4]). However, very few works considered the
PM2.5 pollution as an undesirable output. The most similar work to the current research is [47] on the
measurement of efficiency of China’s provincial capitals in two annual periods (2013–2014) and [50] on
the measurement the air quality of 31 main cities in China by using the daily Air Quality Index and
integer and zero-sum gain constraints into DEA approach. However, [47] only used the rank sum test
to find the difference in city groups, [50]’s study did not consider the difference in city groups and
our study uses meta-frontier Malmquist productivity index to analyze their difference. But all studies
also found the efficiency in four municipalities is higher than in other cities. Furthermore, in our
study unlike [47], we use PM2.5 data from remote sensing data (AOD) and the official department,
while [47] used the simulation data and [50] only used the official data. This study is the first study
using a meta-frontier Malmquist productivity approach incorporating PM2.5 as an undesirable outputs
using a new epsilon-based DEA model to provide more accurate measures of environmental efficiency
and productivity change. And the study in [50] measured the air quality of 31 main cities in China by
using the daily Air Quality Index.

6. Conclusions

This paper first uses the EBM model to measure the environmental efficiency of China’s top ten
city groups under the meta-frontier and the group frontier and then uses the meta-frontier model to
measure the total factor productivity and to decompose it. The measurement results find the overall
annual environmental efficiency of PM2.5 is 0.525 without the external source impact and 0.531 with
the external source impact and indicate that there is a large gap in environmental efficiency among
these ten city groups. The gap between the eastern regions and the western regions is still obvious.
The cities with the highest environmental efficiency rankings are generally the cities along the eastern coast.
The environmental efficiencies of Shanghai, Shenzhen, and Guangzhou are among the top three cities.
In addition, the environmental group frontiers are mainly central cities and economically developed cities.



Int. J. Environ. Res. Public Health 2019, 16, 675 19 of 22

In addition, China’s overall environmental total factor productivity declined by 3.68% and
3.49% with and without the influence of outside sources, respectively. From a dynamic perspective,
China’s overall MMPI index showed a downward trend before 2013. Only a few eastern coastal
city groups have increased their environmental efficiency. This downward trend shows that China’s
environmental pollution is still relatively serious. China has not achieved coordinated development
between the environment and economic growth in the past decade. Furthermore, China has not
developed a good environmental protection system during this time. This conclusion has important
practical significance for China, which emphasizes economic transformation and high-quality economic
development. China needs to intensify its efforts to improve the quality of development, especially to
increase control over environmental pollution, and it must use environmental regulations to improve
environmental efficiency.

The overall efficiency of EC, BPC, PTCU, FCU are 0.9976, 0.9876, 1.0044, 0.9753, respectively,
without the external source impact and 0.9975, 0.9873, 1.0040, 0.9742, respectively, with the external
source impact. The decomposition of environmental total factor productivity shows that the decline in
China’s environmental total factor productivity is mainly caused by FCU. At the same time, EC and
BPC also have a significant negative effect on environmental total factor productivity. This finding
shows that the technology gap between the groups is still relatively obvious, which fully proves that
the development between China’s city groups remains uncoordinated and insufficient.

From the conclusions of this paper, some measures should be adopted to achieve coordinated
development between the environment and the economy. First, it is necessary to increase efforts
to improve environmental efficiency. Improving environmental efficiency can accelerate economic
growth while avoiding damage to economic growth and represents an effective means of harmonious
growth in China. Second, it is necessary to adopt some measures to overcome the imbalance between
the city groups and within the city groups. For example, China can transfer advanced environmental
technologies and advanced environmental measures from the eastern city groups to the central and
western city groups. Third, because there are great efficiency gaps and technological progress gaps
between city groups, China needs to accelerate the narrowing of the technological efficiency gap
and technological progress gap between city groups. As our measurement results show, there is still
much room for technological improvement in China. China can design some mechanisms, such as
environmental taxation and energy quota trading systems, to narrow the gap.
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