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Abstract: Air pollutants existing in the environment may have negative impacts on human health
depending on their toxicity and concentrations. Remote sensing data enable researchers to map
concentrations of various air pollutants over vast areas. By combining ground-level concentrations
with population data, the spatial distribution of health impacts attributed to air pollutants can be
acquired. This study took five highly populated and severely polluted provinces along the Huaihe
River, China, as the research area. The ground-level concentrations of four major air pollutants
including nitrogen dioxide (NO2), sulfate dioxide (SO2), particulate matters with diameter equal or
less than 10 (PM10) or 2.5 micron (PM2.5) were estimated based on relevant remote sensing data using
the geographically weighted regression (GWR) model. The health impacts of these pollutants were
then assessed with the aid of co-located gridded population data. The results show that the annual
average concentrations of ground-level NO2, SO2, PM10, and PM2.5 in 2016 were 31 µg/m3, 26 µg/m3,
100 µg/m3, and 59 µg/m3, respectively. In terms of the health impacts attributable to NO2, SO2, PM10,
and PM2.5, there were 546, 1788, 10,595, and 8364 respiratory deaths, and 1221, 9666, 46,954, and
39,524 cardiovascular deaths, respectively. Northern Henan, west-central Shandong, southern Jiangsu,
and Wuhan City in Hubei are prone to large health risks. Meanwhile, air pollutants have an overall
greater impact on cardiovascular disease than respiratory disease, which is primarily attributable to
the inhalable particle matters. Our findings provide a good reference to local decision makers for the
implementation of further emission control strategies and possible health impacts assessment.

Keywords: geographically weighted regression; GWR; air pollution; health impacts; Huaihe River Basin

1. Introduction

Air pollutants refer to foreign substances that enter the near-surface or low-level atmospheric
environment as a gaseous form. The sources can be divided into two categories: natural factors and
human-induced factors. The latter is the dominant factor, and sources include industrial production,
mineral combustion, automobile emissions, and so forth [1]. Many epidemiological studies have
shown that air pollution in the environment has acute and chronic effects on mortality, morbidity,
and hospitalization rate [2,3], and each pollutant has a certain exposure–response relationship with
these health impacts [4,5]. If the PM2.5 concentration was reduced to the standard concentration of
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10 µg/m3 recommended by the World Health Organization (WHO), São Paulo would avoid 5012
premature deaths each year, saving $15.1 billion [6]. However, as a country with serious air pollution
and a dense population, China has more serious health problems and economic losses caused by air
pollution. In 2014, 278,444 deaths and 71,058 cases of cardiovascular disease were caused by PM2.5 in
190 Chinese cities, and the average economic losses of amended human capital and statistical life value
were 0.3% and 1% of the total GDP, respectively [7]. The majority of studies on the health impacts of air
pollution in China have been concentrated on economically developed urban areas [5,8,9]. However,
as an important climate transition zone, the Huaihe River Basin spans five provinces (Henan, Hubei,
Anhui, Jiangsu, and Shandong) and has concentrated industry, a high population density, and serious
air pollution problems. It is essential to study the environmental health impacts in this region.

Many studies have focused on the health impacts caused by one single air pollutant [10–12].
However, it is necessary to investigate the health impacts caused by multiple air pollutants to
comprehensively understand the health risks. Regarding the air pollution data sources, many previous
studies relied on observational data acquired from ambient monitoring stations to a large extent [13–15].
However, most of the stations in China are purposefully located in heavily polluted urban areas [16].
Therefore, the data acquired by the stations cannot well depict the spatial distribution of air pollution
levels on a regional basis, and the related health impacts could be thereby overestimated if only
using the monitoring station data [17,18]. Fortunately, remote sensing data can compensate for this
shortcoming due to its spatial and temporal continuity, and can be applied to obtain the spatial
distribution of air pollutants and the associated health impacts [19–21]. Satellite remote sensing
products reflect the concentrations of air pollutants existing in the atmospheric column rather than
at the near-surface levels which are closely related to human health. Therefore, it is necessary to
further estimate the ground-level concentrations of air pollutants based on remote sensing products.
The commonly used methods include numerical simulation [22,23], calculation of column quantity [21],
land use regression model [24,25], geographically weighted regression (GWR) model [26,27], and
geographically and temporally weighted regression (GTWR) model [28,29], etc. To assess the health
impacts of air pollutants, many previous studies were mainly based on the exposure–response
function of air pollutants in epidemiological studies, using risk assessment models [10,11,30] or
health indicators [8,12] to obtain health risks in provinces or cities. The outputs of the assessments
were usually mortality and hospitalization rate of certain diseases in a number of provinces and cities.
Few studies have provided continuous spatial distribution in grids.

In this paper, five highly populated and severely polluted provinces (Henan, Hubei, Anhui,
Jiangsu, and Shandong) along the Huaihe River were chosen as the research area. The ground-level
concentrations of four major air pollutants including nitrogen dioxide (NO2), sulfate dioxide (SO2),
particulate matters with diameter equal or less than 10 (PM10) or 2.5 micron (PM2.5) were estimated
based on satellite remote sensing products and meteorological parameters in 2016. GWR was applied to
obtain the ground-level concentrations of air pollutants at 0.125◦ grids. Then, population data were
updated to 2016 and resampled to the same size. Respiratory deaths and cardiovascular deaths were
two health endpoints in this study. The estimated ground-level concentrations of each air pollutant
were combined with the population data to evaluate their health impacts using the health impact
assessment (HIA) method. The spatial distribution characteristics of ground-level concentrations and
health impacts in 2016 were analyzed. The HIA of multiple air pollutants is conducive to comparative
studies and provides an in-depth understanding of the health impacts of the overall air pollution
in the study area. The spatial distribution results can help to analyze regional risk differences and
primary air hazards, thus helping to further facilitate targeted pollution prevention measures of the
environmental protection department.
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2. Materials and Methods

2.1. Study Area

The Huaihe River Basin is located in eastern China between the Yangtze River Basin and the
Yellow River Basin. The terrain varies from mountainous to hilly to plains. It is located in the
north–south climate transition zone of China; north of the Huaihe River belongs to the warm temperate
zone, and the south is the northern subtropical zone. The temperature rises from north to south and
from the coast to the inland. The five provinces (Henan, Hubei, Anhui, Jiangsu, and Shandong)
covered by the basin are the study area, with a geographic range of 29◦ N–38◦ N and 108◦ E–123◦ E
(Figure 1). There are more than 70 cities in the five provinces, with a total population of more than
395 million. The average population density is 662 persons per square kilometer in the Huaihe River
Basin, which is 4.8 times as many as the national average population density, and this population
density is the highest among all the river basins in China [31]. The dense population, coal-based and
electricity-oriented industry, and an increasing number of motor vehicles make the area one of the
most severely polluted regions in China. There are 391 ambient monitoring stations located in the
study area, but they are not evenly distributed.
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2.2. Data

2.2.1. Ground-Based Measurements

China established a nationwide air quality monitoring network to comprehensively assess the
air quality of various regions. NO2, SO2, PM10, and PM2.5 were the main air pollutants for daily
real-time monitoring. In this study, hourly measurements of NO2, SO2, PM10, and PM2.5 from
1 January 2016 to 31 December 2016 at 391 ambient monitoring stations were collected from the
China National Environmental Monitoring Centre (http://www.cnemc.cn/). Due to the potential
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lack of measurements at certain monitoring stations in different periods, to ensure the reliability of
data quality, the monitoring stations with less than 270 days of consecutive observation days were
excluded. Finally, the number of effective monitoring stations for NO2, SO2, PM10, and PM2.5 was 377,
376, 379, and 379, respectively. Furthermore, the monthly average concentrations of air pollutants at
the effective monitoring sites were calculated. The data were divided into two parts using random
sampling: 70% were used for constructing the GWR model, and the remaining 30% were used for
verifying the estimated results.

Level 1.5 ground-based aerosol optical depth (AOD) measurements for the study area were
collected from the AErosol RObotic NETwork (AERONET) (http://aeronet.gsfc.nasa.gov/). These data
were used to verify the reliability of the merged AOD data. However, in the study area, only four
sites (Taihu, Xuzhou-CUMT, SONET_Hefei, and SONET_Nanjing) were available, and there was no
corresponding AOD value for the remote sensing product at 550 nm. AERONET AOD at 550 nm was
calculated by interpolating the AOD values at 440 nm and 675 nm using the provided Angstrom band
conversion formula. The locations of the AERONET stations are shown in Figure 1.

2.2.2. Satellite Data

• Aerosol Optical Depth

There is a certain correlation between AOD and the concentrations of ground-level particulate
matters (PM10 and PM2.5). Therefore, it is common to estimate the ground-level concentrations of
PM10 and PM2.5 based on the remote sensing AOD product [26,27,32]. The Moderate Resolution
Imaging Spectroradiometer (MODIS) is an instrument aboard the NASA Terra and Aqua satellites,
which pass over the equator at approximately 10:30 and 13:30 local time. In this study, both the daily
Terra (MOD04) and Aqua (MYD04) MODIS AOD products (Collection 6.1) with 3 km spatial resolution
were downloaded from the NASA LAADS website (https://ladsweb.modaps.eosdis.nasa.gov/search/
order) over the study’s time period (for the year 2016). The AOD values at 550 nm were extracted
from the scientific dataset “Corrected_Optical_Depth_Land” with best quality assurance and then
reprojected, cropped, and spliced. Furthermore, the MOD04 and MYD04 products were merged to
increase the coverage of valid data spatially and the availability temporally.

In terms of the fusion approach, pixels with valid observations co-located in MOD04 and MYDO4
were first extracted, and then an adaptive bias correction method proposed by Bai et al. (2016) [33] was
applied to fuse these two AOD data sets. According to the statistics summarized in Table 1, the AOD
product of MOD04 was used as the baseline data, and the AOD data of MYD04 was complementary.
The reasons are as follows: (1) the MOD04 product has a larger effective pixel coverage ratio than
MYD04, and (2) the AOD of MOD04 has higher accuracy (a higher correlation with ground-based
AOD measurements). Specifically, seasonal common observations (i.e., co-located valid observations
in both MOD04 and MYD04) were used to characterize the value-dependent bias between two data
sets, and then valid observations present in MYD04 that were not observed in MOD04 were calibrated
onto the MOD04 level based on common observations via quantile mapping. Finally, the corrected
AOD values were merged with those of MOD04 in the spatial domain. The improved coverage ratio of
valid observations and the higher correlation between merged AOD values and ground-based AOD
measurements from AERONET stations fully reveal the superiority of the merged results. Finally,
the results were processed to monthly mean values at a spatial resolution of 0.125◦ × 0.125◦.

Table 1. Statistics of satellite-based aerosol optical depth (AOD) and merged AOD products.

AOD Days with Valid
Observations

Effective Pixel
Coverage Sample Size, N Correlation

Coefficient, R

MYDO4 366 23.93% 133 0.81
MOD04 357 26.22% 147 0.79
Merged 366 33.46% 196 0.83

http://aeronet.gsfc.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/search/order
https://ladsweb.modaps.eosdis.nasa.gov/search/order
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• NO2

The Ozone Monitoring Instrument (OMI) is an instrument onboard the NASA EOS
(Earth Observation System)-Aura satellite that monitors atmospheric ozone, NO2, SO2, and other trace
gases. OMI offers daily atmospheric products with global coverage at the nadir spatial resolution of
13 km × 24 km [34]. The daily Level-3 Aura OMI NO2 data product (OMNO2d) with 0.25◦ × 0.25◦

spatial resolution from the NASA website (http://disc.sci.gsfc.nasa.gov/datacollection/OMNO2d_
003.html) contains parameters regarding the total NO2 columns and tropospheric NO2 columns.
The tropospheric NO2 columns are retrieved based on slant columns using the differential optical
absorption spectroscopy (DOAS) algorithm [35]. The fitting error in the NO2 slant column is estimated
to be 0.3 to 1 × 1015 molecules/cm2, depending on the uncertainty of the surface albedo, NO2 vertical
profile, and cloud interference [36–38]. The main sources of tropospheric nitrogen oxides include
combustion, soil emissions, and lightning. Therefore, the tropospheric NO2 columns with screened
clouds were used to estimate ground-level NO2 concentrations over the study’s time period (for the
year 2016). The data were filtered from the Level 2 product according to the criteria that the solar zenith
angle was less than 85◦, the topographic reflectivity was less than 30%, and the cloud amount was
less than 30% [39]. Finally, the data were processed to monthly mean values at a spatial resolution of
0.125◦ × 0.125◦.

• SO2

The OMI provides SO2 column concentrations at four different heights: the planetary boundary
layer (PBL), the bottom of the troposphere, the middle of the troposphere, and the top of the troposphere
to the stratosphere. The PBL data are from heights of less than 2 km, and the center height is
approximately 0.9 km. The SO2 within the PBL is mainly from human activities, while the SO2 in
the higher layers is mainly from volcanic eruptions [40]. The daily Level-3 Aura OMI PBL SO2 data
product (OMSO2e) with 0.25◦ × 0.25◦ spatial resolution from the NASA website (http://disc.sci.gsfc.
nasa.gov/datacollection/OMSO2e_003.html) was applied in this study. The data are estimated from
the OMSO2 L2 product using the principal component analysis (PCA) algorithm. The estimated noise
standard deviation of SO2 is 1.2 to 1.5 DU (Dobson units, 1 DU = 2.69 × 1016 molecules/cm2); this noise
can be decreased to less than 0.3 DU after averaging the data in space and time [41,42]. The quality of
SO2 satellite data was generally poor, and there were a large number of missing values and noisy
points. Therefore, preprocessing and quality control were required to eliminate poor-quality pixels
in this study. The screening criteria were as follows: (1) radiative cloud fraction less than 0.2, and (2)
solar zenith angle less than 70 degrees. Furthermore, spatial interpolation and spatial filtering were
used to improve the range and quality of the available data. The PBL SO2 columns excluding missing
data and low-quality data were used to estimate ground-level SO2 concentrations in 2016. The data
were processed to monthly mean values at a spatial resolution of 0.125◦ × 0.125◦.

2.2.3. Meteorological Data

Because the accumulation, diffusion, and evolution of air pollutants are highly related to weather
conditions, it is necessary to consider the effects of various meteorological factors when estimating
the ground-level concentrations of air pollutants based on remote sensing products. We selected
temperature (T), relative humidity (RH), U-wind speed (U), V-wind speed (V), and boundary layer
height (BLH) as the impact factors based on a comprehensive review of previous studies [23,29,43].
These meteorological parameters were collected from the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-Interim reanalysis with a spatial resolution of 0.125◦ × 0.125◦. All of the
meteorological data were monthly means of daily means. They were available from the ECMWF
website (http://apps.ecmwf.int/datasets/data/interim-full-daily).

http://disc.sci.gsfc.nasa.gov/datacollection/OMNO2d_003.html
http://disc.sci.gsfc.nasa.gov/datacollection/OMNO2d_003.html
http://disc.sci.gsfc.nasa.gov/datacollection/OMSO2e_003.html
http://disc.sci.gsfc.nasa.gov/datacollection/OMSO2e_003.html
http://apps.ecmwf.int/datasets/data/interim-full-daily
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2.2.4. Population Data

The population grid data with a 1 km resolution in 2010 was provided by the Resource and
Environmental Science Data Center of the Chinese Academy of Sciences (RESDC) (http://www.resdc.cn/).
Based on the demographic data at the county level, the dataset uses the multifactor weight distribution
method to assign the population in administrative units to 1 kilometer grids, taking into account the
land use type, nighttime lighting, and residential density [44]. We converted the grid to 0.125◦ to
match the spatial resolution of the air pollutant data mentioned above. We updated the population
data to 2016 based on the annual provincial population data released by the Chinese National
Bureau of Statistics (http://www.stats.gov.cn/tjsj/ndsj/). The result is shown in Figure 2. The result
was used in conjunction with estimated ground-level concentrations of air pollutants to assess the
health impacts in exposed populations. The main population update steps were as follows: (1) the
regional statistical method was used to obtain the population distribution in 2010 with a resolution of
0.125◦; (2) the proportion of each grid population to the total population of the corresponding province
in 2010 was calculated, labeled A; (3) the proportion A was multiplied by the total population B of the
corresponding province in 2016, and then the population grid data was obtained at 0.125◦ for the
study area in 2016.
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2.3. Methods

2.3.1. Geographically Weighted Regression

GWR is a practical technique to detect the spatial variability and non-stationarity of continuous
surfaces of regional parameters by generating local regression results [45,46]. Compared with the
traditional linear and nonlinear regression models, the GWR determines the spatial variation in the
regression model coefficients, which significantly improves the estimation accuracy of the model. GWR
was applied in the estimation of ground-level concentrations of air pollutants in this study. As we

http://www.resdc.cn/
http://www.stats.gov.cn/tjsj/ndsj/
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know, remote sensing products reflect the column concentration of the air pollutants within a certain
height in the atmosphere. However, human health is mostly related to the ground-level concentration
of air pollutants. Therefore, it is necessary to estimate the ground-level concentrations of air pollutants
based on remote sensing products. Some previous studies have shown that the correlations between
AOD and PM2.5 and PM10 varied distinctively in different places [47]. The spatial variation in
correlation may lead to inaccurate estimation of the model when using a global parameter [26,43]. The
correlation between AOD and PM2.5 should not be constant across space, but should change with
the spatial environment [43]. GWR takes into account the local effect of spatial objects, and uses the
relevant information of adjacent regions to estimate local regression parameters, and finally realizes
that the coefficients of the regression model in different regions change with the change of spatial
location [48]. GWR is widely used to predict the spatial distribution of pollutants concentration [49,50].
Therefore, this study used the GWR model to estimate the ground-level concentrations of PM2.5, PM10,
NO2, and SO2. Both the satellite data and meteorological parameters were entered into the GWR
model. GWR was used to generate a local regression coefficient for each ambient monitoring station
on a monthly basis. The structure of the GWR model for multiple air pollutants in this study can be
expressed as Equations (1) to (4):

PM2.5,i,m = α0,i,m + α1,i,m AODi,m + α2,i,mRHi,m + α3,i,mTi,m + α4,i,mUi,m + α5,i,mVi,m + α6,i,mBLHi,m (1)

PM10,i,m = β0,i,m + β1,i,m AODi,m + β2,i,mRHi,m + β3,i,mTi,m + β4,i,mUi,m + β5,i,mVi,m + β6,i,mBLHi,m (2)

NO2_ground ,i,m = b0,i,m + b1,i,mNO2_trop ,i,m + b2,i,mRHi,m + b3,i,mTi,m + b4,i,mUi,m + b5,i,mVi,m + b6,i,mBLHi,m (3)

SO2_ground ,i,m = p0,i,m + p1,i.mSO2_PBL ,i,m + p2,i,mRHi,m + p3,i,mTi,m + p4,i,mUi,m + p5,i,mVi,m + p6,i,mBLHi,m (4)

where PM2.5,i,m (µg/m3), PM10,i,m (µg/m3), NO2_ground ,i,m (µg/m3), and SO2_ground ,i,m (µg/m3) are
the monthly ground-based PM2.5, PM10, NO2, and SO2 concentrations at location i in month m,
respectively; α0,i,m, β0,i,m, b0,i,m, and p0,i,m denote the intercepts at location i in month m of PM2.5, PM10,
NO2, and SO2, respectively; α1,i,m to α6,i,m, β1,i,m to β6,i,m, b1,i,m to b6,i,m, and p1,i,m to p6,i,m represent
location-specific slopes of corresponding parameters in month m; AODi,m (no unit) refers to the
merged AOD from Terra and Aqua at location i in month m; NO2_trop ,i,m (molecules/cm2) refers to
the OMI tropospheric NO2 columns at location i in month m; SO2_PBL ,i,m (DU) refers to the OMI PBL
SO2 columns at location i in month m; RHi,m (%), Ti,m (K), Ui,m (m/s), Vi,m (m/s), and BLHi,m (m)
represent the following meteorological parameters: relative humidity, temperature, U-wind speed,
V-wind speed, and boundary layer height at location i in month m, respectively.

2.3.2. Health Impact Assessment

To quantitatively account for the human health impacts of exposure to multiple air
pollutants, the HIA method was used in this study based on the concentrations of air pollutants,
exposure–response functions, and gridded population data. This method has been widely used in
previous assessments of air pollution hazards [51–53]. The preconditions of the HIA method are
as follows in this study: (1) the exposure–response coefficient is the value of long-term exposure,
the annual average concentration of air pollutants used in calculating the relative risk; (2) the
health impact assessment unit can be changed from the province or city to the grid; (3) if the air
pollutant concentration exceeds the safe threshold, the health risk of the total population in the grid
area can be calculated based on the risk in 1 µg/m3 concentration increments for one person in
epidemiological studies.

Two health endpoints were selected in this study to assess the health impacts caused by PM2.5,
PM10, NO2, and SO2: respiratory deaths and cardiovascular deaths.

First, the relative risk (RR) of a certain pollutant for the health outcomes can be calculated
as follows:

RR = exp[β× (C − C0)] (5)
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where C represents the annual average concentration of an air pollutant; C0 is the reference safe
threshold concentration of health hazards resulting from the pollutant, with its value based on
the air quality guidelines of the WHO [54]; β is the exposure–response coefficient, which is the
percentage increase in health impacts per 1 µg/m3 specific air pollutant concentration increment. The
β value is based on the meta-analysis results of the latest relevant literature on residents in China [55].
The literature retrieved the epidemiological studies published at home and abroad concerning the
impact of air pollutants on mortality from cardiovascular disease and respiratory disease in the past
decade, and screened 23 papers with the final data. The percentage increase in disease mortality per
unit concentration of air pollutants in each paper and its 95% CI were used. Reference data were
quantitatively synthesized through a meta-analysis to obtain the final exposure–response relationship
between air pollution and human mortality impacts in China. The coefficient results were compared
with the meta-analysis results of the relevant literature at home and abroad [56,57]. The gap is within
a reasonable range, and the coefficient results have been cited by other literature [58], ensuring the
applicability and validity of the data. The β values and C0 values of PM2.5, PM10, NO2, and SO2 are
listed in Table 2.

The number of cases E for each health endpoint attributed to a specific air pollutant is calculated
using Equation (6):

E = P ×
(

fp − f0
)

(6)

where P is the exposed population; fp represents the current baseline incidence, which can be calculated
by multiplying the incidence rate in a clean environment f0 by the RR:

fp = f0 × RR (7)

Finally, by combining Equations (6) and (7), we can calculate E as formula (8):

E = fp × P ×
(

RR − 1
RR

)
(8)

The current baseline incidence fp of specific diseases can be obtained from the China Health and
Family Planning Statistics Yearbook.

Table 2. Reference threshold and exposure–response coefficients of the multiple air pollutants.

Air Pollutants C0 (µg/m3)
β (%) for Respiratory Disease

(95% Confidence Interval)
β (%) for Cardiovascular Disease

(95% Confidence Interval)

PM2.5 10 0.056 (0.039, 0.081) 0.075 (0.045, 0.125)
PM10 20 0.043 (0.023, 0.080) 0.054 (0.032, 0.091)
NO2 40 0.183 (0.108, 0.310) 0.115 (0.083, 0.161)
SO2 20 0.083 (0.021, 0.322) 0.127 (0.093, 0.172)

C0 : the safe threshold concentration; β: the exposure-response coefficient.

3. Results

3.1. GWR Model Results and Verification

The NO2, SO2, and AOD values retrieved from satellite data reflect the air pollution status
from the land surface to the top of the atmosphere. However, people only breath the air at ground
level. Therefore, the GWR model is applied to convert column concentrations into ground-level
concentrations of air pollutants. In this study, 70% of the ambient monitoring station data were used for
GWR modeling, and the remaining 30% were used for validation. Three statistical evaluation indicators,
the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute
percentage error (MAPE), were calculated to compare the estimated results and measured values.
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The modeling and verification results of the GWR model are listed in Table 3. All the R2 are
higher than 0.70, which means that the conversion results were satisfactory, and the R2 values for
PM10 and PM2.5 are slightly higher than those for NO2 and SO2. Scattering plots for verification are
depicted in Figure 3. The blue line (linear fitting) is close to the red line (1:1), indicating that the results
are reasonable. The value of three statistical evaluation indicators for verification show that there is
a high correlation and low deviation between the estimated results and measurements. Therefore,
the estimated ground-level concentrations of air pollutants is close to the measurements, ensuring the
applicability and reliability of the data sources used for health impact assessment.

Table 3. Model fitting and verification of air pollutants estimation.

Air Pollutants
Modeling Verification

N R2 N R2

NO2 3136 0.75 1344 0.72
SO2 3067 0.79 1311 0.77

PM10 3016 0.84 1293 0.81
PM2.5 3016 0.83 1293 0.82
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3.2. Spatial Distribution of Ground-Level Air Pollutants

3.2.1. Spatial Distribution of Ground-Level PM10 and PM2.5

As major forms of inhalable particulate matter, PM10 and PM2.5 are mainly derived from human
activities, such as coal combustion, industrial production, and vehicle emissions. They affect human
health via deposition in the respiratory tract. Based on equations (1) and (2), we estimated the
ground-level PM2.5 and PM10 concentrations, respectively. The spatial distribution of the annual
average concentration in 2016 is shown in Figure 4 with a spatial resolution of 0.125◦ × 0.125◦.
The annual average concentrations of PM10 and PM2.5 in the study area are 100 µg/m3 and 59 µg/m3,
respectively. Because PM10 and PM2.5 are both estimated based on AOD products, there is a similarity
in the spatial distribution trends, but the numerical difference is very large. The highest annual average
concentrations of PM10 and PM2.5 are up to 157 µg/m3 and 90 µg/m3, respectively. The percentage of
the total study area with PM10 concentrations exceeding the Chinese National Secondary Air Quality
Standard (CNSAQS, GB3095-2012) of 70 µg/m3 is approximately 93%. The remaining areas are
mainly coastal areas (Weihai city in eastern Shandong) and mountains (Huangshan city in southern
Anhui) due to the mitigation of sea breezes and forests. The most highly polluted areas of PM10 are
concentrated in Henan and west-central Shandong, where the concentrations exceed 120 µg/m3. They
are also the most polluted areas for PM2.5, with concentrations twice as high as those of CNSAQS
(35 µg/m3). Approximately 98% of the entire study area has PM2.5 concentrations exceeding the
CNSAQS, which is greater than that for PM10. In general, in terms of inhalable particulate matter, the
five provinces along the Huaihe River are seriously polluted. These conditions are mainly related to
serious industrial and agricultural pollution in the region, which may cause serious harm to the
environment and human health in the study area. It is necessary to control and prevent heavy
pollution in these areas.

Int. J. Environ. Res. Public Health 2019, 16, x 10 of 18 

As major forms of inhalable particulate matter, PM10 and PM2.5 are mainly derived from human 
activities, such as coal combustion, industrial production, and vehicle emissions. They affect human 
health via deposition in the respiratory tract. Based on equations (1) and (2), we estimated the ground-
level PM2.5 and PM10 concentrations, respectively. The spatial distribution of the annual average 
concentration in 2016 is shown in Figure 4 with a spatial resolution of 0.125° × 0.125°. The annual 
average concentrations of PM10 and PM2.5 in the study area are 100 µg/m3 and 59 µg/m3, respectively. 
Because PM10 and PM2.5 are both estimated based on AOD products, there is a similarity in the spatial 
distribution trends, but the numerical difference is very large. The highest annual average 
concentrations of PM10 and PM2.5 are up to 157 µg/m3 and 90 µg/m3, respectively. The percentage of 
the total study area with PM10 concentrations exceeding the Chinese National Secondary Air Quality 
Standard (CNSAQS, GB3095-2012) of 70 µg/m3 is approximately 93%. The remaining areas are mainly 
coastal areas (Weihai city in eastern Shandong) and mountains (Huangshan city in southern Anhui) 
due to the mitigation of sea breezes and forests. The most highly polluted areas of PM10 are 
concentrated in Henan and west-central Shandong, where the concentrations exceed 120 µg/m3. They 
are also the most polluted areas for PM2.5, with concentrations twice as high as those of CNSAQS (35 
µg/m3). Approximately 98% of the entire study area has PM2.5 concentrations exceeding the CNSAQS, 
which is greater than that for PM10. In general, in terms of inhalable particulate matter, the five 
provinces along the Huaihe River are seriously polluted. These conditions are mainly related to 
serious industrial and agricultural pollution in the region, which may cause serious harm to the 
environment and human health in the study area. It is necessary to control and prevent heavy 
pollution in these areas. 

 

 
Figure 4. Spatial distribution of ground-level PM10 (A) and PM2.5 (B) in 2016. 

3.2.2. Spatial Distribution of Ground-Level NO2 and SO2 

NO2 and SO2 are important pollution gases in the troposphere and are mainly from automobile 
emissions and fossil fuel combustion. They can be oxidized to form sulfate aerosols and nitrate 
aerosols, which constitute the main components of haze. The tropospheric NO2 and PBL SO2 were 
estimated to the ground level based on equations (3) and (4), respectively. Figure 5 reveals the spatial 
distribution of the annual average concentrations of NO2 and SO2 in 2016, with a spatial resolution of 
0.125° × 0.125°. The annual average concentrations of NO2 and SO2 in the study area are 31 µg/m3 and 
26 µg/m3, respectively. The highest annual average concentrations of NO2 and SO2 are up to 54 µg/m3 
and 76 µg/m3, respectively. The NO2 concentrations in the study area exceed the CNSAQS (40 µg/m3) 
by approximately 15%, especially in the large and medium-sized cities in various provinces, such as 
Zhengzhou in Henan, Zibo in Shandong, and Hefei in Anhui. The pollution levels are due to the 
dense population and industrial development in these cities. In space, the concentration of NO2 
gradually decreases from cities with higher concentrations to the surrounding areas with lower 

Figure 4. Spatial distribution of ground-level PM10 (A) and PM2.5 (B) in 2016.

3.2.2. Spatial Distribution of Ground-Level NO2 and SO2

NO2 and SO2 are important pollution gases in the troposphere and are mainly from automobile
emissions and fossil fuel combustion. They can be oxidized to form sulfate aerosols and nitrate aerosols,
which constitute the main components of haze. The tropospheric NO2 and PBL SO2 were estimated to
the ground level based on equations (3) and (4), respectively. Figure 5 reveals the spatial distribution of
the annual average concentrations of NO2 and SO2 in 2016, with a spatial resolution of 0.125◦ × 0.125◦.
The annual average concentrations of NO2 and SO2 in the study area are 31 µg/m3 and 26 µg/m3,
respectively. The highest annual average concentrations of NO2 and SO2 are up to 54 µg/m3 and
76 µg/m3, respectively. The NO2 concentrations in the study area exceed the CNSAQS (40 µg/m3)
by approximately 15%, especially in the large and medium-sized cities in various provinces, such as
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Zhengzhou in Henan, Zibo in Shandong, and Hefei in Anhui. The pollution levels are due to the dense
population and industrial development in these cities. In space, the concentration of NO2 gradually
decreases from cities with higher concentrations to the surrounding areas with lower concentrations.
The spatial distribution characteristics are mainly because the lifetime of NO2 in the air is on the
order of hours, so the highly concentrated areas are mainly located around the emission sources.

The annual average concentration of SO2 varies widely between regions, with concentrations
ranging from 9 µg/m3 to 76 µg/m3. The high-value areas are mainly located in north-central Shandong,
where the SO2 concentration exceeds the CNSAQS (60 µg/m3). These high pollution levels are
related to the heavy industrial production in the region. In Hubei, Anhui, Jiangsu, and eastern
Shandong, the SO2 concentrations are below 35 µg/m3. The area in the five provinces along the
Huaihe River with SO2 concentrations exceeding the CNSAQS is less than 1%. Therefore, there is
basically no SO2 pollution. In general, the NO2 and SO2 pollution in the five provinces along the
Huaihe River is lighter than the PM10 and PM2.5 pollution.
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3.3. Health Impact Assessment

Air pollutants carry toxic substances into the human body through chemical reactions, causing
physiological dysfunction in the human respiratory system or other systems. Compared with other
pollutants, PM2.5 (as a form of inhalable particulate matter) has a small particle size, high adhesiveness,
and strong penetrating power. PM2.5 can even enter the circulatory system, where it can bring about
serious cardiovascular diseases, respiratory diseases, and even lung cancer. Based on Equation (8),
we combined the concentrations of air pollutants with population exposure information and then
obtained the number of cases for two health endpoints associated with air pollutants in the study area,
as shown in Figures 6 and 7, respectively. The spatial resolution is 0.125◦ × 0.125◦. The value indicates
the increased number of disease deaths due to current air pollutant concentrations using the air quality
guidelines of WHO as reference concentrations. Table 4 shows the total number of disease deaths
caused by air pollutants in 2016.

Table 4. Increased number of disease deaths caused by exposure to air pollutants.

Air Pollutants Increased Respiratory Deaths Increased Cardiovascular Deaths

NO2 546 1221
SO2 1788 9666

PM10 10,595 46,954
PM2.5 8364 39,524
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In terms of the respiratory deaths associated with air pollutants, PM10 has the largest impact
value and range. Shandong and Henan are the most affected regions, with 3139 and 3147 respiratory
deaths attributable to PM10, respectively, accounting for approximately 0.4% of the total death tolls
in the corresponding provinces. In terms of spatial distribution, the high-value areas are mainly
represented by a number of discrete pixels because of the concentrated population distribution
(as shown in Figure 2). Wuhan in Hubei has less than one respiratory death attributed to SO2

because the concentrations are less than 35 µg/m3, even with the unit pixel population of 2.05 million.
The concentrations of air pollutants in west-central Shandong exceeds the CNSAQS, but southern
Jinan and southern Zibo each only have one respiratory death, because the unit pixel population
are less than 50,000. The health impacts are the combined result of air pollutant concentration and
population density. Therefore, it is necessary to take targeted measures in the region, and the relevant
actors should not rely solely on population distribution or pollution levels.
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Air pollution produces more cardiovascular deaths than respiratory deaths. The affected area is
wide, extending from eastern Henan to western Shandong, with 10 to 50 cardiovascular deaths
attributable to PM10 and PM2.5. The highest pixel values for PM10 and PM2.5 are 280 and 206,
respectively. The number of cardiovascular deaths caused by PM10 in Shandong and Henan account for
1.9% and 1.8% of the total death tolls, respectively. Although the contaminated area of SO2 is smaller
than that of NO2, the health risk of SO2 is greater than that of NO2 when combined with the population
distribution. The high-risk area of SO2 covers northern Henan and central Shandong. Zhengzhou in
Henan has the highest risk attributable to PM10 and PM2.5, with 1436 and 1135 cardiovascular deaths,
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respectively. These high values are due to the high PM10 and PM2.5 concentrations and the large
population. The risk value of cardiovascular disease is also related to the pollutant concentrations and
the population distribution. Southern Anhui and western Hubei are mostly mountainous and hilly,
with sparse populations and low air pollutant concentrations. Therefore, the health risks attributed to
air pollution are also low.Int. J. Environ. Res. Public Health 2019, 16, x 13 of 18 
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In general, the health impacts of air pollution are mainly concentrated in northern Henan,
west-central Shandong, southern Jiangsu, and Wuhan in Hubei. The health impacts of air pollutants
are mainly related to inhalable particulate matter. The main reason is that the concentrations of
PM10 and PM2.5 in the study area are too high. If the air quality guidance value of the WHO is the
reference concentration, the annual average concentrations of PM10 and PM2.5 exceed the reference
value by 5 times and 6 times, respectively, while the NO2 and SO2 concentrations are close to the
reference concentrations. In addition, the properties of inhalable particulate matter also represent
another reason behind the health impacts. PM2.5 has a large surface area onto which various pollutants
can be adsorbed to form a synergistic effect of multiple pollutants. The heart and blood vessels are
vulnerable to air pollution, and the resulting mortality is high. The degree and scope of health effects
attributed to air pollution in different regions vary, and appropriate preventive measures should be
taken in a targeted manner.
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4. Discussion

Our research provided spatially continuous information on the health impacts associated with
four major air pollutants in the five provinces along the Huaihe River. However, there are some
limitations. First, instead of a physical model, a geographic statistical model was applied to estimate
the ground-level concentrations of air pollutants. Considering the complicated interactions between
air pollutants and meteorological parameters, it is difficult to depict the change and trajectories of
various air pollutants effectively and efficiently in our research area for the whole year. Moreover,
the R2 value between the estimated concentration of air pollutants and the measured value for the
ground sites (Table 3) is high enough to prove that the empirical model is credible.

Second, the exposure–response coefficients we used are referenced from previous literature, and
the actual coefficients in the study area may differ due to the differences in individual populations,
regional environments, and living habits. At present, there are few studies on the exposure–response
coefficients of air pollution and population health effects in various regions in China. However, the data
are from published meta-analysis results in China. Use of these data could reduce the uncertainty of
the coefficients in the region. Our health impact assessment results are consistent with previous studies.
For example, Fang et al. (2016) [14] found that PM2.5 caused more than 3000 cardiovascular deaths
and 150 respiratory deaths in Suzhou, Jinan, and Hefei by analyzing the health effects attributed to
PM2.5 in 74 major cities in China in 2013. Cardiovascular disease contributed the most to the total
PM2.5-related deaths, and large numbers of disease cases were mostly found in developed metropolitan
regions. In addition, Song et al. (2016) [59] reported that there were approximately 1000 cases of
cardiovascular disease and 150 cases of respiratory disease caused by PM2.5 in Wuhan. In our research,
in Suzhou, Jinan, and Wuhan, the number of respiratory diseases attributed to PM2.5 was 230, 139,
and 158, respectively, and the number of cardiovascular diseases was 1087, 656, and 750, respectively.
Furthermore, we evaluated the health effects of multiple air pollutants and analyzed their spatial
distribution differences.

There is a certain correlation between air pollutants. Specifically, there is a strong correlation
between PM2.5 and PM10 (the correlation coefficient is greater than 0.8). The annual average
concentrations of PM2.5 and PM10 are also positively correlated with NO2 and SO2 [60]. This is
related to common sources of contamination and photochemical reaction between air pollutants [61].
Our research achieved a single health impact of multiple air pollutants, rather than a comprehensive
health impact. The interaction of other contaminants was ignored in conducting the health impact
assessment of one air pollutant. In theory, there is a risk of double counting. The overall health risks
related to air pollution in the study area may be lower than the evaluation results. The results of
this study will be mainly useful for roughly estimating the health impacts caused by air pollutants,
generally clarifying the spatial distribution, and serving as reference values for the decision-making
of relevant departments. The interaction of air pollutants and the impact of integrated pollution on
human health will be the foci of future research studies.

5. Conclusions

Based on satellite observation data and various meteorological parameters, this study used a GWR
model to estimate the ground-level concentrations of NO2, SO2, PM10, and PM2.5 in five provinces
along the Huaihe River in 2016. Furthermore, these pollution data were combined with population
data to analyze the health impacts of exposure to various air pollutants, and respiratory deaths and
cardiovascular deaths were chosen as two health endpoints. The results show that the ground-level
concentrations of air pollutants can be reliably obtained based on the relevant satellite observation data.
The estimation results can explain more than 72% of the station measurements of each air pollutant.
The annual average concentrations of NO2, SO2, PM10, and PM2.5 in the study area are 31 µg/m3,
26 µg/m3, 100 µg/m3, and 59 µg/m3, respectively. The areas with PM10 and PM2.5 concentrations
exceeding the CNSAQS both exceeded 90%.
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From the results of related health impacts, NO2, SO2, PM10, and PM2.5 are associated with 546,
1788, 10,595 and 8364 respiratory deaths, and 1221, 9666, 46,954 and 39,524 cardiovascular deaths,
respectively. These air pollutants are more likely to have greater impacts on cardiovascular disease
than respiratory disease. The health impacts of air pollution are mainly concentrated in northern
Henan, west-central Shandong, southern Jiangsu, and Wuhan in Hubei, where the health impacts for
individual cities are particularly evident. Heavily impacted cities mainly include Zhengzhou, Luoyang,
Jinan, Jining, Nanjing, Wuxi, and Wuhan, which have dense populations and high concentrations of
air pollutants. In contrast, southern Anhui and western Hubei are mostly mountainous and hilly,
where health risks attributed to air pollution are low. The health impacts are the combined results of
air pollutant concentrations and population density.

The areas affected by PM10 and PM2.5 cover almost all of the five provinces along the Huaihe
River. Therefore, the five provinces along the Huaihe River should consider PM10 and PM2.5 as the
priority pollutants to be controlled. The health impacts caused by NO2 and SO2 are relatively low,
indicating the effectiveness of air pollution control implemented in the study area. However, due to the
problems of national energy and industrial structure, the governance of particulate matter pollution
may take a longer time. Pollution control in higher health hazard areas should be given more attention.
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