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Abstract: Railyards are important transportation hubs, and they are often situated near populated
areas with high co-located density of manufacturing, freight movement and commercial enterprises.
Emissions occurring within railyards can affect nearby air quality. To better understand the air
pollution levels in proximity to a major railyard, an intensive mobile air monitoring study was
conducted in May 2012 around a major railyard area in Atlanta, GA, constituted of two separate
facilities situated side-by-side. A total of 19 multi-hour mobile monitoring sessions took place over
different times of day, days of the week, and under a variety of wind conditions. High time resolution
measurements included black carbon (BC), particle number concentration (PN), particle optical
extinction (EXT), oxides of nitrogen (NO, NO2, NOy), carbon monoxide (CO), and speciated air toxics.
Urban background was estimated to contribute substantially (>70%) to EXT and CO, whereas BC,
oxides of nitrogen (NOx) and toluene had comparably low background contributions (<30%). Mobile
monitoring data were aggregated into 50 meter spatial medians by wind categories, with categories
including low speed wind conditions (<0.5 m s−1) and, for wind speeds above that threshold, by
wind direction relative to the railyard. Spatial medians of different pollutants measured had a wide
range of correlation—gas-phase air toxics (benzene, toluene, acetaldehyde) had moderate correlation
with each other (r = 0.46–0.59) and between toluene and CO (r = 0.53), but lower correlation for other
pairings. PN had highest correlation with oxides of nitrogen (r = 0.55–0.66), followed by BC (r = 0.4),
and lower correlation with other pollutants. Multivariate regression analysis on the full set of 50 m
medians found BC and NO as having the strongest relationship to railyard emissions, in comparison
to their respective background levels. This was indicated by an increase associated with transiting
through the yard and inverse relationship with distance from the railyard; NO and BC decreased by
a factor of approximately 0.5 and 0.7 over 1 km distance of the railyard boundary, respectively. Low
speed, variable wind conditions were related to higher concentrations of all measured parameters.

Keywords: near-source; railyard; air pollution; mobile monitoring; locomotive

1. Introduction

Characterization of air quality patterns in near-source environments is a topic of ongoing
interest, as studies demonstrate adverse health conditions associated with proximity to transportation
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sources [1]. Within the United States, it is estimated that 45 million Americans reside in close proximity
to large transportation sources, including four-lane roadways, railroads, and airports [2]. Over the last
decade, a substantial number of field studies have been conducted to evaluate air pollution trends
in near-road environments, finding repeatable exponential increases in concentrations of directly
emitted pollutants (e.g., carbon monoxide, nitrogen oxide, black carbon) with proximity to a major
highway [3]. Additionally, near-road studies have also revealed significant variability in local air
pollution concentrations related to the surrounding topography (barriers, buildings, roadway design),
traffic patterns, and local meteorology [4,5].

Local-scale air pollution related to other transportation source types—railyards, ports,
and airports—has also been characterized in field studies, albeit to a lesser extent than highway settings.
These types of sources are complex, with multiple types of activities and related emissions concentrated
over a large area. In addition to general concerns about public health in near-source environments,
environmental justice concerns are indicated in some locations. Arunachalam, et al. [6] studied several
overall goods transportation areas related to a number of major ports, including railyards and major
highways, finding higher representation of lower income and minority populations living within
300 m of a source at four of the five port areas studied.

In the case of railyards, the focus of this study, each railyard is unique in its operations, layout,
and geographic setting. Emission sources in classification railyards include switcher locomotives,
which are often old model locomotives characterized by high emissions, as well as trains passing
through the yard. Intermodal railyards include additional cranes and truck traffic associated with
the movement of containers to and from trains. Other possible sources of emissions include service
vehicles, small engines, and load-testing of locomotives as part of maintenance.

A recent fine-scale modeling study of a generic intermodal railyard with surrounding urban
environment predicted a significant air pollution gradient in downwind locations, with dispersion and
the resulting pollutant concentrations strongly modulated by the topography and wind direction [7].
Other dispersion modeling studies have been conducted to evaluate whether railyard emissions may
impact local regulatory air monitoring of PM2.5, and predicted an increase in PM2.5 associated with
railyard emissions at the Rougemere Rail Yard in Dearborn, MI [8] and at the Tilford/Inman Rail Yard
in Atlanta, GA [9].

Common measurement approaches for near-source monitoring have included stationary and
mobile monitoring systems. Stationary field studies have found that isolating local air pollution
associated with railyard operations from industrial sources located in close proximity can be difficult [8].
In other studies, near-field elevated concentrations of black carbon [9–11], particulate matter [9],
and nitric oxide (NO) [11] have been attributed to railyard emissions. Near the Roseville Rail Yard,
which included a major locomotive maintenance operation, Cahill et al. [11] also reported the presence
of polycyclic aromatic hydrocarbons (PAHs) in the ultrafine (Dp < 0.1 µm) fraction of particulate matter.
Mobile monitoring, which is the approach used in this present study, provides the ability to conduct
observations over a large spatial area and to correlate emission measurements with sources. Therefore,
mobile monitoring is becoming an increasingly common strategy of studying air quality and emission
sources (e.g., [12–14]); however, this approach of measurement is nontrivial in its labor-intensive
method of collecting data, and requires both high time-resolution measurement approaches and
advanced data analysis methods to process and interpret the results [15].

The present study used a mobile monitoring approach to detect spatial patterns of an extensive set
of air pollutants surrounding two co-located major railyards in Atlanta, GA. In addition to providing
some key findings about air quality proximate the railyard area, these results also provide a useful base
case for a railyard area that is expected to eventually replace its older switcher locomotives for new
genset locomotives with substantially lower emissions. Finally, the measurement and data analysis
methodologies utilized in this study may be replicated in other environments to characterize air quality
proximate to large transportation sources.
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2. Methods

2.1. Field Study Design

A mobile air monitoring study was designed to measure an array of air pollution parameters
near a major railyard area in Atlanta, GA. The railyard area includes the Inman and Tilford co-located
railyards, owned by CSX and Norfolk Southern, respectively. At the time of the study, the Inman
Yard was a large intermodal railyard with 14 switcher locomotives, while the Tilford Yard was a CSX
hump classification terminal handling approximately 80 trains per week and operating 10 switcher
locomotives [9].

The sampling study occurred over the month of May, 2012. The mobile monitoring vehicle was
driven for several hour periods (a “session”) on a predesigned route that included areas proximate
(<300 m) to the two railyards and on a public roadway that traveled directly through the two yards.
The sessions ranged in length from 1.2 to 5.9 h with a mean of 3.8. The sessions consisted of a
combination of mobile and stationary sampling with 74% of the data collected while the vehicle was in
motion. The mean and median speeds for when the vehicle was in motion were both 12 mph with a
standard deviation of 7.8. The data collected during the campaign were divided into 50 m segments
and classified into three categories: eastern side, western side, or within railyard (Figure 1).
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A total of 19 sessions, translating to over 70 h of sampling, were conducted and staggered over
different timeframes to account for the variability in meteorology and railyard operations. The resulting
data cover different hours of day, days of week (with both daytime and nighttime measurements),
and a variety of meteorological conditions (Figure 2). Meteorological measurements (1 min) were
obtained from a weather station located on the Georgia Institute of Technology (GA Tech) campus
(~3 km distant) and were compared with hourly measurements collected at Fire Station 8 directly
adjacent to the railyard and at the Atlanta International Airport [9]. Further data analysis used the
meteorological measurements at the GA Tech campus because they were available for the entire field
campaign. Wind measurements were aggregated into hourly measurements and classified into five
categories based on the orientation to the railyard and wind speed: wind speed less than or equal to
0.5 m/s; cross-railyard wind categories of north-northeast (NNE), direction between 337.5 and 112.5
and south-southwest (SSW) direction between 157.5 and 292.5; as well as parallel-to-railyard wind
categories including southeast (SE) direction between 112.5 and 157.5; and northwest (NW) between
292.5–337.5. The prevailing wind direction was SE, but winds perpendicular to the primary railyard
axis, from the south-southwest (SSW) and north-northeast (NNE), were also observed during the
campaign (Figure 2).
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2.2. Measurement Approach

The Aerodyne Mobile Laboratory (AML) [16], included an extensive array of instruments (Table 1)
measuring carbon monoxide (CO), oxides of nitrogen (NO, NO2, NOy), particle number (PN), black
carbon (BC), particle optical extinction (EXT), benzene, toluene, and acetaldehyde. All instruments
collected data on a real-time basis, with measurement rates ranging from ~1–3 s.

Table 1. Mobile monitoring instrumentation and sampling rates.

Measurement Rate Instrument

Carbon Dioxide (CO2) 0.9 s Licor 6262 (2) and Licor 820
Carbon Monoxide (CO) 1 s Aerodyne mini QC-TILDAS 1 (2230 cm−1)

Nitric Oxide (NO) 1 s Thermo 42i Chemiluminescence
Nitrogen Dioxide (NO2) 1 s Aerodyne Cavity Enhanced Phase Shift

Oxides of Nitrogen (NOy) 1.4 s Thermo 42i with external inlet-tip Mo Converter
Black Carbon (< 2.5 µm) 3 s Thermo 5012 Multi-Angle Absorption Photometer

Particle Extinction 3 s Aerodyne Cavity Enhanced Phase Shift
Particle Number Concentration 1.8 s TSI 3025A Condensation Particle Counter

Aromatics and Oxygenates, including
benzene, toluene, acetone, acetaldehyde 1.4 s Ionicon Quadrupole PTR-MS 1

1 QC-TILDAS: Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer; PTR-MS: Proton
Transfer Reaction Mass Spectrometer.
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The mobile monitoring instrumentation was connected to a common inlet system. The PM inlet
was made of 1” stainless steel tubing which then splits into various copper tubing to travel to different
PM instruments, using conductive material in order to prevent excessive particulate wall loss. Flow to
smaller PM instruments are split though an isokinetic inlet, with care taken to avoid sharp bends in
PM inlet lines. Gas phase inlet lines consist of PFA teflon tubing to minimize any surface chemistry
that might occur to sampled species on the walls of the tubing. The gas phase inlet was filtered in
order to protect instruments and detectors from particles.

Quality checks were conducted on all instrumentation, including zero and span checks on
gas-phase instruments, zero checks via filtering for the particle-phase instruments, and flow checks.
Periodically, air from two different zero-air generation sources were used to conduct zero baseline
adjustments for instrumentation, the time periods of which were flagged and removed from data
analysis. During sampling, three researchers were on board the AML, including a driver, a navigator
who also recorded real-time observations of the sampling conditions (e.g., observation of an emissions
event), and a researcher dedicated to monitoring the onboard instrumentation.

2.3. Data Analysis

Data analysis was conducted using the statistical software R version 3.4 (R Foundation for Statistical
Computing, Vienna, Austria). Aromatics measurements (benzene, toluene, and acetaldehyde) exhibited
more noise than the other measurements and were smoothed using a 10 second rolling mean prior to
analysis. To improve understanding of the contribution of local sources to measured concentrations,
the real-time pollutant measurements were used to estimate background concentrations using a
method similar to the one described by Brantley et al. [15]. The purpose of the algorithm is to estimate
a smooth curve that represents how the minimum of the concentrations varies over time. The algorithm
proposed in Brantley et al. [14] involved calculating the minimum values within a given window size
(e.g., 10 min) and fitting an ordinary least squares regression spline through the minimums. In this
paper, we simplify and improve the algorithm by using a natural spline basis expansion of time with
quantile regression rather than choosing a window size and calculating minimums.

Ordinary least squares regression is the most common way of modeling a response y as a linear
function of a predictor x. Given observations (yi, xi), where i = 1, . . . ,n, the intercept, β0, and slope, β1

are estimated as the values that minimize

i=n

∑
i=1

(yi − β0 − β1xi)
2 (1)

The resulting estimate of β1 represents the effect of x on the mean of y. In cases where the
relationship between y and x is non-linear, a spline basis expansion of x can be used to model y as a
smooth piecewise polynomial function of x rather than a simple linear function of x [17]. Quantile
regression, first proposed by Koenker et al. [18], enables the estimation of the effect of a predictor x on
a specific quantile of y rather than on the mean of y. Rather than defining β0 and β1 as the solution to
the least squares problem (Equation (1)) we will define them as the values that minimize the following
objective function:

i=n

∑
i=1

ρτ(yi − β0 − β1xi) (2)

ρτ(z) =
{

zτ if z > 0
z(τ − 1) if z ≤ 0

where ρτ(z) is the check loss function, and τ is the quantile level of interest. When the check loss
function is used, β1 represents the effect of x on the τth quantile of y. These estimates can be obtained
using the quantreg package in R [19].

To estimate the background concentration as a smooth function of time we used quantile
regression with a cubic natural spline basis expansion of time with degrees of freedom equal to
the number of hours in the time series. The background concentrations were estimated separately for
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each of the 19 sampling sessions. Several low quantiles were tested, and the results were not sensitive
to the level chosen. The results shown are the predicted 10th quantiles of the pollutant concentrations
which vary as a smooth function of time (Figure 3).
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To analyze the spatio-temporal trends in the dataset, the sampling route (shown in Figure 1) was
divided into 50 m road segments using ESRI ArcGIS. Measurements were then aggregated by taking
the median of the observations in each road segment for each of the 5 wind categories, as defined
earlier by wind speed and wind direction. Only road segments with at least 5 measurements for
a given wind category and within 1 km of the rail yard were used in the analysis. Between 7.1%
(benzene) and 11% (BC) of the segments were excluded which is unlikely to influence the results.
Medians were used to prevent undue influence by outliers (e.g., emissions very close to the sampling
car), based upon previous analysis of mobile monitoring data [15].

A total of 2461 aggregated spatial measurements were used in the analyses. While maps and
summary statistics provide indication of upwind/downwind differences, regression modeling was
conducted to determine whether these differences were statistically significant. Even after aggregation,
pollutant distributions were highly skewed and were transformed by taking the logarithm of the
measurements in order to meet the normality assumption for the regression analyses. As an initial step
to compare the spatial distributions of the pollutants, Pearson correlation coefficients were calculated
using pairwise complete observations. The log-transformed aggregated spatial measurements were
used in order to reduce the influence of large outliers.

To determine whether wind conditions or distance from the rail yard resulted in statistically
significant differences in mean concentrations, the aggregated pollutant concentrations were modeled as:

Y(s,w) = β0 + β1(calm(w)) + β2(railyard(s)) + β3(downwind(s,w)) + β4(distance(s)) + ε(s,w) (3)

where Y(s,w) represents the natural logarithm of the aggregated pollutant concentration at route
segment s and wind category w; calm(w) is an indicator of hourly wind speed less than or equal to
0.5 m/s; railyard(s) is an indicator variable that takes a value of 1 if route segment s is within the
railyard and 0 otherwise (Figure 1); downwind(s,w) takes a value of 1 if the route segment s is downwind
of the rail yard for wind category w, e.g., wind from the SSW and route segment on the eastern side of
the railyard and 0 otherwise; distance(s) is the mean distance of the measurements within the route
segment to the railyard edge in kilometers, measurements within the rail yard have a distance of 0.
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Because the concentrations being modeled were observed across space, they are very likely to
be correlated with one another, i.e., concentrations that are close to one another in distance are more
likely to be similar than concentrations that are farther apart. The lack of independence in the observed
concentrations can result in confidence intervals and p-values that are too small when standard OLS
is used. To prevent erroneous conclusions based on the assumption of independence, the error term,
ε(s,w), was modeled two separate ways. In the “Independent” model the errors were assumed to be
independent across both space and wind category (OLS). For this model the parameters were estimated
using the lm function in R. In the “Spatial” model, the errors were assumed to be independent across
wind category, but correlated across space. Spatial correlation was accounted for by modeling the
error term as a Gaussian process with an exponential covariance function. The covariance between the
errors at location s1, and location s2, is defined as a function of the Euclidean distance between the
locations (d) calculated in meters, a range term (φ), the spatial sill (σ2), and the nugget (τ2).

Cov(ε(s1, t), ε(s2, t)) = σ2 exp(-φd) (4)

Var(ε(s, t)) = σ2 + τ2 (5)

The parameters in the spatial model were estimated by maximizing the likelihood function using
the optim function in R.

3. Results and Discussion

3.1. Near-Railyard Pollution Trends

3.1.1. Concentrations and Estimated Background Contribution

For each of the 19 sampling sessions the mean concentration and mean of the estimated
background concentrations were determined (Table 2). Although short-term transient events can
visually appear to dominate the mean (Figure 3), EXT, CO, acetaldehyde, and PN had substantial
background contributions (>60%) attributed to the general Atlanta-area air pollution. At the other
end of the spectrum were pollutants more heavily dominated by local emissions, with background
contributing less than 30% to BC and oxides of nitrogen. Finally, benzene was approximately split
between background and local contributions to the signal. On a session by session basis, there was
variability in the background contribution. EXT had the narrowest range of background contribution,
likely due to the significant secondary aerosol fraction of the particulate matter. Meanwhile, other
parameters had wider ranges, such as the background BC contributing from 7%–53%.

Table 2. Summary of measured pollutant concentrations by session. Column “N” represents number
of sessions while N (obs) is number of observations. The grand means of the observed concentrations,
estimated background concentrations, and proportion of the mean concentration attributed to
background are given in the last three columns. Numbers in parentheses represent the standard
deviations of the session means.

Pollutant N N (obs) Session Mean Background Mean Background Fraction

BC (µg m−3) 18 157107 1.4 (0.64) 0.33 (0.16) 0.27 (0.14)
CO (ppb) 19 183693 270 (72) 190 (24) 0.74 (0.12)

PN (cm−3) 18 173049 6300 (2300) 3900 (1600) 0.61 (0.11)
Ext. (Mm−1) 15 150828 35 (13) 27 (11) 0.76 (0.077)

NO (ppb) 19 183041 11 (7) 1 (0.59) 0.1 (0.043)
NO2 (ppb) 19 181870 16 (7.3) 5.2 (5) 0.28 (0.14)
NOy (ppb) 18 181120 23 (12) 5.5 (2.5) 0.25 (0.068)

Acetaldehyde (ppb) 17 189208 2.2 (0.36) 1.5 (0.3) 0.68 (0.075)
Benzene (ppb) 17 189208 0.51 (0.073) 0.26 (0.057) 0.51 (0.095)
Toluene (ppb) 17 189208 0.48 (0.18) 0.13 (0.032) 0.28 (0.081)
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3.1.2. Spatial Variation within Route under Various Wind Conditions

After combining multiple mobile monitoring sessions based on the wind category, significant
variability in 50 m median concentrations is observable along the mobile monitoring route and
also between upwind/downwind areas (Figure 4). For mapping, concentrations were divided into
8 bins with equal numbers of road segments assigned to each color category to highlight spatial
differences. Maps of the other pollutants are included in supplemental information (Figures S1–S8).
Visual inspection of maps of pollutant concentrations under different wind conditions indicated
that NO2 concentrations in areas close to the railyard were elevated under downwind conditions
(Figure 4) and concentrations measured within the railyard were generally higher than concentrations
on nearby roads with low traffic. Some of the downwind areas close to the railyard had comparable
concentrations to those observed on a higher traffic road sampled during some of the driving routes.
The section of the driving route passing within the two railyards had consistently higher NO2 levels
with respect to upwind areas or low traffic roadways. Similar trends were observed in the NO and
NOy concentrations as well as PN and BC (Figures S1 and S7). These similarities are unsurprising,
given diesel combustion typically co-emits NOx, BC, and large numbers of particles.
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binned so that each color represents an equal number of road segments. Blue arrows represent range of
mean hourly wind directions.

The classification of the measurements into upwind, downwind, and within-yard during different
wind conditions provides information on a near-field pollution effect, or lack thereof. In Figure 5,
geometric means represent the mean of the log concentrations transformed back into the original units.
This is the response that is modeled in the regression analysis to determine if any of the predictors have
a significant effect on concentrations. NO2 and PN have an apparent increase in their geometric mean
in areas downwind of the railyard, i.e., the East side when the wind is from the SSW and the West
side when the wind is from the NNE, as well as within the yard. BC and EXT—an indicative value of
total particulate matter—are also elevated within the rail yard with some evidence of a downwind
effect. Meanwhile, benzene and CO exhibit only slight to no change between zones during the two
crosswind conditions.

In absolute terms, concentration levels are similar, or lower, to those observed in past near-railyard
and near-road studies in the United States. Prior to the mobile monitoring study, Galvis et al. [9]
reported slightly higher average BC concentrations, with mean values of 1.3–1.5 µg m−3, however
these values were measured over a full year. A monitoring site situated adjacent to a major railyard in
Cicero, IL measured overall mean values of BC and NO2 levels of 0.64 µg m−3 and 20.9 ppb, while
mean values during timeframes downwind of the railyard were 0.82 µg m−3 and 27.3 ppb, respectively,
over a ~6 month period of time [10].



Int. J. Environ. Res. Public Health 2019, 16, 535 9 of 14Int. J. Environ. Res. Public Health 2018, 15, x 9 of 15 

 

 
Figure 5. Concentration geometric means (black points) and box-and-whisker plots for concentrations 
aggregated by 50 m road segment and hour on road segments representing upwind, within, and 
downwind of the rail yard during cross-wind conditions. Boxes represent 25th and 75th quantiles, 
outlier points are measurements greater than 1.5 times the interquartile range away from the edge of 
the box. All measurements are plotted on a log-scale. 

In absolute terms, concentration levels are similar, or lower, to those observed in past near-
railyard and near-road studies in the United States. Prior to the mobile monitoring study, Galvis et 
al. [9] reported slightly higher average BC concentrations, with mean values of 1.3–1.5 µg m−3, 
however these values were measured over a full year. A monitoring site situated adjacent to a major 
railyard in Cicero, IL measured overall mean values of BC and NO2 levels of 0.64 µg m−3 and 20.9 
ppb, while mean values during timeframes downwind of the railyard were 0.82 µg m−3 and 27.3 ppb, 
respectively, over a ~6 month period of time [10]. 

3.1.3. Multipollutant Spatial Correlation 

Pearson correlation coefficients calculated using the 50 m spatial medians revealed the most 
highly correlated pollutant measurements were NOy with NO2 and NO with correlations of 0.90, 0.80 
respectively (Figure 6). Moderate correlation was observed between BC, PN, and oxides of nitrogen. 
EXT had moderately low correlation with BC, PN, and oxides of nitrogen, likely due to a significant 
portion of the EXT signal being regional in nature. Toluene was moderately correlated with both 
benzene and CO with correlations of 0.59 and 0.51, respectively. Overall, these correlation findings, 
along with the upwind-downwind analyses, indicate that NOx, BC and PN are co-emitted and have 
similar trends in areas surrounding the railyard, whereas other measured species were likely emitted 
by separate sources not strongly correlated to each other. Past in-depth analysis of mobile monitoring 

Figure 5. Concentration geometric means (black points) and box-and-whisker plots for concentrations
aggregated by 50 m road segment and hour on road segments representing upwind, within,
and downwind of the rail yard during cross-wind conditions. Boxes represent 25th and 75th quantiles,
outlier points are measurements greater than 1.5 times the interquartile range away from the edge of
the box. All measurements are plotted on a log-scale.

3.1.3. Multipollutant Spatial Correlation

Pearson correlation coefficients calculated using the 50 m spatial medians revealed the most
highly correlated pollutant measurements were NOy with NO2 and NO with correlations of 0.90, 0.80
respectively (Figure 6). Moderate correlation was observed between BC, PN, and oxides of nitrogen.
EXT had moderately low correlation with BC, PN, and oxides of nitrogen, likely due to a significant
portion of the EXT signal being regional in nature. Toluene was moderately correlated with both
benzene and CO with correlations of 0.59 and 0.51, respectively. Overall, these correlation findings,
along with the upwind-downwind analyses, indicate that NOx, BC and PN are co-emitted and have
similar trends in areas surrounding the railyard, whereas other measured species were likely emitted
by separate sources not strongly correlated to each other. Past in-depth analysis of mobile monitoring
data processing methods by Brantley et al. [15] suggests that these results may vary based upon
whether the mobile monitoring data had been evaluated in a raw, very high time resolution form,
smoothed temporally, versus aggregated into spatial segments. Spatial aggregation into median values
was determined by Brantley et al. [15] to limit the influence of extreme outliers. Additionally, past
analysis revealed that spatial rather than temporal data aggregation appeared to most clearly isolate
geographic areas with higher versus lower observed concentration [15].
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3.2. Effect of Meteorology and Distance to Railyard

Regression analysis isolated the effects associated with multiple potentially influential factors
on the transformed concentrations (Table 3). The intercept estimate, β0, represents the predicted
mean of the aggregated log-transformed concentrations at the edge of the railyard under upwind
and parallel wind conditions. Consequently exp(β0), represents the predicted mean of the aggregated
concentrations under these conditions in the original measurement units. Similarly, exp(β1) represents
the factor by which the aggregated concentrations change under calm or variable wind conditions
compared to the intercept, and exp(β4) represents the factor by which the aggregated concentrations
change with each kilometer increase in distance from the edge of the rail yard. An estimated value of
β4 that is significantly less than 0, (exp(β4) significantly less than 1) represents an exponential decay in
concentration with distance from the rail yard with a rate corresponding to the estimated value of β4.
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Table 3. Regression Results. Estimated effect of each of the predictors on the mean log transformed pollutant concentration, using both the independent and spatially
correlated error models. Standard errors of the estimates are shown in parenthesis. Estimates that are significantly different from 0 (p-value less than 0.05) are marked with *.

β0(intercept) β1(calm) β2(railyard) β3(downwind) β4(distance)

Independent Spatial Independent Spatial Independent Spatial Independent Spatial Independent Spatial

NO 0.76 (0.02) * 0.66 (0.09) * 0.41 (0.03) * 0.53 (0.19) * 0.66 (0.05) * 0.59 (0.08) * 0.11 (0.04) * 0.37 (0.09) * −0.90 (0.06) * −0.79 (0.08) *
NO2 2.06 (0.03) * 1.85 (0.1) * 0.46 (0.04) * 0.71 (0.22) * 0.62 (0.05) * 0.67 (0.08) * 0.21 (0.04) * 0.51 (0.09) * −0.75 (0.07) * −0.47 (0.09) *
NOy 2.27 (0.02) * 2.16 (0.07) * 0.39 (0.03) * 0.54 (0.15) * 0.59 (0.04) * 0.58 (0.06) * 0.17 (0.03) * 0.34 (0.07) * −0.73 (0.05) * −0.54 (0.07) *
BC −0.43 (0.02) * −0.50 (0.06) * 0.35 (0.03) * 0.38 (0.13) * 0.58 (0.04) * 0.59 (0.05) * 0.20 (0.03) * 0.38 (0.05) * −0.4 (0.05) * −0.32 (0.06) *
CO 5.31 (0.01) * 5.30 (0.02) * 0.12 (0.01) * 0.19 (0.05) * 0.02 (0.01) 0.04 (0.02) * 0.03 (0.01) * 0.02 (0.02) 0.05 (0.01) * 0.09 (0.02) *
Ext. 3.30 (0.01) * 3.25 (0.06) * 0.34 (0.02) * 0.40 (0.13) * 0.21 (0.03) * 0.24 (0.04) * 0.09 (0.02) * 0.16 (0.04) * −0.18 (0.04) * −0.22 (0.04) *
PN 8.42 (0.01) * 8.38 (0.04) * 0.15 (0.02) * 0.19 (0.08) * 0.27 (0.02) * 0.24 (0.03) * 0.002 (0.02) 0.13 (0.04) * −0.30 (0.03) * −0.30 (0.04) *

Benz. −0.85 (0.01) * −0.84 (0.02) * 0.13 (0.01) * 0.14 (0.03) * 0.03 (0.02) * 0.01 (0.03) 0.01 (0.01) −0.01 (0.03) −0.06 (0.02) * −0.07 (0.04)
Tol. −1.31 (0.01) * −1.23 (0.05) * 0.30 (0.02) * 0.32 (0.07) * 0.24 (0.03) * 0.12 (0.06) * −0.01 (0.02) −0.10 (0.07) 0.12 (0.04) * 0.04 (0.09)

Acetal. 0.70 (<0.01) * 0.73 (0.02) * 0.13 (0.01) * 0.13 (0.03) * 0.10 (0.01) * 0.03 (0.02) 0.08 (0.01) * 0.05 (0.02) * −0.06 (0.01) * −0.14 (0.03) *
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Calm or variable wind conditions significantly increased the concentrations of all the pollutants
measured, with the greatest effect on the nitric oxides which increased by a factor of 1.5 to 2 depending
on the pollutant and model, and the smallest effect on CO, benzene and acetaldehyde which increased
by factors of 1.1 to 1.2 (Table S1). Near-source studies commonly focus on time periods of cross-wind
conditions to clearly isolate spatial gradients in pollution attributed to the source. However, low speed,
mixed winds during calm periods can limit the dispersion of emissions in the immediate vicinity of
the rail yard as well as in the surrounding urban area, resulting in higher concentrations.

For both regression analyses, being within the rail yard, or downwind of the rail yard has a
significant positive effect on nitrogen oxides, BC, and EXT. These pollutants, along with PN also exhibit
a significant negative correlation with distance from the rail yard. NO displayed the largest relative
decrease with distance, decreasing by a factor of approximately 0.5 with a distance of 1 km, while BC
and PN both decreased by a factor of approximately 0.7. In addition to dispersion of emissions with
distance, another effect on NO is the post-emissions conversion to NO2. EXT, which was observed to
have a larger fraction of the mean concentration attributable to background decreased by a factor of
approximately 0.8.

The standard errors of the estimates are generally larger for the model with spatially correlated
errors. This is a more accurate representation of the uncertainty in our estimates of the parameters,
because measured concentrations on nearby road segments are unlikely to be independent. However,
in the majority of cases the conclusions based on the independent model do not differ from those of
the spatial model.

4. Conclusions

This study utilized a mobile air monitoring vehicle outfitted with advanced air measurement
instrumentation to map air pollution levels surrounding a major railyard area in Atlanta, GA. Beyond
the specific findings at this site, this study more broadly demonstrates how a short-term intensive
series of measurements on a mobile platform can yield a rich set of data characterizing the spatial
variability of air pollution surround a large area source. As discussed in a recent study applying
mobile monitoring near port terminals [20], the suitability of mobile monitoring as an approach for
near-source assessment depends upon roadway access to areas near the source and a minimization
of other large nearby sources that may confound data interpretation. While the Atlanta railyard
area studied was suitable for mobile monitoring, one limitation to note is the inability to distinguish
impacts between the two conjoined railyards. Beyond mobile monitoring study design, local-scale air
quality trends were discerned using data processing, aggregation, and statistical models to account
for background pollution levels, bin multiple runs by wind condition, and quantify the influence of
multiple parameters on spatial patterns of pollutants.

In this study, elevated near-field air pollution was evident for a number of pollutants (BC,
NO/NO2/NOy, PN, EXT), with an apparent inverse relationship with distance from the railyard
boundary. Low speed wind conditions were associated with increases of all measured pollutants,
including air toxics and CO which did not have any clear relationship with proximity to the railyard.
The low wind speed conditions confound the clear discernment of upwind/downwind areas and
attribution of any portion of the observed pollution to the local source.

Conducting mobile monitoring with advanced air monitoring instrumentation or installing
reference-level analyzers in near-source areas are costly endeavors, which has to date limited the
number of near-railyard field studies conducted. Emerging air sensor technologies are expected to
vastly increase the amount of near-source observational data in the future, for a limited number of
pollutant types [21]. This present study indicates that specific air pollution measurements (e.g., BC,
NO) that are directly emitted are strong indicators of the near-field emissions impacts on air quality.

As populations and transportation sources naturally concentrate in urban areas, assessing
near-field impacts is anticipated to be of growing interest. This study displayed that concentration
gradients are evident in near-railyard areas and pollutants characteristic of diesel emissions co-varied.
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Given the variety in railyard designs and surrounding environments, similar field studies conducted
in other areas would broaden the body of information available on near-field air pollution impacts.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/4/535/s1,
Figure S1: Concentrations of BC aggregated by 50 m road segment during (left) winds from the north-northeast
(middle) winds from the south-southwest and (right) calm winds. Segments are binned so that each color
represents an equal number of road segments. Blue arrows represent range of mean hourly wind directions,
Figure S2: Concentrations of Benzene aggregated by 50 m road segment during (left) winds from the
north-northeast (middle) winds from the south-southwest and (right) calm winds. Segments are binned so
that each color represents an equal number of road segments. Blue arrows represent range of mean hourly
wind directions, Figure S3: Concentrations of CO aggregated by 50 m road segment during (left) winds from
the north-northeast (middle) winds from the south-southwest and (right) calm winds. Segments are binned
so that each color represents an equal number of road segments. Blue arrows represent range of mean hourly
wind directions, Figure S4: Concentrations of particle extinction aggregated by 50 m road segment during (left)
winds from the north-northeast (middle) winds from the south-southwest and (right) calm winds. Segments
are binned so that each color represents an equal number of road segments. Blue arrows represent range of
mean hourly wind directions, Figure S5: Concentrations of NO aggregated by 50 m road segment during (left)
winds from the north-northeast (middle) winds from the south-southwest and (right) calm winds. Segments
are binned so that each color represents an equal number of road segments. Blue arrows represent range of
mean hourly wind directions, Figure S6: Concentrations of NOy aggregated by 50 m road segment during (left)
winds from the north-northeast (middle) winds from the south-southwest and (right) calm winds. Segments are
binned so that each color represents an equal number of road segments. Blue arrows represent range of mean
hourly wind directions, Figure S7: Particle Number aggregated by 50 m road segment during (left) winds from
the north-northeast (middle) winds from the south-southwest and (right) calm winds. Segments are binned
so that each color represents an equal number of road segments. Blue arrows represent range of mean hourly
wind directions, Figure S8: Concentrations of Toluene aggregated by 50 m road segment during (left) winds
from the north-northeast (middle) winds from the south-southwest and (right) calm winds. Segments are binned
so that each color represents an equal number of road segments. Blue arrows represent range of mean hourly
wind directions, Table S1: Estimated effect of each of the predictors on the mean log transformed pollutant
concentration, using both the independent and spatial error models. Effects have been exponentiated to represent
factor increases.
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