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Abstract: The objective of this paper is to predict the future driving risk of crash-involved drivers in
Kunshan, China. A systematic machine learning framework is proposed to deal with three critical
technical issues: 1. defining driving risk; 2. developing risky driving factors; 3. developing a reliable
and explicable machine learning model. High-risk (HR) and low-risk (LR) drivers were defined
by five different scenarios. A number of features were extracted from seven-year crash/violation
records. Drivers’ two-year prior crash/violation information was used to predict their driving
risk in the subsequent two years. Using a one-year rolling time window, prediction models were
developed for four consecutive time periods: 2013–2014, 2014–2015, 2015–2016, and 2016–2017. Four
tree-based ensemble learning techniques were attempted, including random forest (RF), Adaboost
with decision tree, gradient boosting decision tree (GBDT), and extreme gradient boosting decision
tree (XGboost). A temporal transferability test and a follow-up study were applied to validate the
trained models. The best scenario defining driving risk was multi-dimensional, encompassing crash
recurrence, severity, and fault commitment. GBDT appeared to be the best model choice across
all time periods, with an acceptable average precision (AP) of 0.68 on the most recent datasets
(i.e., 2016–2017). Seven of nine top features were related to risky driving behaviors, which presented
non-linear relationships with driving risk. Model transferability held within relatively short time
intervals (1–2 years). Appropriate risk definition, complicated violation/crash features, and advanced
machine learning techniques need to be considered for risk prediction task. The proposed machine
learning approach is promising, so that safety interventions can be launched more effectively.

Keywords: driving risk; traffic violation behavior; machine learning; temporal transferability

1. Introduction

Since 2018, the Kunshan Traffic Police Department in China has been developing a comprehensive
safety improvement plan, aiming to control the increasing numbers of crashes. Limited by resources,
the policy-makers intended to focus on specific driver groups with high driving risk instead of all
registered drivers. Drivers with prior crash involvement were considered as a starting point, since they
were often considered at-risk and had been largely examined by previous literature [1–3]. The driving
risk of those drivers was expected to be accurately predicted for a future short time period (e.g., one or
two years). As such, safety interventions can be implemented in a more effective and efficient way.
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This practical need has raised several technical issues. First, how to define driving risk? According
to the local government, only crash-involved drivers were considered at the first stage of the plan. Thus,
latent risk, such as near-miss events [4], were not considered. Moreover, driving risk was defined from
multiple aspects, such as crash severity, crash recurrence, and fault commitment. For example, some
researchers defined high-risk drivers as those who were involved in crashes more than expected [5,6].
At-fault drivers were also considered to be risky and have been extensively studied [7–11]. Crash
severity was another dimension of research interest [12–15].

Determining what factors should be used for predicting driving risk is the second issue.
Previous literature has extensively examined various driver factors, including risky driving behaviors,
psychological factors, demographics, and social-economic factors [15,16]. Among them, risky driving
behaviors were often considered as important factors correlated to crash outcomes [17,18]. Previous
literature largely used prior violation/crash factors to represent risky driving behaviors. For example,
Gebers et al. [19] used prior violation frequency and crash frequency as crash risk predictors.
Buckley et al. [12] predicted the future injury risk for adolescents, considering their prior violation
frequency. Zhang et al. [13] linked risky driving behavior factors to injury risk, by developing a
factor of prior violation frequency. No type-specific violation factors were considered, as claimed
by the authors. Nishida [20] found that elderly drivers with prior cell phone usage violation had
higher fatal accident ratios. Hosseinlou et al. [21] attempted to link driving violations to crash risk
at an aggregated level. Three violation types were found as significant, including illegal overtaking,
tailgating, and speed violation.

The third issue is finding a way to precisely capture the driving risk pattern. Previous literature
largely depended on traditional statistical methods, including logistic regression [7,11,22], canonical
correlation [19], Poisson/negative binomial regression [12,20,23]. As for prediction performance,
Gebers et al. [19] reported a relatively low prediction precision of 27.2% on drivers’ future crash
involvement. The authors pointed out the weakness of the statistical model of considering simple
interactions between variables and outcomes. Das et al. [11] reported 62% precision of drivers’ future
fault assignment, based on a logistic model.

Although previous literature has extensively studied the above issues, some gaps still need to be
further addressed. First of all, most previous studies focused on a certain perspective (e.g., severity)
of driving risk, instead of comprehensively investigating it from multiple dimensions. Second, as for
predictors, a limited number of risky driving factors were examined based on historical violation/crash
records. More factors need to be examined, such as penalty fees, penalty points, and the temporal and
spatial characteristics of prior violations records. Those could also reflect risky driving behaviors. Third,
regarding risk pattern identification, previous models generally reported low predicting accuracy.
It appeared that the risk pattern should be captured in a more complexed way. Also, a model
validation process was missing in most studies. To fill the gaps, this study proposed a systematic
machine learning approach to predict future driving risk of crash-involved drivers in Kunshan, China.
First, driving risk was defined in different ways, considering multiple dimensions. Then, a number
of risky driving factors were carefully developed based on violation/crash records. Finally, multiple
tree-based machine learning models were developed to capture the complex driving risk pattern,
and further validated by transferability tests.

2. Materials and Study Design

2.1. Data

The Kunshan Traffic Police Department provided seven-year (2011–2017) crash data, including
crash records, crash characteristics, vehicle characteristics, roadway conditions, and drivers’
demographic information (i.e., gender, age, driving age, and so on) can be collected. Additionally,
on-site traffic violation records from 2011–2017 were also acquired from the Kunshan Traffic Police
Department. By matching IDs in the crash database and violation database, drivers’ violation records
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were also collected. Excluding those records with incomplete information, 201,328 crash records
were kept and a total of 387,836 drivers were observed. All these drivers were used as instances
(i.e., samples) for the machine learning model development.

2.2. Study Design

Regarding the request from the Kunshan Police Department, prediction models are expected to
be robust and transferable. Thus, prediction models for four consecutive time-periods were developed
in order to examine temporal transferability. As shown in Figure 1, the basic idea of the model fitting
process is to use drivers’ two-year prior crash/violation records (i.e., prior features) to predict their
future driving risk (i.e., labels) in subsequent two years. For example, the first model (i.e., Model A)
was established to predict drivers’ driving risk during the 2013–2014 time period, using their prior
two-year (2011–2012) violation/crash records. Using a one-year sliding time window, prediction
models for 2014–2015 (i.e., Model B), 2015–2016 (i.e., Model C), and 2016–2017 (i.e., Model D) can
be developed.
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Figure 1. Data usage for model development with a one-year sliding time window.

3. Model Development and Analysis

3.1. Model Framework

The model development of different time periods (i.e., Model A to D) followed the same procedure.
A systematic machine learning framework was proposed, as shown in Figure 2. The details are
discussed in the following sub-sections.
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3.2. Driving Risk Definition

Based on previous studies, recurrent crash involvement and fault assignment were considered
as the two important aspects for defining high-risk drivers. According to the local traffic police,
high-crash-risk drivers were considered to meet two criteria: 1. they have recurrent crashes within a
short time period; 2. they have found to be at-fault in severe crashes. The first criterion is consistent
with many previous studies, relying on the knowledge that aggressive/careless drivers may be more
likely to be involved in crashes. Since our observation time is two years, drivers with recurrent crashes
(i.e., >2) within this period were considered to meet this criterion. In other words, drivers with two
or more crashes during a two-year period may be considered as high-risk. The second criterion
is slightly different from previous literature. In China, there are five levels of fault conviction for
drivers: none, minor, equal, major, and full. In practice, there are some conditions that drivers will
be assigned a fault without aberrant behaviors, especially in non-severe crashes. Non-severe crashes
refer to crashes without any injuries. Severe crashes include injury and fatal crashes. The Kunshan
traffic police claimed that at-fault assignment in severe crashes is much more reliable than that in
non-severe crashes. Based on this knowledge, five scenarios were used to define high-risk (HR) drivers
in Kunshan: 1. drivers with recurrent crash involvement; 2. drivers determined as at-fault in severe
crashes; 3. drivers with recurrent crash involvement or found as at-fault in severe crashes; 4. drivers
with at-fault crash involvement; 5. drivers with crash involvement. For each scenario, excluding
HR drivers, the remaining drivers were defined as non-high-risk (NHR) drivers. It should be noted
that the driving risk of a driver varies over time. In other words, one can be defined as HR in one
observation period (e.g., 2016–2017) but NHR in another period (e.g., 2014–2015), based on his/her
crash records. Table 1 shows the basic statistics of HR and NHR driver group under the three scenarios
in different time periods.

Table 1. Basic statistics of high-risk/non-high-risk drivers.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

HR NHR HR NHR HR NHR HR NHR HR NHR

2013–2014 2520 384316 2062 377214 3632 376504 26442 361394 39438 348398
2014–2015 2323 384513 2052 376784 3736 375600 41558 346278 49432 338404
2015–2016 2744 384092 2229 375607 3903 374753 44629 343207 54224 333612
2016–2017 2825 384011 2179 376057 3836 374852 50332 337504 58234 329602

Total 387836

HR: High-risk drivers; NHR: Non-high-risk drivers.

3.3. Feature Extraction and Selection

3.3.1. Feature Extraction

Feature engineering is an important process of extracting and selecting proper features for
machine learning model development. For each time slice, drivers’ demographic information can
be easily collected as candidate features. In this study, drivers’ gender (male/female), car type
ownership (small/medium/large passenger car, small/large truck, bus, and others), occupation
(i.e., employee, free-lancer, farmer, student, employer, government officer, and unemployed person),
and nationality (China/Foreign) were extracted to develop features. Regarding age, drivers were
classified into three groups: young drivers (<30), middle-aged driver (<65), and older driver (>65).
Driving experience refers to how many years one has been driving. Note that age and driving
experience are time-varying variables.

Risk driving features were developed based on traffic violation and crash records. The important
step is to develop features describing risky driving behaviors. Traffic violation and crash records were
the sources. Traffic violation is well-known to be correlated with increased accident propensity and
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reflects both risk-taking, social nonconformity, and exposure. Researchers have used past violation
records as predictors for drivers’ subsequent crash involvement. Although some claimed that they
were not as effective as expected [24], it should be known that some also found the relationship
between violation records and driver risk [19,22,25]. For example, Stamatiadis et al. [26] found that
2.1% of licensed drivers who are charged with six or more points in the past two years accounted
for 5.3% of all crashes. Additionally, traffic violations were largely found for Chinese drivers [27].
Thus, features selection based on traffic violation records was considered to be crucial. First of all,
violation frequency was considered to indicate the overall aberrant behavior of a driver. Two features
were developed: cumulative violation frequency and cumulative violation types. Records of violation
penalty points and violation penalty fee were used to develop several important features: maximum
one-time violation penalty fee/points, cumulative violation penalty fee/points, and average violation
penalty fee/points (per time). Besides these indicating the overall violation condition of a driver, more
detailed features were also extracted. First, certain types of violation records were considered useful
to unveil detailed driving behavior. However, there are over 200 traffic violations types found in the
database and it is unnecessary to incorporate all those features in the model development process.
Thus, the top 80 violation types (ranked in frequency) were used for feature extraction from violation
records. The reasons are two-fold: 1. they were all counted over 10 times per year, suggested as the
minimum sample size for parametric statistics tests by previous literature [28]; 2. they accounted for
over 99% of all violation counts. Second, temporal violation features were developed. For example, if
one has two prior violation records during the morning peak-hour traffic in Kunshan (i.e., 7–9 am),
the feature value for morning peak-hour violation (MPHV) will be coded as 2. Third, spatial violation
features were also considered. All violation locations were classified into 4 groups based on their prior
crash records, based on total crash frequency and severe crash frequency. Type 1 (TP1) indicates a
location with a high (i.e., more than average) number of total crash and high severe crash frequency.
Type 2 (TP2) indicates a location with high crash frequency but less severe crashes. Type 3 (TP3)
describes a location with low crash frequency but high severe crashes. Type 4 (TP4) encompasses
locations with low and severe crash frequencies. If one has three prior violations at TP 4 locations,
then the feature value of TP4 will be coded as 3 for this driver. Based on crash records, several
features were also developed to describe drivers, in terms of their overall crash involvement, fault
assignment, and specific crash type involvement. For crash involvement, two features are cumulative
crash involvement and cumulative severe crash involvement. Regarding fault assignment, at fault
crash and severe at-fault crash were considered. Crash type I was developed to describe crashes
between vehicles (e.g., rear-end, head-on, single crash etc.), while crash type II was used to indicate
crashes between vehicles and other road users. Drivers’ prior records of intoxicated driving were also
used to develop a feature.

3.3.2. Feature Selection

There are totally 125 features extracted from prior crash/violation records. Then, a feature
selection procedure was applied based on the random forest (RF) technique. RF was often used to rank
feature importance so that non-important features can be discarded. The feature importance of the RF
model was examined using the Gini index, which can be calculated as follows:

G = ∑C
c=1 Pm

j

(
1 − Pm

j

)
(1)

Pm
j =

1
Nm ∑xm

i
I(ym

i = c) (2)

where
Pm

j : Proportion of class c observations in node m
Nm: Number of observations received at node m
ym

i : the response value corresponding to the observation i at node m
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xm
i : the feature vector corresponding to the observation i at node m

c: class
C: the total number of classes

For the 2016–2017 model development, the top 50 features were finally selected based on their
relatively larger Gini index. Note that for other time periods, the order of top features was slightly
different. This could be considered as reasonable based on the assumption that drivers’ risk pattern
tends to be time-varying. In general, top features were consistent across four observation periods.
Table 2 presents final features extracted for 2016–17 model development (i.e., Model D) based on RF.

Table 2. Final features extracted from crash/violation records.

Group Feature Variable Abbreviation

Demographics

Gender
Male Driver MAD

Female Driver FD

Age
Young Driver (age < 30) YD

Middle-age Driver (30–65) MD
Older Driver (age > 65) OD

Car Ownership

Private Car Driver PCD
Bus Driver BD

Large Truck Driver LTD
Others OE

Driving Experience Driving Experience DE

Occupation
Famer FM

Students SD
Unemployed UE

Crash

Crash Frequency Cumulative Crash Involvement CCI
Cumulative Severe Crash Involvement CSCI

Fault assignment At-fault Crash Involvement ACI
Severe At-fault Crash Involvement SACI

Crash Type I

Head-on Crash Involvement HCI
Angle Crash Involvement AGCI

Sideswipe Crash Involvement SWCI
Rear-end Crash Involvement RECI

Single Crash Involvement SCI

Crash Type II
Collide with Pedestrians CWP
Collide with Motorcycles CWM

Collide with Cyclists CWC
Intoxication Drunk Driving/Drug Driving DD

Violation

Violation Frequency
Cumulative Violation Frequency CVF

Cumulative Violation Types CTV
Cumulative Violation Penalty Point CVPP

Penalty Points Maximum One-time Penalty Point MOPP
Average Penalty Points per time APP

Penalty Fee
Cumulative Violation Penalty Fee CVPF

Average Violation Penalty Fee per time AVPF
Maximum One-time Penalty Fee MOPF

Dangerous Violation
Counts

Red-light Running Violation RLRV
Traffic Sign/Markings Violation TSMV

Right-of-Way Violation ROWV
Speeding Violation over 50% SV50

Speeding Violation over 20–50% SV20
Drunk Driving Violation DDV

Driving with Phone Usage DPU
Overloading Violation OV

Time Period

Late Night Violation (0–6) LNV
Morning Peak Hour Violation (7–9) MPHV

Evening Peak Hour Violation (17–19) EPHV
Night Violation (20–24) NV

Location Type

Total crash >mean, severe crash >mean TP1
Total crash >mean, severe crash <mean TP2
Total crash <mean, severe crash >mean TP3
Total crash <mean, severe crash <mean TP4
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3.4. Sampling Techniques

In this study, datasets were unbalanced by the limited number of high-risk drivers, which could
cause model overfitting. Thus, imbalanced sampling techniques were introduced to deal with the
issue. Multiple sampling techniques [29] were examined, including random down-sampling, near-miss
down-sampling (type 1, 2, and 3), adaptive synthetic sampling approach for imbalanced learning
(ADASYN), random minority over-sampling with replacement, SMOTE (borderline and regular),
balance cascade sampling, balanced bagging classifier with random forest, easy ensemble sampling,
SMOTE-ENN, and SMOTE-Tomek. ADASYN, SMOTE, and random over-sampling are three common
over-sampling methods, which use nearest neighbors to construct synthetic samples. Near-miss and
random down-sampling are two commonly used down-sampling methods. Balance cascade sampling,
balanced bagging classifier with random forest, and easy ensemble sampling are three ensemble
sampling methods. The core idea of balance cascade sampling and easy ensemble sampling is to create
an ensemble of balanced sub-datasets by iteratively under-sampling the imbalanced dataset using an
estimator (i.e., random forest). As for balance cascade sampling, the K-neighbors classifier estimator
was used. As for easy ensemble, Adaboost estimator was used as the base estimator. Balanced bagging
classifier is a combination method of bagging and random down-sampling to create balanced training
sets for classifiers. SMOTE-ENN and SMOTE-Tomek are two sampling methods combining both
over- and under- samplings. Both were examined based on the random forest as a base estimator.
The receiver operating characteristic (ROC) curves of all sampling methods for 2016–2017 periods
(scenario 3) are shown in Figure 3.
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According to the results, SMOTE-ENN generally appeared to be better than other sampling
techniques, in terms of achieving higher AUC. The ROC curves of all sampling methods for 2016–2017
periods (scenario 3) are shown in Figure 3. To further improve model performance, a genetic algorithm
(GA) and multiple machine learning models were applied with SMOTE+ENN sampling method,
which will be discussed in the subsequent sections.

3.5. Model Training with Genetic Algorithm

Based on SMOTE+ENN sampling techniques, four machine learning techniques were utilized to
discriminate HR drivers from NHR drivers, including random forest (RF), extreme gradient boosting
decision tree (XGboost), gradient boosting decision tree (GBDT), and Adaboost with decision tree as
the classifier. They are all ensemble learning techniques based on decision trees. The basic ideas of
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two ensemble methods are briefly discussed here including bagging and boosting. Bagging randomly
selects samples from a training dataset with a replacement (i.e., bootstrapping) and fits models on
each random sample. The process is repeated a number of times and results are predicted with the
average of each of the fitted models. Similar to bagging, boosting also utilizes bootstrap to randomly
select samples from the training set. The major difference is that boosting focuses on dealing with
cases which were too difficult to be handled by previous fitted models. For example, Adaboost is a
typical boosting strategy that improves model performance by iteratively assigning increased weights
to those positive samples, which were wrongly classified by previous models. In general, RF belongs
to the bagging ensemble learning, while GBDT, XGboost, and Adaboost belong to boosting ensemble
methods. A detailed model algorithm was not discussed here and can be found in Hastie et al. [30].

As for model parameters tuning, the grid search method was normally used to find optimal
hyperparameters for machine learning models. However, it is time-consuming and impractical to
tune models like XGboost with numerous hyperparameters. In order to automatically find the best
hyperparameters for each machine learning model, a genetic algorithm (GA) was utilized. The fitness
function was set as the average precision (AP) on training sets, with 10-fold cross-validation. In this
study, the positive samples are limited so AP could be more appropriate than AUC [31]. A parallel
computing technique was also introduced to boost model convergence. Thanks to the GA, all model
performances have significantly improved compared to default hyperparameters. Figure 4 shows the
convergence results for the four models for model D development.
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3.6. Model Performance Analysis

3.6.1. Comparison of High-Risk Labeling Scenarios

Five scenarios were all examined. Scenario 3 appears to be better than the other four scenarios,
by achieving the best overall model performance in both training and testing datasets. Figure 5
presents the ROC curves for five scenarios for the best model for 2016–2017 period (i.e., model D).
As claimed by the local police, the fault assignment in non-severe crashes was not as reliable as that in
severe crashes. Thus, it is reasonable that scenario 4 had a lower AUC of 0.52. That is, there could be
many cases where drivers at-fault were actually not at-fault. Scenario 5 did not perform well since they
did not consider fault. As reported in previous literature, fault and non-fault drivers were significantly
different in many aspects. Scenario 1 and scenario 2 are subsets of scenario 3. The lower AUC of
those two scenarios and a higher AUC of scenario 3 indicate that fault assignment and recurrent
crash involvement could be both important to identify driving risk. Ideally, if fault assignment in
non-severe crashes is as reliable as that in severe crashes, scenario 4 can be expected to present the best
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results. However, limited with data, scenario 3 was considered as the best definition of high-risk for
crash-involved drivers.
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3.6.2. Best Model for Scenario 3

For scenario 3, among the four machine learning models, GBDT was found to have the best
performance (i.e., the highest AP) on testing datasets for all time periods: 0.66, 0.65, 0.65, and 0.68.
It should be noted that the performances of four machine learning techniques were very comparable.
The precision–recall curves of the four candidate models (i.e., RF, Adaboost, GBDT, and XGboost) for
the 2016–2017 period are shown in Figure 6. In general, for all four models, precision scores gradually
decrease with the increase of recall. The precision is still around 0.60 with a recall over 0.7. Such trends
indicate the trained models are relatively stable and robust. It should be noted that at the initial stage,
there are some fluctuations observed for all models. In other words, predicted high-risk drivers were
not observed as at-risk based on actual crash records. This could be due to the random nature of
crash occurrence.
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To further examine precision/recall scores at different model thresholds, a confusion matrix of the
GBDT model was also developed (Table 3). There were 381 HR drivers and 37,486 NHR drivers in the
testing dataset. To achieve higher precision, the model threshold can be adjusted, with the compromise
of getting a lower recall. According to the Kunshan traffic police, a relatively high model prediction
accuracy with an acceptable recall score can be implemented in practice.

Table 3. Confusion matrix of GBDT models for the testing dataset of 2016–2017 period with
different threshold.

Non-High-Risk High-Risk GBDT Model DetailsObserved
Predicted

Non-high-risk 37312 174 Threshold = 0.480
Precision = 0.6; Recall = 0.685High-risk 120 261

Non-high-risk 37444 42 Threshold = 0.584
Precision = 0.706; Recall = 0.265High-risk 280 101

Non-high-risk 37472 14 Threshold = 0.646
Precision = 0.80; Recall = 0.15High-risk 324 57

3.6.3. Feature Importance and Partial Dependence

Figure 7 ranks the importance of the top nine features of four GBDT models (i.e., 2013–2014,
2014–2015, 2015–2016, 2016–2017). In general, features with the greatest importance remain the
same across different periods. Note that for different time periods there were slight changes in
feature importance, indicating the existence of heterogeneous temporal effects of those features.
Among the top nine features, seven are all related to prior crash/violation records. The top three
features are cumulative severe crash involvement (CSCI), severe at-fault crash involvement (SACI),
and cumulative violation frequency (CVF), which all describe the prior crash/violation information
of drivers. Other important features include at-fault crash involvement (ACI), maximum one-time
penalty fee (MOPF), cumulative crash involvement (CCI), and cumulative violation penalty fee (CVPF).
Overall, it appeared that crash features had more importance than violation features. This finding
was consistent with previous literature that prior crash information could be more informative than
violation information [11]. However, in this study, violation features were also determined to be very
important. These features were rarely discussed in previous literature. Driving experience (DE) and
young drivers (YD) are two important features related to driver demographics. Driving experience
has already been found to affect driving risk for Chinese drivers [32]. Similarly, young drivers were
often considered as an at-risk group in previous literature [33].

The partial dependence of the top nine features was shown in Figure 7. Partial dependence was
used to capture the relationship between features and response variable for complex models [34].

fxi (xi) = Ex−i [ f (xi, xC)] =
∫

f (xi, xC)dP(xC) (3)

where xi is the feature i for which the partial dependence function needs to be calculated, xC are other
features used in the model f. The partial function is estimated by calculating averages in the training
data, based on the Monte Carol method:

fxi (xi) =
1
n

n

∑
i=1

f (xi, xCi) (4)

where xCi are actual values of feature set xC according to the dataset, and n is the number of instances
in the dataset. As shown in Figure 8, for all of the top nine features, their partial dependences appear to
be reasonable. Moreover, many features had non-linear relationships with high risk. For example, with
the increased prior crash involvement (e.g., CSCI, SACI, ACI, and CCI), drivers’ crash risk increases
significantly. As for violations, there is a general trend that driving risk increases with the increment



Int. J. Environ. Res. Public Health 2019, 16, 334 12 of 18

of violation frequency (CVF) and penalty fee (MOPF and CVPF). However, such magnitude is not
as large as that of crash features. To note, there is an approximate ‘U’ shape observed for driving
experience (DE). Thus, models based on simple linear assumptions could easily cause bias and result
in low model performance, as reported in previous literature.
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3.7. Model Transferability Tests

It is known that drivers’ risk is time-varying, with their change in age, driving experience,
social-economic status, physical and mental health, and driving skills. Thus, a previously trained
model needs to be proved as temporally transferable, so that it can be used to predict drivers’ future
crash risk. For example, the 2016–2017 model (i.e., Model D) was developed to capture the risk pattern
between 2016 and 2017. In practice, it is questionable that this model can be directly used to predict
potential high-risk drivers in 2018–19. Figure 9 illustrates the temporal transferability tests of all
models for four time periods. The basic idea was that using a trained model to predict HR drivers in
other time periods. For example, Model D was used to predict HR drivers for 2013–2014, 2014–2015,
and 2015–2016 period. Those predictions were then compared to actual observations to examine
model transferability. It was expected that drivers’ risk was time-varying during relatively longer time
periods, but stable within relatively shorter time periods. Since there were four models and four time
periods, the AP of each model on each time period was calculated.
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The results are shown in Figure 10. The findings are two-fold. First, for each time period,
the pre-trained model appears to be better than other models, with the highest AP. When using a
pre-trained model to predict the HR drivers in other time periods, the model performance will decrease.
Moreover, it appears that such a trend is non-linear with the increase of time intervals. For instance,
when predicting the 2014–2015 period, the performance of Model A has a slight decrease in AP from
0.67 to 0.66. However, when predicting HR drivers in 2015–2016 and 2016–2017 time periods, AP
largely declines. Similar results were also found for Model B, C, and D. This indicates the potential
time effect on drivers’ risk pattern. Thus, in practice, it is better to constantly update a trained model
to keep its best performance with a time-window constraint.

Second, within relatively shorter time periods (e.g., one- or two-year time interval), model
performances remain relatively stable and the temporal transferability holds. This guarantees that
high-risk drivers in subsequent short periods can be predicted, using the most updated model based
on previous years.
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4. A Follow-up Study

A follow-up study was conducted to further examine the model transferability. Using the
most updated model (i.e., Model D), the number of high-risk drivers in 2018–2019 was predicted.
The threshold for determining high risk was set to 0.584, which achieved a precision of 0.706 on the
2016–2017 testing set. Until June 2018, half-year crash records were collected. For the top 100 HR
drivers, 20 had already been involved in a crash. Thus, the expected two-year crash involvement of top
100 HR drivers could be 20*4 = 80. However, this was not guaranteed for a relatively short observation
period (i.e., half a year). Since the observation period is short, the major intent of this study was to
compare the risk of the two predicted groups (HR versus NHR) in 2018–19. The relative risk can be
calculated as:

RR =
actual observation in HR/Total predicted number in HR

Actual observation in NHR/total predicted number in NHR
(5)

where average observation can be crash count, fault assignment, and damage cost. Based on the
prediction, there were 2899 HR drivers expected in 2018–19. Until June 2018, 421 drivers had been
already successfully identified with crash involvement. On the other hand, 12,217 drivers were found
involved in crashes among 384,937 NHR drivers. The relative crash risk is 4.57. For crashes with
major/full fault assignment, the relative risk was 12.49. For drivers with severe crash involvement,
the risk ratios were even larger (20.97 and 62.77). In addition, the average property damage cost for
HR drivers is 9.87 times higher than that for NHR drivers. Table 4 presents the detailed results.
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Table 4. Relative risk of predicted CP over NCP between 2018.1 and 2018.6.

Predicted # of Drivers Total Observation Relative Risk (HR/NHR)

Total Crash Counts
HR 2899 421

4.57NHR 384,937 12,217

Total major/full
fault assignment

HR 2899 326
12.49NHR 384,937 3465

Severe crash
involvement

HR 2899 36
20.97NHR 384,937 228

Severe crash with
major/full fault

HR 2899 26
62.77NHR 384,937 55

Total Property
Damage Estimated

HR 2899 866,546 RMB
9.87NHR 384,937 1,467,298 RMB

5. Discussion

There are several interesting findings according to the results. Regarding high-risk driver
definition, scenario 3 (i.e., drivers with recurrent crash involvement or found as at-fault in severe
crashes) was found as the best. Since a crash can be caused by multiple factors and randomness,
drivers’ risk may not be reflected by any single dimension. For example, if a driver had two crashes
during the past two years, they may be defined as high risk due to crash recurrence. However, when
looking into the data, the driver was determined as non-at-fault in both crashes. Thus, it is difficult to
conclude whether this driver is high risk or not. Our result was also consistent with the knowledge
that driving risk should be measured from multiple aspects, including crash recurrence, severity,
and fault commitment.

As for features, seven of the nine top features were related to risky driving behaviors. It implied
that risky driving features were very important for risk pattern identification, which need to be carefully
extracted from raw data. For example, maximum one-time penalty fee (MOPF) and cumulative
violation penalty fee (CVPF) have been rarely discussed in previous literature. However, these two
features appeared to be very important according to the result. The non-linear relationships between
top features and driving risk also proved the complexity of risk pattern.

The proposed systematic machine learning method achieved better prediction accuracy, compared
to reported prediction results. The sampling methods indicated the potential impacts of extremely
unbalanced data on prediction performances. This issue has been rarely considered in previous
literature. Moreover, the average precision (AP) of the models meet the practical needs, according
to the local police. With a careful threshold setting, the current model present 70.6% precision on
testing dataset, which is much higher compared to previous literature (e.g., 26% for crash involvement
prediction; 60% for at-fault prediction, etc.). Thus, it is necessary to apply advanced data mining
techniques to identify risk patterns. More importantly, those complex relationships deserve future
in-depth investigations. However, this topic was rarely discussed in previous literature. Model
transferability within relatively short time intervals were also proved. However, with the increase
of time interval, model performance had relatively large decreases. From the follow-up study, it has
shown that the most recent model performed acceptably in predicting future high-risk drivers. This
proves the validity of the risk prediction model in over a short time period.

Issues and Limitations

Some issues also need to be addressed. First, some may argue that only crash-involved drivers
were examined while other non-crash-involved drivers were not considered. However, focusing
on crash-involved drivers is important and has provided meaningful results. Practically, the local
police were concerned about drivers with prior crash records and wanted to focus on this group.
Theoretically, crash-involved drivers have been found to be at higher risk than non-crash-involved
drivers [3]. Admittedly, the risk pattern of all drivers deserves research efforts. Second, the definition of
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high-risk drivers could be further examined. According to our research results, the model performance
could vary significantly depending on different definitions of high-risk drivers. Notably, the definition
of high risk can also vary in different countries, considering culture differences. Last but not least, there
are still some issues for model training, update, and validation. Although the machine learning
techniques (inherently ensemble methods) used in this paper have shown their strength, other
advanced statistical methods [35–37] and ensemble learning strategies (e.g., stacking) could be further
attempted. In addition, various sampling methods and time-window effects still deserve further
in-depth investigation.

6. Conclusions

Drivers with excessive crash risk need to be identified and interventions must be applied to
mitigate the risk. A systematic machine learning based approach was proposed to capture the complex
risk pattern of crash-involved drivers in Kunshan, China. The following major conclusions can
be drawn:

(1) Driving risk is necessarily measured from multiple aspects, including frequency, severity,
and fault commitment.

(2) Detailed crash/violation features need to be considered to better reflect drivers’ prior risky
driving habits, which were found to highly correlate with their future driving risk.

(3) To capture the complex driving risk pattern, the development of a systematic machine learning
approach is necessary. The major advantage is to better identify the non-linear relationship between
factors and crash risk, which is not easily measured in the traditional statistical methods. Explicable
methods, such as tree-based ensemble methods, are highly recommended.

In general, the proposed method appears to be a promising and reliable tool to identify complex
crash risk pattern. As such, policy-makers can propose/design possible interventions: 1. commercial
vehicles/heavy vehicle drivers with future high risk can be monitored, by in-vehicle warning system or
in future connected vehicle environment [38]; 2. safety messages can be pushed routinely to high-risk
drivers; 3. drivers with potentially high risk can be asked to attend traffic school or pass exams.
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