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Abstract: This study attempts to investigate spatial autocorrelation and spillover effects in
micro traffic safety analysis. To achieve the objective, a Poisson-based count regression with
consideration of these spatial effects is proposed for modeling crash frequency on freeway segments.
In the proposed hybrid model, the spatial autocorrelation and the spillover effects are formulated
as the conditional autoregressive (CAR) prior and the exogenous variables of adjacent segments,
respectively. The proposed model is demonstrated and compared to the models with only one kind
of spatial effect, using one-year crash data collected from Kaiyang Freeway, China. The results
of Bayesian estimation conducted in WinBUGS show that significant spatial autocorrelation
and spillover effects simultaneously exist in the freeway crash-frequency data. The lower value
of deviance information criterion (DIC) and more significant exogenous variables for the hybrid
model compared to the other alternatives, indicate the strength of accounting for both spatial
autocorrelation and spillover effects on improving model fit and identifying crash contributing
factors. Moreover, the model results highlight the importance of daily vehicle kilometers traveled,
and horizontal and vertical alignments of targeted segments and adjacent segments on freeway
crash occurrences.

Keywords: spatial autocorrelation; spatial spillover effects; conditional autoregressive prior; freeway
crash frequency

1. Introduction

Due to the enormous influences (over 1.2 million fatalities, as many as 50 million injuries,
and billions of dollars in medical treatment and productivity loss annually) of roadway crashes
on human societies, reducing crash risk has long been a primary objective of highway agencies [1].
The development of effective countermeasures requires a thorough understanding of the factors
that contribute to a crash occurrence. Crash prediction models, or safety performance functions,
are usually developed to identify relationships between the frequency of crashes at specific
locations (roadway segment or intersection at the micro-level; state, county, or traffic analysis
zone at the macro-level) over specific periods (day, month, or year) and the contributing factors.
While the steady progression of methodological innovation has enabled us to more precisely assess
the impacts of these factors, some critical methodological issues (e.g., heterogeneity, endogeneity,
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spatial and temporal correlation, crash underreporting) still remain in the development of crash
prediction models [2]. Spatial correlation (also called “spatial dependency” or “spatial effects”)
is one of the most prevalent issues taken into account in crash frequency analysis [3], and spatial
modeling has become a methodological frontier in the field of traffic crash research [2].

The spatial autocorrelation effect has been accounted for in many traffic safety studies. It is
attributed to the safety impacts of their shared unobserved factors, of which the safety impacts tend
to be similar across adjacent sites [4]. Several more recent studies [5–7] indicate that there is another
important source of spatial dependency: the spatial spillover effect, which is derived from the impacts
of the factors observed at the adjacent sites. According to the definitions, a combination analysis of
these two effects would provide a more comprehensive understanding on spatial correlation in traffic
crashes, and consequently, a deeper insight on crash occurrence mechanisms.

To this end, this research focuses on developing a crash prediction model for freeway segments
with consideration of both spatial autocorrelation and spillover effects. Freeway segments are selected
as the spatial analysis units, because their direct connections without intersections might lead to
significant spatial correlation between them. A year of crash data from Kaiyang Freeway, China are
used to demonstrate the proposed model and to compare it to other alternatives, including a conditional
autoregressive (CAR) model and a spatial spillover model.

The remainder of this paper is structured as follows: first, the relevant previous studies are
reviewed, and the position of the current research is presented. Second, the crash data obtained
from Kaiyang Freeway for the research are briefly described. It is then followed by the specification
of the proposed model and other alternatives, the criterion for model comparison, and the detailed
processes of model estimation in WinBUGS. The results of model comparison and parameter estimation
are then discussed. Finally, conclusions are drawn and recommendations for future research
are provided.

2. Literature Review

2.1. Spatial Autocorrelation Effect

A wide range of approaches have been adopted to accommodate spatial correlation in crash
prediction models, which include moving average [8], generalized estimation equations [9], spatial lag
model [10], spatial error model [4], simultaneous autoregressive model [4], conditional autoregressive
(CAR) model [4], multiple membership [11], extended multiple membership [11], geographic weighted
regression [12], geographic weighted Poisson regression [13,14], Bayesian spatially varying coefficients
approach [15], etc. Most of these methods focus on capturing the spatial autocorrelation effect.

As pointed out by Aguero-Valverde and Jovanis [16], considering the spatial autocorrelation effect
mainly has three benefits: (1) using spatial autocorrelation helps site estimates borrow strength from
adjacent sites and improves model estimation; (2) spatial autocorrelation can serve as a surrogate
for unobserved risk factors, thereby reducing model misspecification; (3) accommodating spatial
autocorrelation is helpful to eliminate the underestimation issue of variability in parameter
estimation, which would avoid the misidentification of factors contributing to crash occurrence.
Moreover, these strengths of spatial autocorrelation are particularly important in micro traffic safety
analysis where high random variability and small sample sizes typically exist.

CAR prior is one of the most widely used methods for accounting for spatial
autocorrelation [16–21], since Quddus has found that it can lead to more trustworthy estimates
of the parameters of interest than classic spatial models under a Bayesian framework [4]. The freeware
WinBUGS provides a friendly programming environment for conducting Bayesian inference on
the parameters in the CAR model, which does not have an easily calculable likelihood function.
Besides, the multivariate version of the CAR model is the state-of-the-art method for multivariate
spatial modeling crash frequency by injury severity [22–24], crash type [25], transportation mode [26],
or crash period [27].
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2.2. Spatial Spillover Effect

Although the spatial autocorrelation effect has been prevalently considered, only two studies
have taken into account the spatial spillover effect in traffic crash analysis [6,7]. In the analysis of
pedestrian and bicycle crashes in traffic analysis zones (TAZs), Cai et al. have developed dual state
count models with spatial spillover effects [6]. The estimation results reveal that various traffic,
roadway, and socio-demographic characteristics have significant effects on pedestrian and bicycle
crashes in both the targeted and adjacent TAZs, suggesting the spatial spillover effects of these
observed characteristics. In addition, the models with spatial spillover effects are found to outperform
the counterparts without spatial spillover effects in terms of model fit. Significant spatial spillover
effects are also found in their more recent research [7], which focuses on analyzing crash proportion by
vehicle type at the TAZ level.

Methodologically, spatial spillover effects are formulated using the factors observed at adjacent
units as independent variables in the link functions, which is easy to implement and hardly increases
the model complexity. Therefore, they can be accounted for together with other characteristics of crash
frequency data, such as the zero-inflation in the research of Reference [6].

In spite of its importance in improving model specification and identifying crash contributing factors,
the spatial spillover effect in crash frequencies on roadway segments or intersections has been rarely
investigated in the literature. It is noticeable that the traffic safety issue is essentially a microscopic
one and that the direct causes of any roadway crash are referred to the micro-level characteristics
related to a specific roadway segment or intersection, driver-vehicle units involved, or environmental
conditions [3]. Furthermore, to the best of our knowledge, there is no reported research accommodating
spatial autocorrelation and spillover effects simultaneously in crash frequency modeling.

3. Data Assembly and Preliminary Analysis

The data for model development and comparison are collected for the calendar year 2014 from
Kaiyang Freeway, located in Guangdong Province, China. A relational database is assembled with
information from three different resources: roadway inventory, crash data, and traffic data.

3.1. Roadway Inventory

The roadway data are extracted from the Horizontal and Longitudinal Profile, designed by
Guangdong Province Communication Planning and Design Institute Co., Ltd. The homogeneity in
horizontal and vertical alignments and the 150 m minimum length are adopted as the criteria for
roadway segmentation, resulting in 154 freeway segments. These segments are labeled successively
from 1 to 154. See Reference [28] for the detailed segmentation procedure.

Due to the fixed settings on lane count and width, median barrier, road shoulder,
pavement material, and posted speed limit along the whole freeway, four roadway-specific attributes,
which include vertical grade, horizontal curvature, and the presence of bridges and ramps, are selected
as exogenous variables for crash modeling. To account for the spatial spillover effects of these
factors, for each of them, a new variable (named “adjacent variable”) based on the values observed
on adjacent segment(s) is computed as in Equations (1)–(4). Specifically, for continuous variables
(i.e., horizontal curvature and vertical grade), the adjacent variable is calculated as their length
weighted average of adjacent segment(s). For binary variables (i.e., the presence of bridges and ramps),
the adjacent variable equals one, if the counterpart of any adjacent segment equals one; otherwise,
it equals zero.

Curvature_adji =


Curvature2, i = 1
Curvaturei−1×lengthi−1+Curvaturei+1×lengthi+1

lengthi−1+lengthi+1
, i = 2, 3, . . . , 153

Curvature153, i = 154
, (1)
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Grade_adji =


Grade2, i = 1
Gradei−1×lengthi−1+Gradei+1×lengthi+1

lengthi−1+lengthi+1
, i = 2, 3, . . . , 153

Grade153, i = 154
, (2)

Bridge_adji =


Bridge2, i = 1
0, i f Bridgei−1 + Bridgei+1 = 0, i = 2, 3, . . . , 153
1, i f Bridgei−1 + Bridgei+1 ≥ 1, i = 2, 3, . . . , 153
Bridge153, i = 154

, (3)

Ramp_adji =


Ramp2, i = 1
0, i f Rampi−1 + Rampi+1 = 0, i = 2, 3, . . . , 153
1, i f Rampi−1 + Rampi+1 ≥ 1, i = 2, 3, . . . , 153
Ramp153, i = 154

. (4)

3.2. Crash Data

The disaggregated crash data are obtained from the Highway Maintenance and Administration
Management Platform maintained by the Guangdong Transportation Group. A total of 687 crashes are
documented on Kaiyang Freeway within the study period. Crashes are mapped to those split freeway
segments, according to their locations recorded by kilometer markers of the freeway in the original
crash reports.

A widely used index in the fields of geography and GIScience, Moran’s I, is utilized to assess
whether observed crashes are spatially correlated among adjacent freeway segments, [29]

Moran′s I =
n∑i ∑j ωij(Yi −Y)(Yj −Y)

(∑i 6=j ωij)∑i (Yi −Y)2 , (5)

where n = 154 is the total number of freeway segments; Yi and Yj are the total crash counts

observed at segments i and j. Y is the global average of crash counts at all freeway segments.
ωij represents the spatial proximity weight between segments i and j. While various proximity

structures have been investigated [17], the most prevalent structure, 0–1 first-order neighbor, is used
herein. Specifically, if segments i and j are connected to each other directly, ωij = 1; otherwise, ωij = 0.

The Moran’s I value for these freeway segments is 0.203 with a z-score of 2.605, which indicates
that the freeway crashes are spatially clustered at the 95% significance level.

3.3. Traffic Data

The traffic volume data, i.e., annual average daily traffic (AADT), are acquired from
the Guangdong Freeway Network Toll System. As in previous studies [23,30], the daily vehicle
kilometers traveled (DVKT), measured as the product of AADT and segment length, is used as the crash
exposure variable.

The definitions and descriptive statistics of the variables used in the model development are
summarized in Table 1. A Pearson correlation test is conducted for the risk factors. The results suggest
that Bridge and Bridge_adj are significantly correlated, because the correlation coefficient is larger
than 0.6 [31]. To eliminate the adverse impact of significant correlation, Bridge_adj is excluded from
the spatial models.
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Table 1. Definitions and descriptive statistics of collected data.

Variable Description Mean S.D. Min. Max.

Response variable
Crash Crash count per road segment 4.46 3.32 0 23

Crash exposure variable
DVKT Daily vehicle kilometers traveled (103 km·pcu a) 44.3 16.9 9.98 129

Risk factors
Curvature Horizontal curvature (0.1 km−1) 1.77 1.27 0 4.35
Grade Vertical grade (%) 0.741 0.568 0 2.91
Bridge A part of bridge: yes = 1, no = 0 0.5 0.502 0 1
Ramp Presence of ramp: yes = 1, no = 0 0.208 0.407 0 1
Curvature_adj Curvature of adjacent segments 1.79 0.951 0 4.35
Grade_adj Grade of adjacent segments 0.731 0.435 0.15 2.15
Bridge_adj A part of bridge on adjacent segments: yes = 1, no = 0 0.747 0.436 0 1
Ramp_adj Presence of ramp on adjacent segments: yes = 1, no = 0 0.383 0.488 0 1

a pcu: passenger car unit.

4. Methodology

4.1. Model Specification

This research advocates a Bayesian count model for analyzing freeway-segment crash frequency
with consideration of both spatial autocorrelation and spillover effects. For the purpose of comparison,
two models taking account of either spatial autocorrelation or spatial spillover were also estimated.
The spatial models under investigation are specified as follows:

4.1.1. CAR Model

To explore the spatial autocorrelation among freeway segments derived from the shared effects of
unobserved confounding factors, the CAR model was developed by incorporating a residual term with
a Gaussian CAR prior into the traditional Poisson log-normal model [3]. Specifically, the stochastic
crash occurrence was modeled as a Poisson process, conditional on the rates (please refer to
Reference [32] for a detailed introduction on the theoretical principles of the assumption):

Yi|λi ∼ Poisson(λi), (6)

where Yi is the observed crash count at segment i, and λi is the expected Poisson crash rate, which is
modeled as a generalized linear function of the observed risk factors Xi:

log λi = α + β0 log DVKTi +β′Xi + θi + φi. (7)

In the above equation, α is a constant term. β0 and β are the estimable coefficients corresponding
to the crash exposure variable and risk factors Xi respectively. θi is a residual term to account for
unstructured heterogeneous effects which basically reflect unmeasured differences among freeway
segments. It is assumed to follow an ordinary, exchangeable normal distribution [4]:

θi ∼ normal(0, 1/τh), (8)

where τh is the precision of θi and controls the amount of extra-Poisson variation due to heterogeneity
among freeway segments.
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The residual term φi represents the spatial autocorrelation effect, and is modeled by using
the intrinsic CAR prior, first proposed by Besag [33]:

φi ∼ normal(φi, 1/τi), (9)

φi =
∑i 6=j φjωij

∑i 6=j ωij
, (10)

τi =
τc

∑i 6=j ωij
, (11)

in which ωij is the adjacent weight defined at the above section, and the precision parameter τc controls
extra-Poisson variation due to spatial clustering.

The posterior proportion of variation explained by the spatial autocorrelation effect is also of
interest and is defined as follows [34]:

η =
sd(φ)

sd(θ) + sd(φ)
. (12)

4.1.2. Spatial Spillover Model

In the spatial spillover effect model, the crash counts are still assumed to follow a Poisson
distribution. To investigate the spatial spillover effect, the risk factors Xadj

i observed at the adjacent
segments are used as independent variables in the link function for modeling the Poisson crash rate λi:

log λi = α + β0 log DVKTi +β′Xi +β′adjX
adj
i + θi, (13)

in which βadj is the regression coefficient corresponding to Xadj
i . The heterogeneous effect term θi is

still included because the mean and variance of the crash counts on these segments are 4.461 and 11.01,
respectively, as shown in Table 1, suggesting that the crash data are over-dispersed.

4.1.3. Hybrid Model

To account for the spatial autocorrelation and spillover effects simultaneously, both the spatial
error term φi and the observed adjacent factors Xadj

i are incorporated into the link function, that is,

log λi = α + β0 log DVKTi +β′Xi +β′adjX
adj
i + θi + φi. (14)

4.2. Model Assessment

One of the most prevalent criteria in the context of Bayesian inference, deviance information
criterion (DIC), is used to assess the goodness-of-fit of the above models. DIC is deemed
as a Bayesian equivalent of Akaike’s information criterion that takes model complexity into account [35].
Specifically, it is defined as an estimate of fit plus twice the effective number of parameters:

DIC = D(θ) + 2pD = D + pD, (15)

where D(θ) is the deviance evaluated at the posterior means of the parameters θ, and D is the posterior
mean of the deviance statistic D(θ). pD is a complexity measure for the effective number of parameters
in the models. Noticeably, the effective number of parameters does not equal the total number of
parameters specified in the model formulations. Sometimes, it can even be found that there may
be more effective parameters in models with simpler structures [34]. In general, models with lower
DIC values are preferable. However, the determination of a critical difference in DIC is very difficult.
Some researchers think that differences no less than 5 are considered substantial [36], while some
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others argue that differences no less than 2 show considerably less support to the models with lower
DIC values [37].

4.3. Model Estimation

All candidate models are programmed, estimated, and evaluated in WinBUGS, which adopts
the Metropolis–Hastings algorithm to sample from the unnormalized posterior distribution,
producing Markov chain Monte Carlo (MCMC) runs for each parameter of interest [16]. To obtain
the Bayesian estimates, it is necessary to specify the (hyper-) parameters’ prior distributions, which are
meant to reflect prior knowledge about the (hyper-) parameters [22]. Due to the lack of such prior
information, non-informative or vague priors are specified for the parameters of the spatial models,
as in many previous studies [3]. Specifically, a diffused normal distribution N(0, 104) is used
for the priors of α , β0, and each element of β and βadj, while a diffused gamma distribution
gamma(0.001, 0.001) is used for the priors of τh and τc. The CAR priors are specified by the car.normal
function available in WinBUGS. For each model, a chain of 150,000 iterations of the MCMC simulation
is made, with the first 100,000 iterations acting as burn-ins. Visual inspection of the MCMC trace
plots for the model parameters and monitoring of the ratios of the Monte Carlo errors relative to
the respective standard deviations of the estimates are used to evaluate the MCMC convergence.
The parameter estimates (at least significant at the 90% credibility level) and Bayesian goodness-of-fit
measures for the spatial models are displayed in Table 2.

Table 2. Estimation results for the spatial models.

Variable CAR Spatial Spillover Hybrid Model

Constant −9.37 (1.49) a ** −9.26 (1.74) ** −8.27 (1.34) **
Log(DVKT) 0.987 (0.139) ** 0.978 (0.162) ** 0.886 (0.125) **
Curvature 0.072 (0.040) * 0.100 (0.050) ** 0.106 (0.043) **

Grade 0.171 (0.088) * 0.109 (0.099) 0.170 (0.088) *
Curvature_adj — −0.150 (0.068) ** −0.150 (0.062) **

Grade_adj — 0.061 (0.124) 0.227 (0.129) *
σh (=1/τh) 0.025 (0.026) * 0.138 (0.046) ** 0.021 (0.024)
σc (=1/τc) 0.033 (0.013) ** — 0.032 (0.013) **

α 0.747 (0.112) ** — 0.772 (0.109) **
DIC 689 702 687

a Posterior mean (standard deviation) for the parameter. ** Significant at the 95% credible level. * Significant at the 90%
credible level. DIC: deviance information criterion.

5. Results Analysis and Discussion

5.1. Model Comparison

According to the estimation results shown in Table 2, it is evident that the hybrid model yields
the lowest DIC value (2 points lower than the DIC of the CAR model while 15 points lower than the DIC
of the spatial spillover model), which suggests its relative outperformance on the goodness-of-fit.
Moreover, there are more exogenous variables with significant safety effects (at least at a 90%
credibility level) in the hybrid model than in the other models. This result is mainly attributed
to the lower standard deviations of most coefficients in the hybrid model, as the plus or minus signs
of their posterior means are generally consistent and most of their magnitudes are comparable in
these spatial models. This finding reveals the strength of the hybrid model on identifying crash
contributing factors, which could provide more suggestions for selecting countermeasures aimed
at safety enhancement.

In addition, we can see that both spatial autocorrelation and spillover effects are significant
in the collected freeway crash data. Specifically, the estimates of the spatial variance parameter σc

(=1/τc), which represent the spatial autocorrelation effect, is significantly positive at the 95% credibility



Int. J. Environ. Res. Public Health 2019, 16, 219 8 of 12

level in the CAR and hybrid models. The spatial autocorrelation effect is expected and attributable
to the missing variables that are spatially clustered, thus affecting many adjacent segments [16,17].
Examples of such missing variables include terrain features and weather conditions. The spatial
spillover effect is confirmed by the significant effects of the exogenous variables observed at adjacent
segments (i.e., Curvature_adj in the spatial spillover model, and Curvature_adj and Grade_adj
in the hybrid model). While the spatial spillover effect has been found at the macro-level crash
frequencies [6], this seems to be the first time that it is found at the micro-level crash frequencies.

The estimates of σh (=1/τh) in the three models imply that: (1) the magnitude of the heterogeneous
effect is the largest and it is statistically significant at the 95% credibility level, if only spatial spillover
effect is accommodated; (2) its magnitude becomes much lower and it is significant at the 90%
credibility level, if only spatial autocorrelation effect is accommodated; and (3) the magnitude of
the heterogeneous effect is the lowest and it turns out to be insignificant (less than 90% credibility
level), if both spatial autocorrelation and spillover effects are accommodated. The results are
reasonable, because the spatial autocorrelation effect accounts for over 70% of extra-Poisson variations,
as reflected by the posterior means of α in the CAR and hybrid models. Some previous studies
argue that a proportion of the heterogeneous effect (i.e., over-dispersion) can be attributed to spatial
correlation [3]. Compared to the unstructured heterogeneous effect, modeling the structured spatial
autocorrelation effect is more beneficial to understanding the interaction between adjacent segments
as well as improving model fit [38].

In summary, the lower DIC value, more significant variables, significant spatial autocorrelation
and spillover effects, and the insignificant heterogeneous effect demonstrate the superiority of
the hybrid model.

5.2. Interpretation of Parameter Estimates

Due to the comprehensive outperformance of the hybrid model, the estimation results of
the parameters in it are mainly discussed in this subsection, which would further justify the validity
of accounting for spatial autocorrelation and spillover effects simultaneously. Overall, there were
three exogenous variables of targeted segments and two exogenous variables of adjacent segments
found with significant effects on crash frequency in the hybrid model.

As a measure of crash exposure, DVKT is found to have a significantly positive (at the 95%
credibility level) effect on crash frequency. This result is generally intuitive and coherent with
many previous findings [23,30], because larger vehicle-kilometers traveled would bring about more
opportunities for crash occurrences. As indicated by the 95% Bayesian credible interval, the coefficient
of Log (DVKT) is not significantly different from 1.0, which means that a linear relationship may
exist between crash frequency and DVKT. Similar results can be found in the Bayesian hierarchical
modeling freeway-segment crash frequency using daily vehicle miles traveled as the crash exposure
variable [39], and the multivariate spatial analysis of crash frequency by severity [34].

The significantly positive coefficient for horizontal curvature indicates that a wider horizontal
curve radius is associated with a lower crash rate. This is an expected result, because freeway
segments with smaller horizontal curvature (at least to some extent) serve as smoother transitions
between tangent sections, which make for weaker centrifugal forces on vehicles negotiating the curves
and therefore decrease the likelihood of rollover crashes, fixed-object crashes, sideswipe crashes,
and even head-on crashes [40–42]. It has also been found in past research that less nighttime crashes
tend to occur on milder curves compared to sharper curves [43].

The positive sign of the Grade variable implies that freeway segments with higher vertical grades
are expected to experience more crashes, all else being equal. This result is consistent with the findings
in many existing studies which argue that steep grades would result in limited sight distances
and increase the propensity of vehicle crashes [28]. As a consequence, steep slopes should be avoided
as much as possible in freeway vertical design, as recommended by almost all design manuals [39].
Nonetheless, it is worth noting that the decision on highway vertical alignment is often based on
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an evaluation of the benefits and costs associated with alternative route schemes, with consideration of
traffic safety among others [42]. Ideally, vertical grades should be high enough to meet the requirement
of longitudinal drainage, but not so high to endanger traveling vehicles.

Among the significant spatial spillover variables, Grade_adj is found to be positively associated
with crash frequency. This result may be attributed to that the vertical grade of adjacent segments may
also have an adverse impact on the sight distances of drivers at the targeted segment, especially for
those near the split points. Moreover, adjacent steep slopes may yield inadvertent increased speed
downhill or increase the difficulty of climbing uphill, thereby posing danger to vehicles.

The parameter estimates for Curvature_adj suggest that freeway segments adjacent to sections with
higher horizontal curvature generally experience less crashes, which is in contrast to the safety impact
of the counterpart for targeted segments. A plausible reason for this finding may be that an upcoming
curve would decrease the monotony of the driving experience and increase drivers’ attention [19,44].
The over compensation of some drivers for the adverse driving environment may lead to a low crash
propensity at the targeted segments [2,45]. Combining the safety effects of horizontal curvature on
targeted and adjacent segments together, we may conclude that, sometimes, it is necessary to avoid
long straight sections in freeway horizontal design.

6. Conclusions and Future Research

To comprehensively investigate the safety interaction between adjacent micro roadway entities,
this study advocates a Bayesian count model for analyzing crash frequency on freeway segments,
which takes spatial autocorrelation and spillover effects into consideration simultaneously. The spatial
autocorrelation effect was specified by the intrinsic CAR prior, and the spatial spillover effect
was modeled as the safety impacts of the exogenous variables observed at adjacent segments.
One-year crash frequency data for Kaiyang Freeway, which has been split into 154 homogeneous
segments, were used to demonstrate the proposed hybrid model and to compare it to the models
with only one kind of spatial effect, that is, the traditional CAR model and the emerging spatial
spillover effects model. The Bayesian inference was conducted for the (hyper-) parameters in
the three models using the MCMC technique, and the DIC was selected as the criterion for model
comparison on goodness-of-fit.

The results of Bayesian estimation in the hybrid model show that the vertical grade
and horizontal curvature of adjacent freeway segments have significant effects on crash frequency of
the targeted segments, manifesting the significant spatial spillover effect in the freeway crash data.
Besides, the spatial variance parameter in the CAR prior was found positive at the 95% credibility
level, which confirms the significance of spatial autocorrelation. After accounting for both spatial
autocorrelation and spillover effects, the heterogeneous effect becomes negligible. While these spatial
effects are also found in the CAR and spatial spillover model separately, the lower DIC value of
the hybrid model demonstrates its outperformance in terms of model fit. Moreover, there are more
significant exogenous variables in the hybrid model, which reflect its strength on the identification
of factors contributing to freeway crashes. The parameter estimates of the significant variables
were generally consistent with engineering intuitions and the findings in the existing literature,
therefore further validating the proposed model.

In summary, the empirical analysis demonstrates significant spatial autocorrelation and spillover
effects in the freeway crash data and supports the proposed hybrid model as a good alternative for
micro safety modeling. Nevertheless, there are several of limitations in the present study, and thereby
some enhancements may be explored in future research. For example, spatial heterogeneity, which is
defined as the continuous space-varying structure relationships describing space-related variables
that systematically vary across spatial observation units [15], is deemed as another important issue
related to spatial correlation. Accommodating spatial heterogeneity in the hybrid model may bring
further insights on the interaction between adjacent roadway segments, but it will result in a much
more complex model structure. A temporal extension may also be pursued, to identify any correlation
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in crash occurrence over successive periods [46]. Besides, the proposed hybrid model can be applied
to other crash datasets (such as those collected from TAZs) to further demonstrate its advantages.
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