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Abstract: Large amounts of aerosol particles suspended in the atmosphere pose a serious challenge
to the climate and human health. In this study, we produced a dataset through merging the Moderate
Resolution Imaging Spectrometers (MODIS) Collection 6.1 3-km resolution Dark Target aerosol optical
depth (DT AOD) with the 10-km resolution Deep Blue aerosol optical depth (DB AOD) data by
linear regression and made use of it to unravel the spatiotemporal characteristics of aerosols over
the Pan Yangtze River Delta (PYRD) region from 2014 to 2017. Then, the geographical detector
method and multiple linear regression analysis were employed to investigate the contributions
of influencing factors. Results indicate that: (1) compared to the original Terra DT and Aqua DT
AOD data, the average daily spatial coverage of the merged AOD data increased by 94% and 132%,
respectively; (2) the values of four-year average AOD were high in the north-east and low in the
south-west of the PYRD; (3) the annual average AOD showed a decreasing trend from 2014 to 2017
while the seasonal average AOD reached its maximum in spring; and that (4) Digital Elevation Model
(DEM) and slope contributed most to the spatial distribution of AOD, followed by precipitation and
population density. Our study highlights the spatiotemporal variability of aerosol optical depth and
the contributions of different factors over this large geographical area in the four-year period, and
can, therefore, provide useful insights into the air pollution control for decision makers.

Keywords: aerosol optical depth (AOD); Pan Yangtze River Delta; MODIS; gap-filling; geographical
detector method; topography

1. Introduction

Aerosols, the liquid or solid particulate matter suspended in the atmosphere [1], have both natural
and anthropogenic sources, such as volcanic eruptions, sand, dust, fossil fuel combustion, and industrial
and traffic emissions [2–4]. By absorbing and scattering solar radiation and perturbing the hydrological
cycle, aerosols have a crucial effect on regional and global climate change [5–7]. In addition, numerous
aerosol particles contribute to increased levels of haze and lead to low visibility [8–11]. Furthermore,
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epidemiological studies worldwide have associated aerosol particles, especially coarse particles (with
an aerodynamic diameter ≤ 10 µm; PM10) and fine particles (with an aerodynamic diameter ≤ 2.5 µm;
PM2.5) with adverse health outcomes, including increased mortality and morbidity of cardiovascular
and respiratory diseases [12,13]. Aerosol optical depth (AOD), which is defined as the integral of the
extinction coefficient of aerosol in the vertical direction, indicates the attenuation of the light induced
by aerosols and the degree of atmospheric pollution [14,15]. As such, AOD is often used to monitor air
quality and to evaluate the aerosol effect on climate [16].

Ground-based observations networks such as the Aerosol Robotic Network (AERONET) can
provide accurate time-series AOD observations at different sites around the world [17,18]. Due to
the limited number of observation sites, it is however difficult to produce AOD data that cover
large geographical areas [16,19]. Satellite-based observations, such as Moderate Resolution Imaging
Spectrometers (MODIS) aerosol optical depth (AOD) products, have recently been proved useful to
guarantee the spatiotemporal continuity of AOD observations [16,20]. The MODIS AOD products
provide daily operational retrievals over land based on Dark Target (DT) or Deep Blue (DB)
algorithm [21,22]—the DT algorithm was developed to retrieve AOD only over dark surfaces (e.g.,
water and dense vegetation) while the DB algorithm worked both over dark surfaces and bright surfaces
(e.g., arid, semiarid, and urban areas) [23,24]. In 2017, the MODIS Collection 6.1 (C6.1) AOD products
have been released, consisting of 10-km resolution DT, DB, and merged DT and DB (DTB) datasets,
and a 3-km resolution DT AOD dataset [25,26]. Compared with the 10-km AOD, the 3-km product
resolves aerosol plumes and provides better aerosol gradients [27,28]. Nevertheless, AOD may have
no data over bright-reflecting regions because of the limited applicability of the DT algorithm [29,30].
In addition, clouds, high surface reflectance, and retrieval errors can also frequently cause a large
amount of missing data in AOD datasets [31,32]. The data gaps (i.e., the no-data areas) in DT AOD can
disable a spatiotemporal characteristics analysis of aerosols and constrain air quality monitoring.

To address the issue of missing AOD data, several gap-filling methods have been proposed.
One method is using the Kriging interpolation to estimate the missing data based on the spatial
autocorrelation [33] or spatiotemporal autocorrelation [34] of AOD values. Another method is
developing statistical models for AOD imputation with other parameters (e.g., PM2.5 or cloud fraction,
elevation and some meteorological parameters) [32,35]. In addition, merging multi-source AOD
datasets was also proved useful in filling AOD data gaps, taking advantage of the different spatial
coverage of multiple AOD datasets [25]. Commonly used merging techniques include the maximum
likelihood estimate [36,37], the inverse variance weighting [38], and linear regression [22,31,39].
Among them, the linear regression method has less calculation work while showing an acceptable
performance. For example, He and Huang established linear regression models to merge MODIS
3-km DT AOD and 10-km DB AOD data, increasing data availability temporally by 10–50% over the
original 3-km Aqua/Terra data for China [22]. However, the accuracy of merged AOD data was only
validated for two AERONET AOD sites within and around Beijing. Due to the large area of China, the
daily relationships between different AOD data (i.e., Terra and Aqua AOD or DT and DB AOD) are
likely to vary with space and scale, and this should be tested on a regional scale. As the first attempt,
we adopted the method proposed by He and Huang to merge AOD data on a regional scale, filling
missing values in the 3-km DT AOD.

Variation in the spatial distribution of AOD results from a combination of multiple factors, such as
topography, meteorology, vegetation, and socioeconomic factors [6,19,40–42]. Topography has been
reported to be correlated negatively with the spatial pattern of AOD in several studies because of its
strong relation with aerosol emissions and particle accumulation [19,41–43]. Meteorological variables,
such as precipitation [19,44–46], wind speed [45,47,48], temperature [46,49–51], relative humidity [45,52]
and planetary boundary layer height (PBLH) [53,54] play important roles in the diffusion, dilution,
and accumulation of aerosol particles. The effect of vegetation on AOD varies in different areas
of China. For example, the AOD-NDVI relation was observed positive in areas close to the
Heihe-Tengchong Line while negative in the provinces of Zhejiang, Hubei, and Guangdong [42,44,50].
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Previous studies have reported the impacts of socioeconomic factors on AOD, e.g., gross domestic
product (GDP) and population density, both found positively correlated to AOD [40,45,50]. Although
a variety of approaches, including correlation analysis [40], linear regression [50], and geographically
weighted regression [42] were used to identify the controlling factors of AOD, they either ignore the
spatial characteristics of those factors and AOD or tend to be restricted by collinearity among those
factors [55,56]. The geographical detector method, proposed by Wang et al. [57], has been proved
effective in quantifying the contributions of factors to various geographical phenomena [56,58,59].
This method can reveal the influencing factors based on the concept of stratified spatial heterogeneity
without linear assumptions [57]. Additionally, the geographical detector method is not limited by
collinearity (i.e., any potential factors can be included in the analysis without having to consider
the problem of collinearity) [56,59,60]. However, there were few studies on geographical detector
method for AOD. The present study used the geographical detector method to explore the relationships
between AOD distribution and multiple factors. Meanwhile, since the geographical detector method
is not able to reveal the impact direction (i.e., negative or positive) of each factor, multiple linear
regression analysis was employed to investigate the nature of the impact [56,59].

The Pan Yangtze River Delta region (PYRD) [61,62], lying in the intersection of the “Belt and
Road” and the “Yangtze River Economic Belt” in China [63], has long suffered severe air pollution
due to its rapid economic development and urbanization [22]. However, previous studies on aerosol
pollution were mainly conducted for the Yangtze River Delta region (YRD) [32,64,65] with few studies
focusing on Anhui [52,66,67], a province is adjacent to the YRD with a high concentration of particulate
matter [22]. These studies usually mapped air pollution characteristics at 10-km spatial resolution or
even lower, hardly capturing regional-scale pollution variability [16,66]. Additionally, the quantitative
determination of the contribution of each potential factor to AOD has been little studied.

Therefore, this study attempts to analyze the spatiotemporal characteristics of AOD over the
PYRD with a merged fine-resolution AOD dataset and then determine the effects of factors on AOD
distribution. Specific objectives are: (1) to improve the spatial and temporal coverage of MODIS AOD
data over the PYRD during 2014–2017 by merging four MODIS AOD datasets, namely Terra 3-km
DT AOD, Aqua 3-km DT AOD, Terra 10-km DB AOD, and Aqua 10-km DB AOD; (2) to characterize
the spatial pattern and temporal variation of AOD over the PYRD and its four parts; and (3) to reveal
the contributions of topography, meteorology, vegetation, and socioeconomic factors to the spatial
variations of AOD over the PYRD through the geographical detector method and multiple linear
regression method.

2. Study Area

Located in the mid-east China (27◦12’ N~35◦20’ N, 114◦54’ E~123◦10’ E), the Pan Yangtze River
Delta region (PYRD) consists of the provinces of Anhui, Jiangsu, Zhejiang and the provincial-level
municipality of Shanghai, with an area of approximately 357,282 km2 (Figure 1). With low elevations
in the northeast and high in the southwest, the PYRD is characterized by diverse geomorphological
features including plains, tablelands, hills and mountains [68]. The plains are mainly distributed in
Jiangsu, Shanghai, and north Anhui, while most of the hills and mountains are scattered in Zhejiang
and southeast, and southwest of Anhui. Divided by the Huai River, the PYRD has a subtropical
monsoon climate in the south with hot, rainy summers and mild winters but a temperate monsoon
climate in the north with hot, rainy summers and cold, dry winters.

As one of the most densely populated and economically developed regions in China, the PYRD
has a population of some 223 million people and generated a GDP (gross domestic product) of
19.53 trillion CNY (Chinese yuan) in 2017, accounting for approximately 16.08% and 23.05% of China’s
total population and GDP, respectively. However, the population density and GDP per capita varied
across the PYRD, being highest in Shanghai (3813 people/km2 and 126,687 CNY) and lowest in Anhui
(448 people/km2 and 43,194 CNY). Despite its important role in China’s economic growth, the PYRD
has experienced severe haze pollution since 2013.
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Figure 1. The geographical locations of the PYRD and AERONET sites. Details of these sites are given
in Table 2. Data from these sites were used for calibration and validation in Sections 3.2.1 and 3.2.2.

According to the China Statistical Yearbook on Environment 2015 [69], the annual average
concentrations of PM2.5 and PM10 in 18 environmental key cities in the PYRD in 2014 ranged from
46 µg m−3 to 83 µg m–3 and 71 µg m−3 to 124 µg m−3, respectively, all exceeding the Chinese Ambient
Air Quality Grade II standard (PM2.5: 35 µg m−3, PM10: 70 µg m−3) [70]. To mitigate these serious levels
of air pollution, China’s State Council issued the National Action Plan for Air Pollution Prevention
and Control in September 2013, followed by the regional rule for the implementation of National
Action Plan in the PYRD jointly released by governments of Anhui, Jiangsu, Zhejiang, and Shanghai in
January 2014 [67]. There is therefore an urgent need to examine the effect of such regulations and to
further explore the influencing mechanism of the factors contributing to the AOD.

3. Data and Methods

3.1. Data

3.1.1. MODIS AOD Data

MODIS sensors onboard Terra and Aqua satellites, both launched by the U.S. National Aeronautics
and Space Administration (NASA), provide daily AOD measurements [71]. Terra and Aqua satellites
cross the equator separately at approximately 10:30 a.m. and 1:30 p.m. local solar time [31].
MODIS Collection 6.1 (C6.1) Level 2 aerosol products from 1st January 2005 to 30th December
2017 covering the PYRD were obtained from the website of Level 1 and Atmosphere Archive and
Distribution System (LAADS) [72]. The downloaded MODIS AOD data products consist of 3-km
DT AOD and 10-km DB AOD from both Terra and Aqua satellites. The expected error (EE), which
represents a one-standard deviation confidence interval around the retrieved AOD (i.e., about 68% of
points should fall within ±EE from the AERONET AOD), is ±(0.05 + 20%) for the 3-km DT retrievals
over land [27,73]. For the 10-km DB retrievals, the EE is defined relative to DB-retrieved AOD rather
than to AERONET AOD, is approximately ±(0.03 + 20%) on average [29,73]. In this study, only those
AOD retrievals at 550 nm with the recommended quality assurance (QA) for the DT (QA = 3) and
DB (QA ≥ 2) were selected [26]. Therefore, the DT and DB high-quality retrievals were obtained
from the Scientific Data Set (SDS) “Optical_Depth_Land_and_Ocean” in the 3-km DT products and
“Deep_Blue_Aerosol_Optical_ Depth_550_Land_Best Estimate” in the 10-km DB products, respectively.
Due to their relatively high spatial resolution, the 3-km DT AOD datasets were selected as the main
source to illustrate the spatiotemporal characteristics of AOD over the PYRD [27]. However, the DT
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algorithm does not perform well over bright surfaces. To fill the gaps left by the 3-km DT AOD, the
10-km DB AOD datasets were used as supplementary source and merged to the 3-km DT AOD datasets
because of their better performance over bright targets [22]. MODIS AOD data derived from 2005 to
2013 were utilized for AOD calibration (Section 3.2.1). Data from 2014 to 2017 were calibrated and then
employed for spatiotemporal characteristics and influencing factors analysis of AOD. Table 1 provides
a summary of MODIS AOD data products used in this study.

Table 1. MODIS AOD data products used in this study.

AOD Data
Products Types Scientific Data Set (SDS) Contents Temporal Range Use

Terra/Aqua 3-km
DT AOD

Optical_Depth_Land_And_Ocean DT AOD (QA = 3)

2005.1.1–2013.12.31 Calibration

2014.1.1–2017.12.31

Spatiotemporal
characteristics and
influencing factors

analysis

Terra/Aqua 10-km
DB AOD

Deep_Blue_Aerosol_Optical_
Depth_550_Land_Best_Estimate DB AOD (QA ≥ 2)

2005.1.1–2013.12.31 Calibration

2014.1.1–2017.12.31

Spatiotemporal
characteristics and
influencing factors

analysis

MODIS = Moderate Resolution Imaging Spectrometers. DT AOD = Dark Target aerosol optical depth. DB AOD =
Deep Blue aerosol optical depth.

3.1.2. AERONET AOD Data

In order to validate MODIS AOD values, the high-accuracy ground-based aerosol measurements
from 2005 to 2017 were obtained from the Aerosol Robotic Network (AERONET) [74], a global aerosol
observation network recording AOD observations by CE-318 Solar Photometer every 15 min with an
uncertainty of ~0.01–0.02 under cloud-free conditions [75–78]. The AERONET offers three levels of
AOD data, Level 1.0 without strict quality checks, Level 1.5 with cloud screening checks, and Level 2.0
with rigorous quality checks [34]. Due to the accuracy and volume of data, the Level 1.5 AERONET
AOD data at 15 sites (Table 2) in the region were chosen for validation [79,80].

Table 2. Locations of the Aerosol Robotic Network (AERONET) sites within the Pan Yangtze River
Delta (PYRD) (see Figure 1) and the periods of their available data.

Number Site Name Longitude
(◦N)

Latitude
(◦E) Elevation (m)

Period of
Available

Data

1 XuZhou-CUMT 117.1417 34.2167 59.7 2013–2017
2 Shouxian 116.7820 32.5584 22.7 2008
3 Hefei 117.1622 31.9047 36 2005–2008, 2016
4 NUIST 118.7172 32.2065 62 2007–2010
5 SONET_Nanjing 118.9570 32.1150 52 2016
6 Taihu 120.2153 31.4210 20 2005–2017
7 SONET_Shanghai 121.4810 31.2840 24 2016
8 Shanghi_Minhang 121.3973 31.1305 49 2008–2009
9 Shanghi_Met 121.5485 31.2214 5 2007

10 Hangzhou_City 120.1569 30.2896 30 2008–2009
11 Hangzhou-ZFU 119.7274 30.2572 42 2007–2009
12 LA-TM 119.4400 30.3240 439 2007–2009
13 Qiandaohu 119.0526 29.5557 133 2007–2008
14 Ningbo 121.5469 29.8599 37 2007–2008
15 SONET_Zhoushan 122.1880 29.9940 29 2016

3.1.3. Auxiliary Data

Ten potential factors affecting the spatial distribution of AOD were selected from four categories,
namely topography, meteorology, vegetation, and socioeconomics. To derive these factors,
multi-sources were collected.
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The 90-m resolution Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data
were freely obtained from the website of Consultative Group for International Agriculture Research
Consortium for Spatial Information (CGIAR-CSI) [81] and used to provide DEM and slope of the
study area. Monthly meteorological dataset observed at 87 observation stations within and around
the study area from 2014 to 2017 were downloaded from the China Meteorological Data Service
Center (CMDC) [82]. The dataset provides meteorological information including precipitation (PREC),
average wind speed (AWS), average temperature (ATEM) and average relative humidity (ARH).
As planetary boundary layer height (PBLH) data were not available at this website, the monthly
PBLH data from 2014 to 2017 were collected from the European Center for Medium-Range Weather
Forecasts [83], with a horizontal resolution of 0.125◦ × 0.125◦. The normalized difference vegetation
index (NDVI) data from 2014–2017, representing the vegetation coverage of the study area, were
acquired from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences
(RESDC) [84]. RESDC provides seasonal NDVI values and annual NDVI values at 1-km resolution [41].
From this website, we also obtained the 1-km resolution annual gross domestic product (GDP) and
population density (POP) data of the study area in 2015 to reflect the anthropogenic emissions of
pollutants from 2014 to 2017.

3.2. Methodology

The general process of this study is shown in Figure 2. A fixed 3 × 3 km grid (40,801 cells in total)
was first created in the extent of the PYRD, as the MODIS AOD pixel centroids varied from day to
day [71]. To be consistent with DT AOD, the 10-km DB AOD data were resampled to 3-km resolution
using the nearest neighbor method in ENVI 5.3 (Exelis Visual Information Solutions, Boulder, CO, USA),
as shown in previous studies [25,85], based on the assumption that the variability of DB AOD data is
small within the 10 × 10 km grid. To check whether the other resampling methods can improve the
accuracy of the resampled AOD data, bilinear interpolation and cubic convolution were also used for
AOD interpolation and the validation results show the nearest neighbor method outperformed the
other two methods (Table A1 in Appendix A). Next, daily AOD pixel values from the four datasets
(Terra 3-km DT AOD, Aqua 3-km DT AOD, Terra 3-km DB AOD, and Aqua 3-km DB AOD) were
matched to the 3-km grid cells whose centroids were within a given grid cell [32], using the extraction
tool in ArcGIS 10.2 (Esri, Redlands, CA, USA). To fill AOD data gaps, DB AOD and DT AOD data were
merged and then the merged effect was evaluated. After that, the merged AOD data were utilized for
spatiotemporal analysis and identification of influencing factors.

3.2.1. MODIS AOD Merging

To fill AOD data gaps, a four-step merging approach was utilized to merge DT AOD and DB
AOD data, following the method proposed by He and Huang [22]:

Step 1: Calibrating the MODIS AOD data. To reduce the systematic bias in satellite-retrieved
AOD values, simple linear regression relationships between AERONET AOD and MODIS AOD from
2005 to 2013 were developed to calibrate the MODIS AOD data during 2014–2017 period [21,30].
Since the relationship between AERONET AOD and MODIS AOD varied by season and AOD
dataset, linear relationship analysis was conducted for each of the four MODIS AOD dataset (i.e.,
Terra/Aqua 3-km DT AOD and Terra/Aqua 10-km DB AOD) and each season, separately (Table A2 in
Appendix A) [22,27,39]. The seasons were defined in this study as spring (March, April, and May),
summer (June, July, and August), autumn (September, October, and November), and winter (December,
January, and February).
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Step 2: Filling missing Terra AOD data with Aqua AOD values, and vice versa. Owing to the
contrasting crossing times, the AOD data retrieved from the two satellites (i.e., Terra and Aqua) differ
in spatial coverage [21,22,34,42]. Therefore, for AOD datasets retrieved by the same algorithm (i.e.,
DT or DB AOD), a simple linear regression model between Terra and Aqua values were developed for
each day to fill the missing Terra/Aqua AOD data with the present one (e.g., predicting the missing
Aqua DT AOD with the present Terra DT AOD, and vice versa) [86]. It is notable that extra biases
may be generated in this step, due to the changing PBLH and aerosol concentration between two
satellite overpass times. We acknowledge the limitation of this approach. However, it is a common
and effective practice to predict missing AOD values for Terra or Aqua AOD [22,31,86]. Additionally,
Pearson correlation coefficients also indicate that there were high correlations between AERONET
AOD values at the two satellite passing times (Table A3 in Appendix A).

Step 3: Filling missing DT AOD data with DB AOD values. To fully exploit the retrievals of
both DT and DB algorithms, linear regression relationships between daily DT and DB AOD values
were established and used to predict values in the no-data pixels in DT AOD when only DB AOD is
present [22,42]. After this step, two gap-filled AOD datasets were generated, called as processed Terra
AOD and processed Aqua AOD respectively.

Step 4: Averaging the daily Terra AOD and Aqua AOD values. The average of the daily processed
Terra AOD and Aqua AOD values (both overserved and predicted values) were calculated and
considered as the final daily AOD data (merged AOD hereafter) [22,31,39,42].

3.2.2. Merged AOD Evaluation

Ten-fold cross-validation (CV) method was used to evaluate the performance of linear regression
models. The original data were randomly divided into 10 groups. From the 10 groups, nine groups
of data were used as training data for developing the model, and the remaining group was used to
test its predictions. This step was then repeated 10 times until every fold was tested. The commonly
used statistical metrics, including root mean squared error (RMSE), relative prediction error (RPE),
and the coefficient of determination (R2) were used to measure the predictive performance of the
models [32,87]. The standard deviation (σ) of the predicted AOD values in each step (i.e., Step 2 and
Step 3 in Section 3.2.1) were also calculated.
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To examine the performance of the merging operation, accuracy comparison was conducted
between the original Terra/Aqua DT AOD and processed Terra/Aqua AOD data, because the merged
AOD data cannot be collocated with the AERONET AOD measurements in time [22]. In addition to
the accuracy comparison, we also examined if the coverage of the merged AOD data higher than that
of original Terra DT AOD and Aqua DT AOD data. Here, the coverage includes daily spatial coverage
(denotes the ratio of AOD available pixels of all the pixels for each day) and pixel-level temporal
coverage (denotes the ratio of the AOD available days of the whole study period for each pixel) [21].

Linear fitting of MODIS AOD with corresponding AERONET AOD data was used to validate
the accuracy of MODIS AOD. Since AERONET AOD are point measurements at 15-minute intervals
while MODIS AOD are instantons data when the satellites overpass, MODIS AOD retrievals and
AERONET measurements cannot be compared directly and need to be matched in space and time.
Thus, following the method of previous studies [77,80], the MODIS AOD retrievals within 5 × 5 pixels
(i.e., 15 × 15 km) centered over the AERONET sites were averaged and then collocated with the mean
values of the AERONET AOD measurements within 30 min of the time when MODIS passes over.
Note that the MODIS AOD were retrieved at 550 nm while AERONET does not provide AOD data
at 550 nm, AERONET AOD at 550 nm was derived by interpolating the AERONET AOD values at
440 nm and 675 nm with Equation (1) and Equation (2) [34,80]:

αλ1∼λ2 = −
ln(τλ1 /τλ2)

ln(λ1/λ2)
, (1)

τλ3 = τλ2 × (
λ3

λ2
)−αλ1∼λ2 , (2)

where τλ1 , τλ2 are AOD at the two closest bands λ1 (440 nm) and λ2 (675 nm), respectively, τλ3 are
AOD at 550 nm.

Several statistical indicators were selected for comparison of values between MODIS AOD and
AERONET AOD, such as the number of matched MODIS AOD and AERONET AOD pairs (N),
correlation efficient (R), root mean squared error (RMSE), and the percentage retrievals within the
expected error (EE, ±(0.05 + 20%τA), where τA is the AERONET AOD) envelope [23,88].

3.2.3. Data Integration

For the analysis of spatiotemporal variability and influencing factors, the daily merged AOD
(Section 3.2.1) and auxiliary data (Section 3.1.3) were further processed. The seasonally and annually
averaged AOD were derived by averaging the daily merged AOD. The monthly meteorological data
(i.e., PREC, AWS, ATEM, ARH and PBLH) and NDVI data (both seasonal and annual data) [41] were
converted to four-year seasonal and annual average data. After that step, the meteorological data (i.e.,
PREC, AWS, ATEM, ARH) at each site were interpolated to 3-km continuous raster data by the inverse
distance weight interpolation method [38]. PBLH data were resampled to 3 × 3 km grid cell by bilinear
interpolation [89]. For the other variables (i.e., DEM, SLP, NDVI, GDP and POP), the corresponding
values of the pixels fell in each grid cell were averaged separately to match the fixed 3 × 3 km grid [90].

3.2.4. Influencing Factors Identification

To identify the intensity and directions of the impacts of factors on AOD, geographical detector
method and multiple linear regression analysis were used. Based on the concept of spatial stratification
heterogeneity—which refers to a geographical phenomenon that the observations are homogeneous
within each stratum rather than between strata, the geographical detector method can quantify the
contributions of influencing factors [91]. The philosophy of this method is that if an independent
variable X (the factor) takes on a similar spatial distribution to that of the dependent variable Y
(AOD), there is a direct or indirect relationship between the variable X and dependent variable Y [57].
The geographical detector method examines if an independent variable X takes on a similar spatial
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distribution with the dependent variable Y and measures the association between Y and X by the
power of determinant (q) [91]. Here, the power of determinant (q) indicates how much X contributes
to the spatial stratification heterogeneity of Y, or how much Y is interpreted by X [92].

Specifically, a study area is composed of N units, and the AOD in each unit is denoted as
Yi (1 ≤ i ≤ N). The factor (X) layer is stratified into h = 1, . . . , L stratum according to the spatial
heterogeneity first, and then the AOD (Y) layer is divided into L stratum also by overlaying the Y
layer and X layer. Stratum h has Nh units and N =

∑L
h=1 Nh. In stratum h, the AOD in each unit is

denoted as Yhi (1 ≤ hi ≤ Nh). For the whole study area, the mean value and variance of AOD are

Y = (1/N)
∑N

i=1 Yi and σ2 = (1/N)
∑N

i=1

(
Yi −Y

)2
, respectively. For stratum h, the mean value and

variance of AOD are Yh = (1/Nh)
∑Nh

i=1 Yhi and σ2
h = (1/Nh)

∑Nh
i=1

(
Yhi −Yh

)2
, respectively. The power

of determinant (q) of X to Y can be expressed as [91]:

q = 1−

∑L
h=1 Nhσ

2
h

Nσ2 = 1−
SSW
SST

, (3)

SSW =
L∑

h=1

Nhσ
2
h, (4)

SST = Nσ2, (5)

where SSW is the within sum of the squares; SST is the total sum of the squares. If SSW is less than
SST, spatially stratified heterogeneity exists.

Usually, q ∈ [0, 1]. If q = 1, it means that X can explain 100% of Y; If q = 0, there is no association
between X and Y. A larger q value indicates a greater influence of X on Y. Following the threshold set
by Tang et al. [93], we considered a factor had an important contribution to AOD when the q value of
this factor approaches 0.2.

In addition, as the geographical detector method can only measure the explanatory power of
factors, but cannot reveal the nature of the effect (i.e., negative or positive) [56,59], the multiple linear
regression was performed as a supplement to identify such information [56]. To avoid the collinearity
issue, Pearson correlation coefficients among influencing factors were used to select the variables
for model building [21,45,94]. The positive or negative regression coefficients in the multiple linear
regression model indicate that the impact of some factor on AOD is positive or negative. The variation
inflation factor (VIF) is used to measure the multicollinearity among multiple regression variables [95],
if VIF is less than 3, it indicates that there is no collinearity in the regression model. The geographical
detector method and multiple linear regression analysis were conducted using GeoDetector [91] and
IBM SPSS Statistics 20.0 (SPSS Inc., Chicago, IL, USA), respectively.

4. Results

4.1. Evaluation of the Merged AOD

4.1.1. Validation of the Merged AOD

The cross-validation results (Table A4 in Appendix A) demonstrate the good predictive
performance of the linear regression models, with RMSE ranging from 0.09 to 0.14, RPE ranging from
20.8% to 29.6% and R2 ranging from 0.82 to 0.88 for the years and the four-year period. The σ of the
predicted AOD values range from 0.0011 to 0.0110 for the four-year period of 2014–2017.

Figure 3 shows the comparison between the AERONET AOD data from 2014 to 2017 against the
original Terra/Aqua DT AOD data and the processed Terra/Aqua AOD data. Overall, the processed
Terra/Aqua AOD data approximated the AERONET better than the original Terra/Aqua DT AOD
data. After merging, there are 486 and 476 pairs of matched data for processed Terra and Aqua AOD
with AERONET AOD, respectively. For the processed Terra AOD, the RMSE decreased from 0.25
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to 0.19, and the percentage of retrievals within the EE increased from 40.77% to 68.93%. For the
processed Aqua AOD, the RMSE decreased from 0.20 to 0.17, and the percentage of retrievals within
the EE increased from 48.86% to 72.24%. However, the R-value of the processed AOD showed a slight
decrease, from 0.9248 to 0.9108 for Terra and from 0.9320 to 0.9160 for Aqua.
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Figure 3. Comparison between AERONET AOD and original Terra/Aqua DT AOD and processed
Terra/Aqua AOD data: (a) AERONET AOD vs. original Terra DT AOD; (b) AERONET AOD vs. original
Aqua DT AOD; (c) AERONET AOD vs. processed Terra AOD; (d) AERONET AOD vs. processed
Aqua AOD. The dashed, black, and red solid lines are the EE line, 1:1 line, and fitting line of linear
regression respectively.

4.1.2. Assessment of the Spatiotemporal Coverage of the Merged AOD

The objective of this present study is to improve the coverage of the DT AOD data with the
available DB AOD retrievals. To evaluate the merging effect, the daily spatial coverage of the original
Terra DT AOD, Aqua DT AOD and the merged AOD data were compared (Figure A1 in Appendix A).
After merging, the average daily spatial coverage was greatly increased, by 94% and 132% compared to
the original Terra DT AOD and Aqua DT AOD. For the original Terra DT AOD and Aqua DT AOD data,
there were 71 and 64 days with spatial coverage of more than 50%, while for the merged AOD data,
there were 323 days with spatial coverage of more than 50%. Figure 4 illustrates the spatial distribution
of the original Terra DT AOD, Aqua DT AOD and the merged AOD data on 26 November 2017. For the
data of this date, the spatial coverage of the merged AOD was 51.42%, much higher than that of the
original Terra DT AOD (25.61%) and Aqua DT AOD (28.54%).
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(c) merged AOD on November 26, 2017.

The temporal coverage was also compared as shown in Figure 5. It is clear that the temporal
coverage of the merged AOD data was higher than the original. From 2014 to 2017, there were
1451 days for which both Terra and Aqua AOD data were available (there were 10 days for which
only Terra AOD data were available and we discarded them). The temporal coverage (pixel-level) of
the original Terra DT AOD and Aqua DT AOD data ranged from 0 to 29.08% and from 0 to 25.36%
(Figure 5a,b), respectively. After merging, the temporal coverage of AOD data for most of the PYRD
ranged from 20% to 40% (Figure 5c).
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The temporal coverage of the merged AOD data varied from area to area (Figure 5c). While more
days were available in north Jiangsu and north Anhui with the percentage of availability mostly from
25% to 40%, fewer days were available in Shanghai and the most of Zhejiang with the percentage of
availability mostly ranged from 20% to 25%.

4.2. Spatiotemporal Characteristics of AOD

4.2.1. Spatial Variations of AOD

Figure 6a presents the spatial distribution of four-year average AOD over the PYRD from 2014
to 2017. The overall four-year average AOD over the PYRD was 0.514, with high values in the
north-eastern and low in south-western. Shanghai and Jiangsu generally exhibited high AOD values,
with a four-year average AOD of 0.626 and 0.622 respectively. Apart from the southeast and southwest,
the four-year average AOD in most parts of Anhui was also large, ranging from 0.50 to 0.80. In contrast,
Zhejiang was low in AOD values (the four-year average AOD was 0.395). Figure 6b–e indicate that
spatial distribution in annual average AOD showed a similar pattern as the four-year average AOD.
However, the average AOD over the PYRD showed a gradual decline. The high-AOD (>0.6) area
decreased from 57.10% (of the total PYRD area) to 3.98% while the low-AOD (<0.3) area increased
from 1.44% to 18.93% during the four years.

As illustrated in Figure 6f–i, AOD values for the four seasons were high in the north-eastern and
low in the south-western. The average AOD in spring, summer, autumn, and winter over the PYRD
were 0.544, 0.537, 0.467, and 0.500, respectively. Despite obvious seasonal variability, the high-AOD
(>0.60) area was larger in spring (50.64% of the total PYRD area) and summer (46.7%). In autumn,
the high-AOD (>0.60) area decreased obviously (8.43%) while the low-AOD (<0.3) area was largest in
this season, accounting for 15.18% of the total PYRD area. In winter, most of the AOD values (60.3%)
ranged from 0.5 to 0.7.
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4.2.2. Temporal Characteristics of AOD

Figure 7 illustrates the changes in annual average AOD over the PYRD from 2014 to 2017.
Decreasing trends were observed over Anhui (from 0.588 to 0.456), Jiangsu (from 0.669 to 0.552),
Zhejiang (from 0.453 to 0.341), and the PYRD (from 0.573 to 0.452). Interestingly, the annual average
AOD of Shanghai first rose from 0.641 in 2014 to 0.663 in 2015, and then declined to 0.568 in 2017.
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Figure 8 demonstrates the seasonal variability in average AOD over the PYRD and its four parts
in the four-year period. For Anhui, Zhejiang, Shanghai, and the PYRD, the seasonal average AOD
were highest in spring (Anhui: 0.546, Zhejiang: 0.418, Shanghai: 0.658, PYRD: 0.544) while lowest
in autumn (Anhui: 0.472, Zhejiang: 0.360, Shanghai: 0.565, PYRD: 0.467). In the case of Jiangsu,
maximum seasonal average AOD was however observed in summer.
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4.3. Contribution of Each Factor to AOD Distribution

The power of determinant values (q) were calculated by the geographical detector method and
the impact directions were determined by multiple linear regression analysis. As shown in Figure 9,
during the four-year period, the highest q value was found for DEM (0.863), with SLP a close second
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on 0.799, followed by PREC (0.553), POP (0.410), GDP (0.369), ATEM (0.271), AWS (0.239), ARH (0.231),
NDVI (0.140) and PBLH (0.083).

Int. J. Environ. Res. Public Health 2019, 16, x 14 of 25 

 

4.2.2. Temporal Characteristics of AOD  

Figure 7 illustrates the changes in annual average AOD over the PYRD from 2014 to 2017. 
Decreasing trends were observed over Anhui (from 0.588 to 0.456), Jiangsu (from 0.669 to 0.552), 
Zhejiang (from 0.453 to 0.341), and the PYRD (from 0.573 to 0.452). Interestingly, the annual average 
AOD of Shanghai first rose from 0.641 in 2014 to 0.663 in 2015, and then declined to 0.568 in 2017. 

Figure 8 demonstrates the seasonal variability in average AOD over the PYRD and its four parts 
in the four-year period. For Anhui, Zhejiang, Shanghai, and the PYRD, the seasonal average AOD 
were highest in spring (Anhui: 0.546, Zhejiang: 0.418, Shanghai: 0.658, PYRD: 0.544) while lowest in 
autumn (Anhui: 0.472, Zhejiang: 0.360, Shanghai: 0.565, PYRD: 0.467). In the case of Jiangsu, 
maximum seasonal average AOD was however observed in summer. 

 

Figure 8. Seasonal average AOD over the PYRD and its four parts from 2014 to 2017. 

 

Figure 9. Seasonally and annually specific contribution of each factor to AOD over the PYRD. DEM: 
digital elevation model; SLP: slope; PREC: precipitation; AWS: average wind speed; ATEM: average 
temperature; ARH: average relative humidity; PBLH: planetary boundary layer height; NDVI: 
normalized difference vegetation index; GDP: gross domestic product; POP: population density. 

Figure 9. Seasonally and annually specific contribution of each factor to AOD over the PYRD.
DEM: digital elevation model; SLP: slope; PREC: precipitation; AWS: average wind speed; ATEM:
average temperature; ARH: average relative humidity; PBLH: planetary boundary layer height; NDVI:
normalized difference vegetation index; GDP: gross domestic product; POP: population density.

In different seasons, the q values of DEM and SLP ranged from 0.733 to 0.866 and from 0.663 to
0.834, respectively, indicating they could explain AOD more than the other factors. The q values of
PREC were 0.499, 0.282, 0.286, 0.588 in spring, summer, autumn, winter, respectively, which suggests
that PREC was the main meteorological factor influencing AOD. AWS and ATEM also exhibited strong
effects on AOD in winter, with the q value of 0.370 and 0.467, respectively. ARH and PBLH were
found to show somewhat strong influences on AOD in spring (q value = 0.283 and 0.204 respectively).
Notably, despite low in summer and autumn, the q value of NDVI reached a maximum of 0.583 in
winter. In addition, GDP and POP exerted great influences on AOD distribution in all the seasons,
with q values greater than 0.2.

The directions of regression coefficients for variables in multiple linear regression models (Table A5
in Appendix A) show the positive or negative correlation between AOD and the factors. DEM, PREC,
NDVI and PBLH were found negatively linked to the AOD, while AWS, ARH, and POP were observed
positively associated with the AOD.

5. Discussion

5.1. AOD Gap-Filling

Previous studies mapped the spatiotemporal characteristics of AOD at coarse spatial resolutions,
which makes it difficult to unravel regional-scale aerosol heterogeneity [16,43,66]. The latest released
MODIS 3-km AOD can provide more fine-scale aerosol details over urban areas [27]. Due to the
limitation of the Dark Target (DT) algorithm, there are however a large number of missing values in
the daily AOD images of MODIS 3-km AOD [28]. In this study, we applied the method proposed
by He and Huang [22] to merge AOD data at a regional-scale, and the accuracy and spatiotemporal
coverage of merged AOD were compared. To our knowledge, this is the first attempt to merge 3-km
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DT and 10-km DB AOD with daily linear regression models at regional-scale. The linear regression
models achieved high prediction accuracy (cross-validation R2 ranging from 0.82 to 0.88, Table A4).
The performance of linear regression was steady across the years and among different AOD datasets
(Table A4). Validation of merged AOD against AERONET AOD also indicate that when comparing
with the original DT AOD, the merged AOD (both for Terra and Aqua) outperformed in RMSE and the
percentage of AOD retrievals within EE. The correlation coefficients (R), though a slight decrease after
merging, were higher in our study (>0.91 for both Terra and Aqua) than those reported by Qin et al.
(R = 0.71) [40] and Wang et al. (R = 0.84) [66], enough to allow the investigation of spatiotemporal
variations of aerosols.

Meanwhile, the coverage of the merged AOD was improved in this study. The average spatial
coverage increased from 13.7% (the original Terra DT AOD) and 11.45% (the original Aqua DT AOD)
to 26.52% (Figure A1). In a previous study, Xu et al. [37] merged MISR, SeaWiFS, MODIS DT, MODIS
DB and MODIS SRAP AOD datasets using the maximum likelihood estimate method over Asia for
the year 2007, with the average spatial coverage of AOD data increasing to 50% while the figures
of the operational AOD datasets only ranged from 5% to 20%. Compared with the study of Xu et
al., the coverage improvement of our study is slightly lower, probably due to the low availability of
the original AOD data [85]. The linear regression merging approach could only estimate the AOD
pixels at where at least one of the four AOD datasets has valid retrievals. However, because of the
cloud contamination and retrieval errors [32], the original AOD datasets have large numbers of data
gaps in the PYRD. The mean daily spatial coverage of the original Terra DT, Aqua DT, Terra DB and
Aqua DB data were 13.7%, 11.45%, 19.98% and 16.91% respectively (Figure A1). Insufficient retrievals
lead to limited improvement in AOD coverage. Moreover, the more datasets utilized in the study
of Xu et al. broadened the coverage of AOD data to a greater degree. Additionally, the temporal
coverage for most of the PYRD increased to 20%-40% in our study (Figure 5), which were similar to
the result of He and Huang [22]. Though limited, the linear regression merging approach improved
the spatial and temporal coverage to a certain degree, which could provide more information about
AOD for the subsequent analyses (i.e., spatiotemporal variations and influencing factors analysis of
AOD). The results of our study also proved that this method is not only suitable for merging AOD at
national-scale but regional-scale.

5.2. The Impacts of Factors on the Spatial Variations of AOD

Topography was confirmed to be closely and negatively related to AOD, with quite high q values
for DEM and SLP (Figure 9, Table A5). Over the PYRD, high AOD values were observed in plain
and tableland areas (Figure 6a) such as Jiangsu, Shanghai, and North, and Central Anhui, while low
AOD values were primarily concentrated in hilly areas like Zhejiang, Southwest and Southeast Anhui.
A previous study has found that both the MODIS C6.1 DT and DB AOD retrievals show small biases
in low-elevation areas (height < 800 m) while the DT AOD retrievals show increasing positive biases
as the elevation increases in high-elevation areas (height > 800 m) [26]. Since most parts of the PYRD
(approximately 97.47%) are at elevations below 800 meters, it was assumed that biases caused by
elevation are small. The close and negative association between DEM, SLP and AOD may be explained
from three aspects: firstly, low-elevation and flat areas are more influenced by human activity such as
industry and construction, and thus emitted more air pollutants [34,50]; secondly, high mountains in
high-elevation areas can prevent the horizontal dispersion of air pollutants [19,96]; and lastly, for the
mid-latitude areas, precipitation usually increases with elevation [97], while precipitation is capable of
bringing down aerosols [46]. Previous studies also showed the aerosol distribution is strongly affected
by topography conditions [19,41–43].

Compared to other factors, socioeconomic factors (i.e., population density and GDP) were
identified as greater contributors to AOD (Figure 9, Table A5), explaining 41% and 36.9% of the spatial
variability in AOD, respectively. This finding agrees with previous studies of AOD-GDP association in
Guangdong [50], Huaihai economic region [45] and mainland China [40] and AOD-population density
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association in mainland China [40]. It is due to the fact that a dense population causes high anthropogenic
aerosol particles emissions and that high GDP requires heavy energy consumption [40,65], thereby
leading to an increase in AOD. For example, Jiangsu and Shanghai were areas with large populations
and high GDP in China, where an enormous amount of fuel combustion, industrial emission, and
transportation and construction sources have always caused large AOD values [49,65]. But despite
high population density and GDP, Zhejiang had lower AOD values than the other areas. We assume
that the possible reason is that the impact of terrain was stronger than socioeconomic factors.

The influence of local meteorological factors on the spatial pattern of AOD varied in
different periods. From the result of geographical detector method and multiple linear regression
analysis (Figure 9, Table A5), precipitation had a prominent negative impact on the AOD during the
four-year period and in each season, which is consistent with multiple previous studies [19,44–46]. It is
because precipitation can lower aerosol concentration by washing away aerosols [45]. Additionally,
precipitation tends to increase soil moisture, making the dust more difficult to rise into the
atmosphere [19]. The influence of wind speed on AOD is complex because it may either disperse
aerosols or bring in fresh aerosols [47,48]. Wind speed was observed to make an important positive
contribution to AOD, particularly in winter. The prevailing north-west wind in winter can bring
in highly polluted airborne particles from North China to the PYRD [66]. The planetary boundary
layer height exhibited an obvious negative impact on AOD in spring. This is due to the fact that
relative high planetary boundary layer in this season can lead to strong dilution and diffusion of
aerosol particles [53]. In addition, relative humidity and temperature also have strong impacts
on AOD in spring and in winter, respectively. It was well documented that the higher relative
humidity could result in a larger volume of fine particles because of the hygroscopic growth of aerosol
particles [19,51]. Regarding temperature, some studies have confirmed that high temperature can
promote the photochemical reaction, thus increasing aerosol concentrations in the atmosphere [49–51].
However, on the other hand, the occurrence of inversion phenomenon in winter may hinder the
diffusion and dispersion of aerosol particles, causing accumulation of aerosols over the region [48,98].
In the present study, since the temperature was not included in the models, thus its impact directions
were not detected. Previous studies have reported that AOD is strongly and negatively related
to the NDVI in Guangdong and Yangtze River Basin [44,50], because denser vegetation can lower
AOD values by absorbing and depositing aerosol particles, especially in the dusty environment [19].
In some cases, however, vegetation can also increase AOD, for example, through burning straw in
rural areas [19,44,52,99]. In our study, NDVI contributed to the AOD negatively in winter more than in
the other seasons (Figure 9, Table A5). A possible explanation is that owing to the sparse vegetation in
winter, large amounts of dust aerosols were emitted into the air by wind erosion and this remarkably
increased the aerosols in the atmosphere. In contrast, thick vegetation in spring, summer, and autumn
mitigated the determinate power of NDVI for the spatial variability of AOD in these seasons.

5.3. The Effect of Environmental Policy on the Temporal Variability of AOD

The annual average AOD of the PYRD showed a decreasing trend from 2014 to 2017, in agreement
with the trends observed in the Huaihai Economic Region [45] and East China [49]. It has been
widely acknowledged that precipitation, temperature, and wind speed can impact the concentration
of aerosols [16,19,51]. However, no prominent annual variation on precipitation, wind speed,
or temperature over the PYRD was observed during the 2014–2017 period. Hence, the decline
of annual average AOD might not be attributed to temporal change in meteorological factors. On the
other hand, ground-level particles have presented a downward trend in recent years, which might be
a key reason for the reduction in annual average AOD [42]. Since 2013, a variety of environmental
measures have been implemented to lower PM emissions in the PYRD by the central and local
governments, for instance, improving combustion technologies and vehicle emission standards,
adjusting the energy structure, and utilizing clear energy [42,66,98].
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5.4. Limitations

There are some limitations in this study. Firstly, though the linear regression-based merging
approach can improve the spatiotemporal coverage of MODIS AOD, large data gaps remain in some
daily images. Thus, the other gap-filling methods, such as spatiotemporal kriging [34] and multiple
imputation [32] should be adopted to further fill AOD based on MODIS AOD merging. Secondly, we
only focused on the impacts of factors on the spatial pattern of AOD, without considering the causes
for seasonal variations of AOD. Lastly, although anthropogenic emissions are prominent sources of
atmospheric aerosols, we only considered two socioeconomic factors (GDP and population density)
due to the lack of data. More factors should be selected to represent the impact of human activity.

6. Conclusions

In this study, we merged four MODIS AOD datasets from 2014 to 2017 with an assessment of
the accuracy and spatiotemporal coverage of the merged AOD and investigated its spatial pattern
and temporal variations over the Pan Yangtze River Delta (PYRD). In addition, the contributions of
topography, meteorology, vegetation, and socioeconomic factors to AOD distribution were identified
through the geographical detector method and multiple linear regression analysis. The key findings
and main conclusions are as follows:

• The merged AOD are better than the original Terra/Aqua DT AOD, with the average spatial
coverage increased by 94% and 132% respectively.

• The AOD over the PYRD were high in the northeast and low in the southwest and decreased from
2014 to 2017. Seasonal average AOD were relatively higher in spring and summer than in autumn
and winter.

• Topographical factors contributed most to AOD, followed by precipitation and population density,
while NDVI showed a relatively week impact on AOD.

Our study highlights how AOD varies over time and in space and therefore, has the potential
to contribute to the formulation of environmental policy to protect atmospheric quality over large
economically prosperous regions like the PYRD.
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Abbreviation

AOD: Aerosol optical depth; DEM: Digital Elevation Model; DT: Dark Target; SLP: Slope; DB:
Deep Blue; PREC: Precipitation; MODIS: Moderate Resolution Imaging Spectrometers; ATEM: Average
temperature; AERONET: Aerosol Robotic Network; AWS: Average wind speed; CV: Cross-validation;
ARH: Average relative humidity; RMSE: Root mean squared error; PBLH: Planetary boundary layer
height; RPE: Relative prediction error; NDVI: Normalized difference vegetation index; R2: Coefficient
of determination; GDP: Gross domestic product; R: Correlation efficient; POP: Population density; VIF:
Variance Inflation Factor.
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Appendix A

Validation of the Resampled 3-km DB AOD Data

The 3-km DB AOD data from 2014 to 2017, resampled by nearest neighbor, bilinear interpolation
and cubic convolution methods respectively, were validated against AERONET AOD values.

Table A1. Validation summary of the resampled 3-km DB AOD data.

AOD
Nearest Neighbor Bilinear Interpolation Cubic Convolution

R2 RMSE R2 RMSE R2 RMSE

Terra DB
AOD 0.78 0.16 0.77 0.17 0.77 0.17

Aqua DB
AOD 0.82 0.17 0.81 0.18 0.78 0.20

The Calibration of AOD

The linear regression relationships between the four MODIS AOD datasets and AERONET AOD
data were established using the following equation:

AODAeronet = a + b×AODMODIS, (6)

where AODAeronet refers to AERONET AOD data, AODMODIS refers to Terra DT, Aqua DT, Terra DB or
Aqua DB AOD data; a, b, R2 refer to intercept, slope, and R square of the linear regression respectively.

Table A2. Linear regression models for the four MODIS AOD datasets calibration.

Seasons
Terra DT AOD Aqua DT AOD Terra DB AOD Aqua DB AOD

a b R2 a b R2 a b R2 a b R2

Spring 0.01 0.75 0.82 0.03 0.77 0.78 0.19 0.85 0.83 0.17 0.90 0.77
Summer −0.12 1.0 0.89 −0.08 0.93 0.80 0.17 0.95 0.89 0.14 0.95 0.86
Autumn 0.03 0.86 0.84 0.12 0.71 0.84 0.17 0.76 0.84 0.21 0.63 0.76
Winter 0.05 0.86 0.76 0.11 0.76 0.82 0.18 0.67 0.87 0.16 0.77 0.81

Table A3. Pearson correlations between AERONET AOD values at times when two satellites overpass.

Year N R

2014 115 0.8462
2015 129 0.8734
2016 116 0.8324
2017 132 0.8267

2014–2017 492 0.8477

N: the number of samples; R: Pearson correlation coefficients between AERONET AOD values at times when two
satellites overpass.
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Table A4. Predictive performance of the linear regression models for missing AOD data and standard
deviation of the predicted AOD values (10-fold cross-validation).

Model Year RMSE RPE (%) R2 σ

Predict Terra
DT AOD with
Aqua DT AOD

2014 0.14 28.8 0.83 0.0054
2015 0.12 27.5 0.85 0.0017
2016 0.12 29.6 0.83 0.0051
2017 0.10 28.7 0.82 0.0064

2014−2017 0.12 28.8 0.83 0.0110

Predict Aqua
DT AOD with
Terra DT AOD

2014 0.13 26.3 0.82 0.0028
2015 0.11 24.8 0.85 0.0019
2016 0.11 27.3 0.83 0.0032
2017 0.10 24.7 0.83 0.0050

2014−2017 0.11 25.9 0.83 0.0061

Predict Terra
DB AOD with
Aqua DB AOD

2014 0.11 23.5 0.87 0.0024
2015 0.10 21.0 0.85 0.0015
2016 0.10 21.2 0.86 0.0018
2017 0.09 21.6 0.83 0.0013

2014−2017 0.10 22.1 0.86 0.0028

Predict Aqua
DB AOD with
Terra DB AOD

2014 0.12 23.6 0.88 0.0010
2015 0.10 20.8 0.85 0.0003
2016 0.10 21.5 0.85 0.0034
2017 0.09 21.2 0.84 0.0002

2014−2017 0.10 22.0 0.86 0.0011

Predict Terra
DT AOD with
Terra DB AOD

2014 0.12 23.7 0.86 0.0021
2015 0.12 23.0 0.85 0.0014
2016 0.11 24.8 0.85 0.0030
2017 0.10 25.4 0.84 0.0022

2014−2017 0.12 24.2 0.86 0.0045

Predict Aqua
DT AOD with
Aqua DB AOD

2014 0.11 21.9 0.86 0.0044
2015 0.11 21.2 0.85 0.0032
2016 0.11 23.9 0.84 0.0023
2017 0.10 22.5 0.83 0.0012

2014−2017 0.11 22.4 0.85 0.0037
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Multiple Linear Regression Models

To avoid the collinearity issue, Pearson correlation analyses among influencing factors were
conducted for each season and the four-year period. If two factors were closely correlated (Pearson’s
r > 0.6) with each other, only one of the two was selected to develop the final model while the other
was removed. For example, the results of Pearson correlation analyses show that some factors (i.e.,
DEM vs. SLP, PREC vs. ARH, AWS vs. ATEM, and POP vs. GDP) were closely correlated in spring.
Meanwhile, the results of multiple linear regression models show that DEM, PREC, AWS and POP
have better performance than the others. Thus, we selected DEM, PREC, AWS, POP, PBLH, and NDVI
in the spring model (Table A5). The same method was used to build models for the other seasons and
the whole period (Table A5).

Table A5. Multiple linear regression analysis of season (annual) mean AOD and standardized
impact factors.

Model Regression Function R2 Adjusted R2 Max VIF (Variable)

Annual
AOD = 2.492 × 10−15 0.566 × DEM −
0.307 × PREC + 0.098 × AWS − 0.025 ×
PBLH − 0.076 × NDVI + 0.210 × POP

0.792 0.792 2.365 (DEM)

Spring
AOD = −9.663 × 10−16

− 0.500 × DEM −
0.265 × PREC + 0.103 × AWS − 0.127 ×
PBLH − 0.118 × NDVI + 0.164 × POP

0.806 0.806 2.817 (DEM)

Summer

AOD = 3.121 × 10−15 − 0.616 × DEM −
0.202 × PREC + 0.173 × AWS + 0.099 ×
ARH - 0.032 × PBLH − 0.102 × NDVI +
0.247 × POP

0.677 0.677 2.061 (ARH)

Autumn

AOD = 1.445 × 10−15 − 0.639 × DEM −
0.348 × PREC + 0.188 × AWS + 0.081 ×
ARH − 0.068 × PBLH − 0.072 × NDVI +
0.324 × POP

0.824 0.823 2.411 (PREC)

Winter
AOD = 4.822 × 10−16 − 0.523 × DEM −
0.250 × PREC + 0.110 × AWS − 0.090 ×
PBLH − 0.234 × NDVI + 0.228 × POP

0.833 0.833 2.832 (DEM)

VIF: Variance Inflation Factor. VIF of each independent variable less than 3 indicates that there is no collinearity in
the regression model.
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