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Abstract: There has been growing interest in extending the coverage of ground particulate matter
with aerodynamic diameter ≤ 2.5 µm (PM2.5) monitoring networks based on satellite remote sensing
data. With broad spatial and temporal coverage, a satellite-based monitoring network has a strong
potential to complement the ground monitor system in terms of the spatiotemporal availability of
the air quality data. However, most existing calibration models focus on a relatively small spatial
domain and cannot be generalized to a national study. In this paper, we proposed a statistically
reliable and interpretable national modeling framework based on Bayesian downscaling methods
to be applied to the calibration of the daily ground PM2.5 concentrations across the conterminous
United States using satellite-retrieved aerosol optical depth (AOD) and other ancillary predictors in
2011. Our approach flexibly models the PM2.5 versus AOD and the potential related geographical
factors varying across the climate regions and yields spatial- and temporal-specific parameters to
enhance model interpretability. Moreover, our model accurately predicted the national PM2.5 with an
R2 at 70% and generated reliable annual and seasonal PM2.5 concentration maps with its SD. Overall,
this modeling framework can be applied to national-scale PM2.5 exposure assessments and can also
quantify the prediction errors.
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1. Introduction

Particulate air pollution has become a major environmental and public health concern worldwide
in recent years. Particularly, particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) is shown
to have a strong association with various adverse health outcomes, such as increased mortality and
morbidity and aggravated respiratory and cardiovascular symptoms [1]. Ambient PM2.5 is either
directly emitted from various anthropogenic and biogenic sources or generated in the atmosphere
from complex photochemical reactions [2]. Consequently, PM2.5 concentrations vary in space and time
at sub-kilometer to continental scales [3]. Thus, it is important to accurately assess the population
exposure of PM2.5. However, in the interest of reducing cost, PM2.5 monitors are usually sparsely
distributed and tend to be concentrated among urban areas, and most PM2.5 monitors operated
by the US Environmental Protection Agency (EPA) and the IMPROVE network only operate on a
one-in-three-day or one-in-six-day schedule, leaving significant temporal gaps. Due to these spatial
and temporal limitations, it is difficult for current PM2.5 networks to provide sufficient data to fully
assess PM2.5 for health effect studies and it could lead to biased results for some key scientific questions.
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One emerging solution to these problems is spatial models driven by remotely sensed
particle properties from the satellite platform as well as gridded meteorological and land use
information. The most robust and widely used satellite parameter is the aerosol optical depth (AOD),
which measures the overall particle light extinction caused by airborne particles in the atmospheric
column. Many previous studies have shown that AOD has a strong positive association with PM2.5.
In addition to AOD, previous studies have shown that meteorological and land use information are
important factors to predict the ground-level concentration of PM2.5 and the relationship between
AOD and PM2.5 [4–6]. All these properties between AOD and PM2.5 make it possible to develop
statistical methods to calibrate PM2.5 using AOD and other geographical factors. Over the past decade,
various MODIS-driven PM2.5 exposure models have been developed, from relatively simple linear
regressions [7] to complex multilevel spatial models [8] and Bayesian hierarchical models [9]. Bayesian
hierarchical models have more flexibility in modeling the complex temporal and spatial pattern
of PM2.5, and compared with other spatial models based on mixed-effects terms [7–10], one major
advantage of the Bayesian model is its underlying nature to quantify the prediction uncertainty
through the Markov chain Monte Carlo (MCMC) algorithm, which is crucial for scientific research.
Therefore, in this study, we extended the Bayesian model proposed by Chang et al. [9] into a national
Bayesian model to examine PM2.5 under a national domain.

So far, most satellite-driven PM2.5 exposure models have been developed at the urban to regional
scales in order to support health effect studies in specific regions [5,9,11–15]. High-performance
national scale PM2.5 exposure models are still limited partially because of the high-computational
demand in order to make national PM2.5 prediction surfaces. A couple of national-scale studies
involved machine learning methods [16,17]. Di et al. [16] developed a neural network approach,
incorporated with convolutional layers to account for spatiotemporal autocorrelation, to predict PM2.5

concentrations in the continental United States from 2000 to 2012. Hu et al. [17] developed a random
forest model with ~40 predictors to predict PM2.5 exposure in the conterminous United States in 2011.
These emerging methods can provide relatively high predication accuracy but offer little insight into
how different predictors behave across such large domains. For example, random forests only provide
an importance value for each predictor to indicate which predictor is more important in the training
process. Both neural networks and random forests do not provide quantification of uncertainties in
prediction and parameter estimation. These methods also cannot provide straightforward estimates of
the model prediction errors. On the other hand, statistical models provide a balance between model
predication accuracy and the ability for interpretation and serve as the most reliable and commonly
used approaches in calibrating the PM2.5. For example, Lee et al. [13] proposed a mixed-effects model
with random temporal intercept and slope on AOD to evaluate the time-varying effects. This type of
model assumes that the temporal-random-effect-based model requires the independence assumption
between different days, which is generally not practical and, thus, they have limited power to make
predictions out of the temporal domain. They also fail to adjust the spatial variability in large spatial
domains and can provide biased results. Similar for the hierarchical models [5,11,12], it is tricky to
quantify the uncertainties in prediction or parameter estimation based on such models, which limits
their power to be used in real applications. Thus, all these models are not directly applicable to the
national domain.

Chang et al. [9] reported a Bayesian downscaling model which adopted the Gaussian spatial
process to incorporate the spatial correlation into the model, which increases the power to borrow
information across neighborhoods, through which the challenge of spatial misalignment between the
point-referenced monitoring measurements and the gridded areal AOD data can be solved. It also
models the conditional correlation between adjacent observed days, which allows us to estimate
the random effects on the day without PM2.5 measurements. In addition, this model adopts a full
Bayesian approach, by which the model uncertainty can be obtained easily. However, this model is only
applicable to small spatial domains for three reasons. First, it assumes that the temporal correlation
structure is constant across the whole spatial domain, but based on our study, this is not realistic in
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a large spatial domain. Similarly, it assumes that the spatial correlation structure is constant across
the whole year, which is not realistic. Second, the original model is not flexible enough to capture
the huge spatial variability in the national domain. For example, it assumes a constant effect of land
use across different states that fails to consider the localized difference, which is one of the goals of a
national study. Finally, directly generalizing the original model is computationally expensive because
the spatial correlation matrix is of high dimensions and is very sparse.

In this paper, we enhanced and expanded the original Bayesian downscaler to the entire
continental United States We developed a regional- and temporal-specific Bayesian downscaling
approach to gain more flexibility. Our model incorporated AOD data, meteorological fields, and land
use variables to estimate daily ground-level PM2.5 concentrations over the conterminous United
States for the year 2011. The estimated regional- and temporal-specific parameters were scientifically
meaningful and the prediction accuracy was evaluated through general and spatial cross-validation
frameworks. Our model predicted the daily averaged PM2.5 concentrations across the entire continental
United States and also the prediction uncertainty maps.

2. Data and Methods

2.1. Data Collection

The 24-h averaged PM2.5 measurements for 2011 were downloaded from the US EPA’s Air
Quality System Technology Transfer Network (http://www.epa.gov/ttn/airs/airsaqs/). Collection
6 level 2 Aqua MODIS retrievals at a nominal spatial resolution of 10 km were regridded to the
12 × 12 km2 Community Multi-Scale Air Quality (CMAQ) modeling system (https://www.epa.gov/
cmaq). Regridding to a fixed grid is necessary when modeling with level 2 MODIS data because
MODIS pixels shift in location and size with each satellite overpass. In addition, given the 10-km
nominal resolution of MODIS AOD pixels, regridding to the commonly used 12-km CMAQ grid does
not compromise the AOD spatial resolution significantly. Doing so may also benefit future comparisons
between CMAQ simulation results and our model predictions. We calculated AOD averages using
AOD retrievals from the combined deep-blue and dark-target parameters. Meteorological fields were
obtained from the North American Regional Reanalysis (NARR) (http://www.emc.ncep.noaa.gov/
mmb/rreanl/), with a spatial resolution of ~32 km and a temporal resolution of 3 h, and the North
American Land Data Assimilation System Phase 2 (NLDAS-2) (http://www.emc.ncep.noaa.gov/mmb/
rreanl/), with a spatial resolution of ~13 km and a temporal resolution of 1 h. Elevation data at a spatial
resolution of ~30 m were downloaded from the National Elevation Dataset (http://ned.usgs.gov).
Road data were extracted from ESRI StreetMap USA. Percentage forest cover data at a spatial resolution
of ~30 m were extracted from the 2011 Landsat-derived land cover map downloaded from the National
Land Cover Database (NLCD) (http://www.mrlc.gov). Primary PM2.5 emissions were obtained from
the 2011 EPA National Emissions Inventory (NEI) facility emissions report (https://www.epa.gov/air-
emissions-inventories/2011-national-emissions-inventory-nei-data).

2.2. Climate Regions and Temporal Domains

To improve computational efficiency, we divided the conterminous U.S. into nine NOAA-defined
climate regions [18], which include Northeast, Southeast, South, Ohio Valley (Central), Upper Midwest
(East North Central), Northern Rockies and Plains (West North Central), Southwest, Northwest, and
West (Figure 1). After examining aerosol light extinction measurements in various regions of the world,
Anderson et al. [3] reported that the typical mesoscale variability of lower-tropospheric particles
ranges between 40 and 400 km Therefore, by dividing our national domain into nine multistate
regions, we were still able to sufficiently capture the spatial and temporal correlations of ground-level
PM2.5. We added a 100-km buffer to each climate region and averaged overlapping predictions from
neighboring regions to generate a smooth national PM2.5 concentration surface. In addition, the spatial
pattern varies significantly across the year. To reduce the high computational demand of our Bayesian
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model, we divided the year 2011 into three 4-month temporal periods and developed a Bayesian
downscaling model in each period. Since the typical PM2.5 residence time in the boundary layer ranges
from a couple of days to two weeks, this treatment had minimal impact on model performance.
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2.3. National Bayesian Downscaling Model

For each regional and temporal subdomain, we adopted the basic framework of the Bayesian
downscaling model proposed by Chang et al. [9]. In this model, let PM(s,t) denote the PM2.5

concentration at location s and day t, where s can be viewed as the unique spatial coordinates.
Similarly, let AOD(s,t) denote the AOD measurement at the grid cell containing the monitor s and day
t. For one specific climate region reg, a function of s and the temporal domain, the first level model
between AOD and PM2.5 is given as

PM(s, t) = α0(s, t) + α1(s, t) AOD(s, t) + γreg, tem(s, t) Z(s, t) + ε(s, t) (1)

where α0(s,t) and α1(s,t) are the day-specific and location-specific random intercept and slope and
the residual error ε(s,t) is assumed to be independently normal with mean zero and regional- and
temporal-specific variance σreg,tem

2. Z(s,t) represents for the covariates having a constant association
with PM2.5, where γreg,tem represents for the regional- and temporal-specific fixed effect between Z(s,t)
and PM(s,t). Here, Z(s,t) includes fire, forest coverage, emission, relative humidity (RH), temperature,
wind speeds, major roadway length, boundary layer height (Hpbl), and the interaction between AOD
and temperature.

The spatiotemporal random effects α0(s,t) and α1(s,t) are specified using additive setting.
For clarity, we present the model setting for one specific region and temporal domain: αi(s,t) = βi(s)
+ βi(t), i = 0,1, where βi(s) and βi(t) are independent spatial and temporal effects. The spatial effects
are modeled using a latent structure of two independent spatial Gaussian processes W1(s) and W2(s),
where β0(s) = c1W1(s) and β1(s) = c2W1(s) + c3W2(s) and the covariance function of Wi(s) for each region
is given by the exponential function multiplied by a tapering function. The regional-specific temporal
effects β0(t) and β1(t) are modeled as two independent daily time series using a first-order random
walk, which can be defined through the conditional distribution of a particular day given all other
days. More details about the model specifications can be found in the online supplementary materials.

2.4. Model Fitting and Prediction

Model fitting was carried out using Markov chain Monte Carlo (MCMC) techniques [9,19].
Details of the MCMC algorithms and the prior settings can be found in the online supplementary
materials. Prediction performance was evaluated using two different cross-validation methods: fully
random cross-validation (random CV) and spatial cross-validation (spatial CV) [9,20]. In random CV,



Int. J. Environ. Res. Public Health 2018, 15, 1999 5 of 13

we randomly split the data into 10 folds and fit the model using 9 folds and evaluated the fitted model
using the remaining fold, which can be used to evaluate the overall prediction ability of our approach.
The spatial CV was similar to random CV except that rather than randomly splitting the data, we split
the data based on its spatial location. The spatial CV results were used to evaluate the ability in spatial
extrapolation. In addition, through the MCMC approach, we quantified the prediction uncertainty,
i.e., interval estimates. We also calculated the prediction statistics by comparing the predicted PM2.5

measurements with the observations, which include root-mean-square error (RMSE), 90% posterior
interval (PI) length, and its empirical coverage probability and linear coefficient of determination R2

value. All analyses were carried out in R version 3.2.3 (https://www.r-project.org/).

3. Results

3.1. Data Description and Summary

The histograms of all variables are illustrated in Figure 2, which shows that all the variables are
approximately unimodal and log-normal distributed. Log-transformation was conducted for fire,
emission, and road for the following analysis. Z-transformation was conducted for all variables except
for PM2.5 and AOD to remove the collinearity between covariates and to make the scale comparable.
The annual mean PM2.5 concentration for all monitors was 9.88 µg/m3, with an SD of 6.17 µg/m3.
The overall mean of AOD was 0.14, with an SD of 0.15. The region-specific descriptive statistics for
PM2.5 and AOD are summarized in Table 1. The number of records, monitors, days, and the percentage
of data coverage for each region are summarized in Table 2. Among the nine regions, the Ohio Valley
has the highest mean PM2.5 concentration at 11.29 µg/m3 and it has most records (18,642) and monitors
(361). In terms of missing AOD data, the West has the best data coverage (30%), while the Northeast
has the worst (12%) due to both cloud cover and snow cover in winter.
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Table 1. Descriptive statistics for PM2.5 and aerosol optical depth (AOD).

Regions PM2.5 (SD) AOD (SD)

West 10.72 (7.17) 0.10 (0.12)
Northwest 6.23 (4.05) 0.12 (0.11)
Southwest 7.40 (4.75) 0.10 (0.11)

Northern Rockies and Plains 7.40 (4.11) 0.12 (0.13)
Upper Midwest 10.33 (5.87) 0.18 (0.17)

South 10.17 (5.09) 0.13 (0.15)
Southeast 10.83 (5.34) 0.15 (0.17)

Ohio Valley 11.29 (5.79) 0.17 (0.17)
Northeast 10.68 (6.10) 0.19 (0.19)

Table 2. Region-specific counts and data coverage.

Regions Number of Records Number of Days Number of Monitors Coverage

West 17,096 356 159 30%
Northwest 9486 295 170 19%
Southwest 9567 363 138 19%

Northern Rockies and Plains 7463 328 150 15%
Upper Midwest 6208 304 145 14%

South 15,899 364 189 23%
Southeast 17,525 361 257 19%

Ohio Valley 18,642 354 361 15%
Northeast 8913 302 238 12%

3.2. Regional and Temporal Varying Geographical Associations

In this section, we explore the different patterns across climate regions and temporal domains
revealed by the significant parameters in our model. First of all, the national Bayesian downscaling
model fits well across different regions and temporal domains in terms of model R2 and slope, as shown
in Table 3. The Northeast tends to have the best model fitting. The climate regions with the highest
set of R2 are the Upper Midwest (0.85) and Northeast (0.84) regions. The slopes in these two climate
regions are consistently higher than 0.95 across all time domains, indicating minimal systematic biases
in model fitting. On the other hand, the model tends to have a lower R2 in the South and Northwest
regions, where the annual R2 for the South climate region is 0.64 and the annual R2 for the Northwest
climate region is 0.63.

Table 3 presents all the significant geographical and meteorological factors (p-value < 0.05),
which exhibit substantial inter-region differences among the regional models. First of all, AOD is
the most important covariate and is significant for most regions and temporal domains. We noticed
that the effect of AOD on PM2.5 is weaker in May through August than other months. This pattern
is commonly observed in all climate regions after we condition the temperature to be the average
level in the specific spatial and temporal domain. Furthermore, fire, RH, temperature (TMP), and the
interaction between AOD and TMP are significant across all regions. Other covariates, including forest
coverage, emission, wind speed, Hpbl, and road length, vary across regions and temporal domains.
Forest coverage is a significant factor in explaining the pattern of PM2.5 in the West, Northwest,
and Southwest climate regions across the entire year but is not significant in the Northern Rockies
and Plains regions. Emission is not significant in most regions except the West, where it significantly
explains the variability of PM2.5. On the other hand, Hpbl has a significantly negative association with
PM2.5 in the West region but is not significant in the Northwest and Northeast regions.
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Table 3. Statistically significant geographical and meteorological predictors.

Region Temporal AOD Fire Forest Emission RH TMP Vgrd Ugrd Hpbl Road AOD * TMP R2 Slope

West
1 21.2 (5.9) −0.7 (0.3) 0.6 (0.2) 2.5 (0.2) 2.4 (0.4) 1.2 (0.2) −0.2 (0.1) 9.8 (3.4) 0.65 0.88
2 4.1 (1) −0.8 (0.3) 0.4 (0.1) 0.7 (0.1) 2.7 (0.2) −0.1 (0.1) 0.77 0.94
3 31.2 (5.2) 0.2 (0.1) −1.9 (0.3) 0.8 (0.3) 0.6 (0.1) 1.4 (0.1) −0.4 (0.1) −0.7 (0.1) −8.5 (2.5) 0.72 0.91

Northwest
1 −1.5 (0.5) −0.7 (0.3) −1.9 (0.5) 0.57 0.84
2 5.4 (1.1) 0.1 (0) −0.2 (0.1) 0.4 (0.1) 1.5 (0.2) 4.4 (1) 0.62 0.92
3 25.4 (3.8) 0.4 (0.1) −0.4 (0.2) 1.2 (0.4) −0.4 (0.1) 14.7 (2.1) 0.69 0.9

Southwest
1 10.6 (5) 0.3 (0.1) −0.7 (0.2) 0.5 (0.2) 2.4 (0.3) 0.5 (0.1) −11 (2.8) 0.69 0.89
2 5.5 (1.8) −0.3 (0.1) 0.4 (0.2) 3.5 (0.3) 0.3 (0.1) 0.6 (0.1) 0.6 0.88
3 18.8 (4.5) −0.5 (0.2) 0.7 (0.2) −0.2 (0.1) −0.3 (0.1) 0.68 0.9

Northern Rockies and Plains
1 0.4 (0.1) 1.2 (0.3) 0.7 (0.2) 0.82 0.95
2 4.4 (1.5) 0.3 (0.1) 0.3 (0.1) 2.4 (0.2) 0.4 (0.1) 3.1 (1) 0.67 0.92
3 11.1 (2.1) 0.3 (0.1) 2.1 (0.2) −0.6 (0.1) −0.4 (0.1) 0.73 0.92

Upper Midwest
1 0.5 (0.3) 1.3 (0.2) −0.4 (0.2) 0.79 0.95
2 4.4 (1.7) 0.3 (0.1) −0.6 (0.2) 0.9 (0.1) 2.7 (0.3) 1 (0.1) −0.3 (0.1) 3.7 (1) 0.82 0.95
3 9.5 (3) 0.4 (0.1) −0.6 (0.2) 0.3 (0.1) 2.5 (0.2) 0.4 (0.1) −0.3 (0.1) −0.2 (0.1) 0.85 0.96

South
1 13.1 (2.2) 0.5 (0) −0.3 (0.1) 1.4 (0.2) 0.3 (0.1) −0.2 (0.1) 0.59 0.91
2 0.2 (0.1) 0.5 (0.1) 4.2 (0.3) −0.2 (0.1) 0.2 (0.1) 0.3 (0.1) 4.5 (1.1) 0.67 0.94
3 14.7 (1.9) 0.3 (0) −0.7 (0.1) −0.2 (0.1) 1 (0.2) 0.3 (0.1) −0.4 (0.1) −0.4 (0.1) 0.3 (0.1) 0.65 0.93

Southeast
1 15.1 (1.9) 0.3 (0) −0.3 (0.1) −0.3 (0.1) 0.8 (0.2) 0.5 (0.1) 4.6 (0.9) 0.68 0.94
2 4.6 (1.6) 0.1 (0) 1.7 (0.2) 7 (0.4) −0.6 (0.1) 0.2 (0.1) 6.1 (1.1) 0.74 0.95
3 11.1 (1.4) 0.3 (0) −0.6 (0.1) −0.7 (0.1) 0.8 (0.2) 0.7 (0.1) −0.3 (0.1) 6.9 (1.1) 0.69 0.94

Ohio Valley
1 21.2 (2.9) 0.7 (0) −0.5 (0.1) 0.4 (0.1) 0.7 (0.2) 0.7 (0.1) −0.3 (0.1) 5.5 (1) 0.68 0.94
2 5.7 (1.3) 2.2 (0.1) 5.5 (0.3) 0.3 (0.1) 0.2 (0.1) 2.9 (0.7) 0.74 0.95
3 14.4 (5.2) 0.3 (0.1) −0.8 (0.1) 1.7(0.2) 0.5 (0) −0.3 (0) −0.3 (0.1) 3.3(1.3) 0.77 0.95

Northeast
1 10.6 (2.8) 0.4 (0.1) 0.9 (0.1) −0.4 (0.1) 0.8 0.95

2 −0.2
(0.1) 1.2 (0.2) 6.4 (0.4) −0.4 (0.1) 8.5 (1.1) 0.84 0.96

3 31 (2.5) 1.5 (0.2) −0.8 (0.2) 1.8 (0.2) 1.4 (0.4) 27.5 (2) 0.8 0.95

* All predictors are significant at α = 0.05 level.
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3.3. Model Cross-Validation

The overall CV R2 for the entire study area and study period is 0.70 and the slope between
predicted PM2.5 and the observed PM2.5 is 0.98, indicating good agreement between CV estimates and
observations. Regional results of random and spatial 10-fold CV including R2 and slope are listed
in Tables 4 and 5. Results show that the CV-based performance of our model varies across regions.
For example, our model achieves the highest R2 under both CV settings (random R2 = 0.78, spatial
R2 = 0.70) in the Northwest as well as in the Upper Midwest and Ohio Valley regions. On the other
hand, the Southwest region has the lowest R2 of 0.54 for random CV. For spatial CV, our model does
not perform as well as for random CV, where in the Northwest region, the random CV R2 is 0.60
and the spatial CV R2 is only 0.39. Specifically, Figures 3 and 4 show the scatterplots of CV estimates
and observed PM2.5 concentration levels across nine climate regions. The CV-based PM2.5 estimates
have good linear agreement with the observations in the West, South, Upper Midwest, Southwest,
Northwest, and Ohio Valley regions. However, in the Southwest, North, and Northwest regions,
the model tends to underestimate at higher PM2.5 concentrations.
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Regions R2 Intercept Slope

West 0.69 0.04 0.99
Northwest 0.60 0.35 0.95
Southwest 0.54 0.40 0.94

Northern Rockies and Plains 0.60 0.29 0.95
Upper Midwest 0.76 −0.04 0.99

South 0.59 0.27 0.97
Southeast 0.69 0.19 0.98

Ohio Valley 0.71 0.07 0.99
Northeast 0.78 0.07 0.99
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Table 5. Spatial 10-fold cross validation results.

Regions R2 Intercept Slope

West 0.46 0.36 1.02
Northwest 0.39 1.01 0.83
Southwest 0.40 0.96 0.87

Northern Rockies and Plains 0.37 0.94 0.90
Upper Midwest 0.69 −0.01 0.99

South 0.50 0.38 0.96
Southeast 0.58 0.77 0.92

Ohio Valley 0.65 0.18 0.97
Northeast 0.70 0.33 0.97

3.4. Model Prediction

The predicted annual average PM2.5 concentrations and their model-based SDs are visualized in
Figures 5 and 6. As shown in Figure 5, the predicted annual mean of PM2.5 concentration is smoothed
across all the spatial domains, even among the climate buffer regions, indicating that the national
Bayesian model fits the data well. Furthermore, a strong spatial differential pattern exists in the
annual PM2.5 spread, where the PM2.5 concentration is higher in eastern regions than western regions.
California, the Great Lakes regions, and the east coast regions, including New York and Washington,
have especially high annual average PM2.5 concentrations. On the other hand, the lowest annual
PM2.5 concentration is found in Midwestern states, such as Utah, Colorado, Wyoming, and Idaho,
with extensive forest coverage and sparse human activities. These indicate that our model can capture
large-scale spatial patterns of PM2.5 well. Our model is also able to discover the small features of the
predicted PM2.5 concentration surface, where we can observe high PM2.5 concentration levels in urban
centers such as Atlanta, Dallas, Houston, Miami, and Salt Lake City.

Regarding prediction uncertainty, Figure 6 shows the spatial spread of the standard deviation of
the annual average PM2.5 concentrations. The West region, including California and Nevada, has a
higher SD compared with other regions. The South and Southeast regions have the lowest SD on
average. More specifically, from the spatial distribution of SD, we observed a higher peak at the Miami,
Houston, and Dallas areas and Colorado state. Similarly, we visualized the predicted seasonal average
PM2.5 concentrations and their SDs and the results are in Supplemental Figures S1 and S2.
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4. Discussion

In our national Bayesian downscaling approach, we first adopted nine climate regions and three
temporal regions to separate the data into subregions, which provided more flexible model fitting.
Then, we utilized the Bayesian downscaling approaches in each sub-block to quantify the geographical
patterns and the association between AOD and PM2.5. Compared with regional models, including
regional hierarchical models, mixed-effects models, and regional Bayesian downscaling methods,
our approach provides nationally cohesive predictions and quantifies the model prediction errors.
Compared with machine learning models (e.g., neural networks and random forests), our approach
incorporates the core of the statistical approaches, providing insights into the physical and geographical
information of the problem. The model uncertainty provided by the Bayesian approach is much more
informative than that generated from machine learning models.

Our approach has several strengths. First, it uses a latent spatial process to incorporate spatial
correlation, which can borrow information across neighborhoods and is able to make more reliable
predictions compared with mixed-effects models. Second, based on the climate region and temporal
separation, our model is much more flexible in terms of model fitting and therefore fits the data better
than the traditional Bayesian models. As shown in the Table 1, there is a significant difference in
the geographical patterns across regions and temporal domains, which is an important sign that in
different climate regions, the association between AOD and PM2.5 is complex and region specific.
This further confirms that using a single model for a whole national domain is not realistic, as it cannot
reveal the real physical mechanism in which researchers are interested. Moreover, our proposed
approach can perform parallel setting and is much faster than traditional approaches.

Finally, compared with the machine learning method for national calibration, our approach has
slightly weaker prediction ability, probably because of the fewer predictors used in our models than
in theirs. For example, Di et al. [16] included more than 50 predictors in the neural network model,
and the random forest model in Hu et al. [17] contained ~40 predictors. In addition, both approaches
used convolutional layers for nearby PM2.5 measurements and land use terms in their models, and both
studies point out that convolutional layers can help to improve prediction accuracy. Although we
could have included these predictors in our models, it would have required additional computing
resources and consumed additional computing time. We will address this issue in future research.

5. Conclusions

We presented a national Bayesian downscaler model to estimate daily PM2.5 concentrations in the
continental United States using satellite aerosol remote sensing data and meteorological and land use
parameters. Overall, our national Bayesian downscaling model performs well at the national scale.
It has the advantage of explicitly displaying the important predictors of PM2.5 in different geographical
regions, which allows model simplification and further improvements of model performance. It should



Int. J. Environ. Res. Public Health 2018, 15, 1999 12 of 13

be noted that the goal of this approach is to study the geographical patterns across different regions
and seasons and our approach successfully provides great insights into these and provides much more
informative results than machine learning methods. As we mentioned, the limited prediction ability
of our approach in some specific regions, i.e., the South region, is one limitation. The reason for this
is that even though we separated the national domain into sub-blocks, each region is still very large,
which makes it difficult for a single model to fit across such a large domain. Thus, one future direction
of this model is to provide a more flexible approach.
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