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Abstract: Vitamin D (VD) is a pro-hormone essential for life in higher animals. It is present in few
types of foods and is produced endogenously in the skin by a photochemical reaction. The final step
of VD activation occurs in the kidneys involving a second hydroxylation reaction to generate the
biologically active metabolite 1,25(OH),-VD. Extrarenal 1a-hydroxylation has also been described
to have an important role in autocrine and paracrine signaling. Vitamin D deficiency (VDD) has
been in the spotlight as a major public healthcare issue with an estimated prevalence of more
than a billion people worldwide. Among individuals with chronic kidney disease (CKD), VDD
prevalence has been reported to be as high as 80%. Classically, VD plays a pivotal role in calcium
and phosphorus homeostasis. Nevertheless, there is a growing body of evidence supporting the
importance of VD in many vital non-skeletal biological processes such as endothelial function,
renin-angiotensin-aldosterone system modulation, redox balance and innate and adaptive immunity.
In individuals with CKD, VDD has been associated with albuminuria, faster progression of kidney
disease and increased all-cause mortality. Recent guidelines support VD supplementation in CKD
based on extrapolation from cohorts conducted in the general population. In this review, we discuss
new insights on the multifactorial pathophysiology of VDD in CKD as well as how it may negatively
modulate different organs and systems. We also critically review the latest evidence and controversies
of VD monitoring and supplementation in CKD patients.
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1. Introduction

Vitamin D (VD) is a pro-hormone essential for life in higher animals. It is present in few types
of foods and is produced endogenously in the skin by a photochemical reaction [1]. There are two
major forms of VD, ergocalciferol (VD,) and cholecalciferol (VD3), both sharing similar metabolic
pathways [2]. VD, is most commonly found in vegetable sources and in “fortified” foods [1-3]. VD3
can be found in animal-based foods but is mainly synthesized in the skin by a photolytic conversion of
cutaneous 7-dehydroxycholesterol by UV sunlight to form previtamin D3 and subsequently VDj [4,5].

Regardless of its source, VD, and VDj are transported by a VD-binding protein (VDBP) in the
liver where they undergo hydroxylation at the carbon 25 position by 25-hydroxylase (also known as
CYP2R1) to become 25-hydroxyvitamin D [25(OH)-VD] [6]. This compound is the main circulating
form of VD and its plasma levels are routinely measured as a marker of VD status [2]. Although
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25(0OH)-VD is considered the precursor of the active form 1,25(0OH),-VD, it can also bind to vitamin D
receptor (VDR), generating biological responses [7].

The final step of VD activation involves a second hydroxylation in which the enzyme
la-hydroxylase (also known as CYP27B1) converts 25(OH)-VD into 1,25(0OH),-VD (Figure 1) [8].
Under physiological conditions, 1,25(0OH),-VD is mainly synthesized in the kidneys but in specific
conditions, such as pregnancy, chronic renal failure, rheumatoid arthritis and granulomatous diseases,
other cell types can also contribute to its circulating levels [6]. Moreover, there is an increasing
body of evidence about the pivotal role of extra-renal 1x-hydroxylation for autocrine and paracrine
signaling [9-11]. Numerous studies have shown 1-«-hydroxylase activity in many tissues including
placenta/decidua, pancreas, colon, vasculature, breast and ovary where it may contribute to tissue
function, cell proliferation and immunoregulation [9]. Therefore, the importance of VD in many
biological processes transcends calcium and phosphate homeostasis.

uUv-B

Dietary sources of
Vitamin D;and D,

7-Dehydroxycholesterol

P_revitam'in'Dg D e —»
l P "‘at_' o o

Vitamin D; e |

Vitamin Ds

v
1,25(0H),-VD

Figure 1. Vitamin D activation and metabolism. Adapted from Gois et al [3].

There is no absolute consensus about the definition of VD sufficiency. According to many experts,
serum 25(OH)-VD level should be equal or greater than 75 nmol/L (30 ng/mL) [12]. VD insufficiency
(VDI) is defined as a serum 25(OH)-VD level between 50 and 74 nmol/L (20-29 ng/mL), whereas VD
deficiency (VDD) is recognized as 25(OH)-VD levels of less than 50 nmol/L (20 ng/mL) [12]. Despite
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of these definitions, many prevalence studies have employed different cut-offs for VDD, thus causing
uncertainty about the magnitude of the problem [13-15].

On the other hand, the upper normal limit of 25(0OH)-VD has been a matter of discussion.
Excessive sun exposure has never been reported as a cause of VD intoxication [12]. The
highest VD level obtained by sunlight exposure was 225 nmol/L reported in a farmer in Puerto
Rico [16], whilst individuals exposed to artificial UVB source showed increased VD level as high as
273.6 nmol/L [17]. VD intoxication can be defined as 25(OH)-VD > 150 ng/mL in combination with
hypercalcemia, hypercalciuria and frequently hyperphosphatemia [12]. In fact, 25(OH)-VD levels above
125-150 nmol/L should be avoided, as they might be associated with increased risk of intoxication [18].

Although the mechanisms are not fully elucidated, VD may impact on vascular calcification.
Smooth muscle calcification is a well-known complication of the CKD-associated bone mineral
disease [19]. Animal and human studies have reported a biphasic curve of VD on vascular
calcification with either hypervitaminosis D or VDD potentially correlating with detrimental vascular
consequences [20,21].

In individuals with CKD, VDD is highly prevalent and has been associated with albuminuria,
faster progression of kidney disease and increased all-cause mortality [22-24]. Recent guidelines
support 25(0OH)-VD supplementations in CKD based on extrapolation from cohorts drawn from
the general population [25-28]. In this review, we discuss new insights on the multifactorial
pathophysiology of VDD in CKD, as well as how it may negatively modulate different organs and
systems. We also critically review the latest evidence and controversies of 25(0OH)-VD monitoring and
supplementation in CKD patients.

2. VD Deficiency in CKD: Prevalence and Contributing Factors

In the general population, VDD is a well-recognized public health problem worldwide with
prevalence ranging from 20% and 100% [3,29,30]. Among the most vulnerable to VDD are the elderly,
people living in higher latitudes, people with darker skin, obese individuals and patients with CKD [31].

Several studies have demonstrated that individuals with CKD are at high risk of VDD [32-35].
Gonzalez et al. reported that 97% of the patients on hemodialysis presented inadequate levels of
25(OH)-VD [33]. In a cross-sectional analysis of a cohort study including 1056 United States dialysis
units, Bhan et al. showed that 79% and 57% out of 908 individuals on chronic hemodialysis (HD) had
25(0OH)-VD levels of <30 and <20 ng/mL, respectively [36]. Hypoalbuminemia, black color and dialysis
initiation during the winter are strong predictors of VDD, whereas VDD was universal in patients
presenting with all these three predictors [36]. Furthermore, the prevalence of VDD among patients with
stage 3 and stage 4 CKD (not yet on dialysis) was studied in a multi-center cohort from 12 geographically
diverse regions of the United States [37]. Strikingly, the investigators found that only 29% and 17% of
patients respectively with stage 3 and stage 4 CKD had sufficient 25(OH)-VD levels [37].

Although 25(OH)-VD levels start to decrease in individuals with CKD stage 2, inadequate levels
can be found in all stages of CKD [33,37-39]. Many factors have been implicated in the high prevalence
of VDD among CKD patients.

Patients with CKD, especially on HD, are likely to have less sunlight exposure [38,40]. Del Valle
et al. showed that 84% of the HD patients with VDD had inadequate sunlight exposure [40]. Uremia
may also blunt the response of plasma VD to UVB irradiation [41]. Chronic HD patients exhibited a
lower VD response than normal individuals when exposed to a physiologically equivalent dose of
UVB [41]. Furthermore, hyperpigmentation, one of the most common cutaneous manifestations in
patients undergoing HD, may play an additional role in the impaired endogenous VD synthesis [38,42].

Nutritional factors may also contribute to suboptimal 25(OH)-VD status in CKD. Patients
with CKD frequently have low food intake due to numerous reasons such as reduced appetite,
uremic-related gastrointestinal symptoms and dietary restrictions, i.e., low protein (especially in those
on conservative management) and low phosphate diets [43—45]. Uremia might be associated with
impaired gastrointestinal absorption of VD. Vaziri et al. showed using an in vivo perfusion technique
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that uremic rats had a significantly lower rate of jejunal absorption of labeled VD3 compared to control
animals [46]. Nevertheless, the authors did not provide any evidence of the potential mechanisms
involved in the uremic impairment of VD gastrointestinal absorption and these results are yet to be
translated to humans.

Proteinuria has also been described as a contributing factor in the pathogenesis of VDD [2,47].
The 58 kDa VDBP is an alpha globulin that carries more than 85% of the circulating 25(OH)-VD.
Complexes of VDBP and 25(0OH)-VD are filtered in the glomerulus, allowing transport to the proximal
tubule, where a receptor-mediated reabsorption occurs at the level of the brush border involving
megalin and cubilin (Figure 2a) [48,49]. Patients with proteinuria usually present with increased
urinary excretion of VDBP but might also show impaired megalin and cubilin mediated protein
reuptake in the proximal tubules [50,51]. Leheste et al. showed that inactivation of the megalin
gene in mice lead to increased urinary excretion of VDBP, VDD, hypocalcemia and osteomalacia [52].
In humans, increased urinary excretion of megalin and cubilin have been reported in diabetes and
IgA nephropathy [49,51,53]. Megalin and cubilin shedding therefore might contribute to VDD in the
setting of CKD and proteinuria (Figure 2b).
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Figure 2. Representation of the tandem function of megalin and cubilin in renal uptake of 25(OH)-VD.
(a) Filtered complexes of vitamin D binding protein (VDBP) and 25(OH)-VD are endocytosed by the
proximal tubular epithelium via an endocytic receptor-mediated pathway recognizing VDBP. The VDBP
is degraded in the lysosomes releasing 25(0OH)-VD which is either secreted or hydroxylated in the
mitochondria to 1,25(0OH),-VD. Both 25(OH)-VD and 1,25(OH),-VD reenter the circulation bound to
VDBP. (b) Postulated megalin and cubilin shedding in chronic kidney disease (CKD) perpetuating
vitamin D deficiency (VDD) with subsequent lower 25(OH)-VD reuptake and intracrine 1,25(0OH),-VD
production in the renal proximal tubules.
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Serum levels of 25(OH)-VD were found to decline progressively with time in patients on peritoneal
dialysis (PD) [54]. Some authors reported lower levels of 25(OH)-VD in PD patients compared to
those on HD [55,56]. Gokal et al. reported a mean level of 2 nmol/L of 25(OH)-VD in the PD
effluent [54]. VDBP has been also detected in peritoneal dialysate [57,58]. Therefore, patients on PD
are at particularly high risk for VDD given the increased loss of both 25(OH)-VD and VDBP through
the peritoneal effluent [57-59].

Diabetes mellitus is one of the most common causes of CKD worldwide. VDD and diabetes
share a major attribute: both are pandemic [60]. Lower levels of 25(OH)-VD correlate with insulin
resistance and lower (3-cell function, whereas 25(OH)-VD supplementation might be associated with
lower incidence of type 1 diabetes in children [60,61]. On the other hand, body mass index is inversely
correlated with 25(OH)-VD levels, therefore VDD and obesity may be concomitant risk factors for
type 2 diabetes [62]. Furthermore, lower 25(OH)-VD levels may predict all-cause mortality in type 1
and type 2 diabetes [63,64]. Altogether, there seems to be an overlapping relationship of risk factors
involving VDD, diabetes and CKD.

3. VD: Non-Classical Effects

There is a growing body of evidence supporting the importance of VD in many vital non-skeletal
biological processes, such as endothelial function, renin-angiotensin-aldosterone system regulation,
redox balance and innate and adaptive immunity (Figure 3). These are known as the non-classical
effects of VD.
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Figure 3. Schematic model of the classical and non-classical effects of vitamin D. The compounds
25(0OH)-VD and 1,25(0OH);-VD circulate mainly bound to the vitamin D binding protein (VDBP).
The endocrine effects of 1,25(OH),-VD are represented on the right. Different types of cells can present
the machinery for 25(OH)-VD activation (left). In an autocrine and paracrine fashion, 1,25(0OH),-VD
regulates the transcription of pivotal proteins involved in several biological processes (left). RAAS =
renin-angiotensin-aldosterone system. PTH = parathyroid hormone.
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3.1. VD and Endothelial Function

A number of studies have described an association between low 25(OH)-VD levels and endothelial
dysfunction [65-68]. Carrara et al. prospectively compared 33 patients with essential hypertension
and normal 25(OH)-VD levels to 33 patients with essential hypertension and VDD who underwent
eight weeks of VD supplementation. The VDD subgroup had a significant increase in flow-mediated
dilation (FMD) of the brachial artery, an important research tool for assessment of endothelial function
in vivo [66]. However, in a systematic review, only two out of ten randomized clinical trials (RCTs)
reported that VD supplementation ameliorated FMD [68].

3.2. VD and the Renin-Angiotensin-Aldosterone System

Vitamin D has also been implicated as an agent which can modulate the
renin-angiotensin-aldosterone system (RAAS), and therefore which may influence blood pressure and
cardiovascular disease. Evidence for this interaction comes from animal models, molecular studies
and clinical data.

In one animal study, vitamin D receptor null mice were generated and demonstrated upregulation
of renin and angiotensin I, as well as significant hypertension, increased water intake and increased left
ventricular mass compared to wild type animals [69]. Further supporting these findings, 1,25(0OH),-VD
supplementation suppressed renin production in a separate group of wild type animals. Other
studies have also demonstrated that paricalcitol supplementation decreases renin and renin receptor
expression in animal models of CKD [70]. The mechanism by which this interaction occurs is not
yet completely elucidated, but the VDR appears to be able to interact directly with elements of the
intracellular complex, which promotes pro-renin transcription when in a 1,25(0OH),-VD ligand-bound
form [71]. The interaction has the effect of suppressing renin gene expression, thus suggesting a
plausible mechanism.

Whilst these data suggest a role for VD in RAAS regulation, human data linking VDD with
hypertension as an end-point of RAAS activation have been mixed. Seasonal and regional blood
pressure trends suggest a relationship between UV exposure and hypertension, and cross-sectional
studies have demonstrated that VD levels correlate with hypertension prevalence, supporting a
VD-RAAS link [72]. However, the largest meta-analysis summarized 46 prospective trials and
suggested no effects of 25(OH)-VD supplementation on blood pressure [73]. This does not completely
exclude a role for VD in modulation of the RAAS but suggests that the effect may be small and
possibly subclinical. Concerns about heterogeneous methods of 25(0OH)-VD supplementation, variable
achieved 25(OH)-VD levels and variable levels of baseline VDD in the existing trials have caused some
uncertainty however, and several trials are ongoing.

3.3. VD and Redox Balance

Low levels of 25(OH)-VD have been associated with increased markers of oxidative stress.
In different experimental models, VD deficient animals showed increased thiobarbituric acid reactive
substances (TBARS) and decreased glutathione (GSH) levels, a biomarker of oxidative stress and a
major endogenous antioxidant, respectively [74-76]. Furthermore, human observational studies have
shown an inverse relationship between 25(OH)-VD levels and reactive oxygen species [65,77]. Despite
these promising results, further clinical studies need to be undertaken to verify whether there is a
beneficial effect of VD supplementation on redox balance in subjects with low 25(OH)-VD levels.

3.4. VD and the Immune System

Previous in vitro studies highlighted monocytes and macrophages as one of the first non-renal
cells with the ability not only to synthesize 1,25(0OH),-VD, but also to upregulate the expression
of 1a-hydroxylase [9,10]. Once in the monocytes, 25(OH)-VD is converted to active 1,25(0OH),-VD
by mitochondrial 1-a-hydroxylase and binds to cytoplasmic VDR, thereby acting as a transcription
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factor for antibacterial peptides such as cathelicidin and beta-defensin 4A. [3,78,79]. More recently,
the machinery for VD activation was also observed in other antigen-presenting cells such as dendritic
cells [10,80].

It has been shown that 1,25(OH),-VD may also have an anti-inflammatory effect in human
T cells [81], as 1,25(OH),-VD has been reported to reduce the expression of the nuclear factor kB
(NFkB). In addition, 1,25(0OH),-VD may promote a shift in the T helper (Th) cell response from Th1
to Th2, subsequently reducing Thl-mediated tissue damage and increasing the production of Th2
immunomodulatory cytokines [82,83]. Moreover, some studies have reported expression of VDR,
la-hydroxylase and 24-hydroxylase in human B cells [83,84]. There is also evidence that 1,25(OH),-VD
may inhibit the differentiation of B cells into plasma cells, thus modulating the production of
antibodies [82,83].

4. VD and CKD: Human Studies

4.1. Bone Mineral Disease and Muscle Health

The inverse correlation between 25(OH)-VD levels and parathyroid hormone (PTH) has
been demonstrated across virtually all stages of CKD [23,85,86]. The prevalence of secondary
hyperparathyroidism almost doubled when non-dialysis patients presented with 25(OH)-VD
<20 ng/mL compared to those with levels > 20 ng/mL [32]. In addition, PTH levels seem to plateau
when 25(0OH)-VD is greater than 30 ng/mL [32].

A systematic review with meta-analysis of observational and randomized studies showed
a significant decline in PTH levels with 25(OH)-VD supplementation [87]. Similar results were
obtained when patients with CKD received active VD analogs [88,89]. Indeed, treatment with either
25(0OH)-VD or active VD analogs induced similar responses on PTH in patients with CKD stage 3—4
and hyperparathyroidism [90]. These results suggest a potential additive effect of 25(OH)-VD and
active VD analogs on renal hyperparathyroidism [90].

Low 25(OH)-VD has been linked with increased bone turnover and decreased bone mineral
density (BMD) in patients with CKD. In a cohort study including 1,026 non-dialysis patients across all
CKD stages, Ureria-Torres et al. showed that 25(OH)-VD < 15 ng/mL was associated with high serum
bone-specific alkaline phosphatase (BALP) and C-terminal cross-linked collagen type I telopeptides
(CTX), both circulating bone remodeling biomarkers [91]. Similar results were reported by Yadav et al.
who found that 25(OH)-VD supplementation reduced PTH, BAP and CTX in a randomized, double
blind, placebo-controlled trial including 117 patients with CKD stage 3—4 [92]. Levels of 25(0OH)-VD <
20 ng/mL were also associated with lower BMD at the femur neck and total hip in individuals with
CKD stages 3—4 in a Korean populational cohort [93].

There is evidence that 25(OH)-VD may hold a direct and independent role on bone formation and
mineralization. Coen et al. retrospectively analyzed bone histomorphometry and histodynamic for
different levels of 25(OH)-VD in a cohort of 104 patients on hemodialysis for more than 12 months [94].
The investigators found that 25(OH)-VD < 20 ng/mL was associated with relatively low bone turnover,
whereas histologic evidence of a mineralization defect was only found when VDD was accompanied
by elevated PTH [94]. Moreover, patients on HD have twice the risk of symptomatic bone fracture
compared to renal transplant patients [95].

There has been a growing interest in the potential role of VD modulating metabolic pathways
implicated in muscle function [96]. Osteomalacia is a well-known cause of proximal myopathy
predominantly with atrophy of type II muscle fibers [97]. Sarcopenia is highly prevalent among CKD
patients and is associated with increased morbidity and mortality [98,99]. Nevertheless, the role of
lower 25(OH)-VD levels in the pathogenesis of CKD-related sarcopenia remains unclear. Souza et al.
did not find significant difference in 25(OH)-VD levels in patients with CKD and sarcopenia compared
to those non-sarcopenic [100]. In patients with end stage renal failure, low 25(OH)-VD has also been
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associated with muscle weakness and risk of falls, but the evidence to support these associations is
limited to small observational studies [101,102].

Overall, despite the potential benefits of 25(OH)-VD on biochemical markers of mineral
metabolism, there is insufficient RCT data available showing unequivocal benefits of supplementation
on muscle strength, risk of falls and prevention of fractures in individuals with CKD.

4.2. Albuminuria

Several recent observational studies have highlighted the importance of 25(OH)-VD in areas
outside of traditional bone and mineral metabolism. A cross-sectional analysis of the Third National
Health and Nutrition Examination Survey (NHANES III) revealed a progressively higher prevalence
of albuminuria with decreasing 25(OH)-VD levels in a representative sample of the US population [22].
These results supported the findings of previous studies enrolling diabetic patients in Italy and
Japan [103,104]. In Australia, Damasiewicz et al. conducted a prospective study including 6180 adults
with normal renal function at baseline from the Australian Diabetes, Obesity and Lifestyle (AusDiab)
study [105]. This large population-based cohort with two follow up phases (at baseline and five-year)
showed that individuals with 25(OH)-VD levels < 15 ng/mL had increased incidence of albuminuria,
defined as spot urine albumin-creatinine ratio > 2.5 mg/mmol for men and > 3.5 mg/mmol for
women [105]. There was a consensus among these studies around the stepwise increase in the
prevalence of albuminuria with decreasing 25(OH)-VD levels, however, a clear cutoff point could not
be determined.

VD has been shown to suppress the transcription of renin, inhibiting the RAAS and
ultimately leading to a reduction in proteinuria through hemodynamic and non-hemodynamic
pathways [69,106-108]. VD may also modulate oxidative stress and inflammation, reducing fibroblast
activation and interstitial inflammation [74,75,77,109] Moreover, CKD progression and lower expression
of megalin have been associated with lower 25(OH)-VD reuptake and therefore reducing intracrine
1,25(0OH);-VD production in the renal proximal tubules (Figure 2b) [50,51,110]. On the other hand,
increasing levels of proteinuria may perpetuate VDD. Altogether, there seems to be a synergistic interplay
between VDD and CKD leading to a vicious cycle for progressive deterioration of renal function.

Molina et al. published a well-designed single-centre, controlled trial enrolling individuals with
CKD stage 3—4 and persistent albuminuria. Patients were assigned to receive 666 IU of VD3 daily,
regardless of the 25(OH)-VD levels, when the PTH was above the expected range for the stage of
CKD. Fifty patients were allocated to the intervention group and 51 patients received no intervention.
Despite of the small dose of VDj3, the authors found a 53% reduction in the urine albumin:creatinine
ratio after six months of VD3 treatment [111]. Similarly, Kim et al. reported an anti-proteinuric effect of
VD3 in patients with concomitant diabetes, CKD stage 2—4 and low 25(OH)-VD in a small observational
study [112]. Nevertheless, no RCT assessing the effects of 25(OH)-VD supplementation on albuminuria
has been published thus far. We identified one ongoing study (ClinicalTrials identifier NCT01029002)
enrolling 75 patients with CKD stage 3—4 to receive either VD, or placebo for the primary outcome
change in the proteinuria status.

4.3. CKD Progression and Mortality

Recently, many observational studies have examined the association between lower 25(OH)-VD,
CKD progression and mortality. Ravani et al. followed up 168 consecutive new referrals to a CKD
clinic over a period of six years. CKD stages ranged from 2-5 pre-dialysis, and most patients had
stage 3 and stage 4 CKD. The levels of 25(OH)-VD predicted progression to dialysis and death in
crude analysis and in multiple regression models [23]. Similarly, Barreto et al. conducted a prospective
study including 140 CKD patients from stage 2-5. The authors aimed to investigate the association
between VD levels, vascular calcification, endothelial function and mortality. Although there was
an association between 25(OH)-VD levels and mortality, the investigators did not find significant
correlation between 25(OH)-VD, aortic calcification and pulse wave velocity [39]. Moreover, Wolf et
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al. performed a cross-sectional analysis of 825 consecutive incident hemodialysis patients across 569
hemodialysis centres in 37 states in the USA [24]. Patients who died within 90 days of initiating dialysis
were compared with those who survived for at least 90 days. Individuals presenting with 25(OH)-VD
< 10 ng/mL were at significantly increased risk of all-cause and cardiovascular mortality compared to
subjects with 25(OH)-VD > 30 ng/mL, whilst subjects with 25(OH)-VD levels 10-30 ng/mL showed
mixed results after multivariate adjustments [24].

Altogether, despite the observational studies highlighting the role of VDD as a potential risk
factor for progression of CKD and mortality, we did not identify any RCT aiming to verify whether
there is a beneficial effect of 25(OH)-VD supplementation on these outcomes.

5. VD and CKD: Current Guidelines

Both the Kidney Disease Outcomes Quality Initiative (KDOQI) and Kidney Disease Improving
Global Outcomes (KDIGO) experts recommend checking and supplementing low serum 25(OH)-VD
levels in CKD and dialysis patients [25,26]. In the most recent update of the KDIGO guidelines on
bone mineral disorder, it is suggested based on low quality evidence that patients with CKD stage
1-5 have 25(OH)-VD levels measured, and repeated testing should be individualized according to
baseline values and interventions [25]. Nevertheless, there was no clear suggestion on how frequently
25(0OH)-VD levels should be reviewed [25].

With respect to the recommended dietary allowance of VD in the general population, the Institute
of Medicine from the US and Canada recommended that adults up to the age of 70 years require
600 IU/d of VD, whereas adults 71 years and older require 800 IU/d [113]. These recommendations
cover the needs of >97.5% of the population and assume minimal or no sun exposure, thus providing
further safety for individuals with lower endogenous synthesis of VD [113].

Current guidelines suggest that patients with CKD stage 1-5 and VDD or VDI should receive
supplementation using the same strategies as recommended for the general population [25,26,114].
However, even for the general population, the optimal dosage of supplementation varies among the
main guidelines. The KDOQI suggests 1000-2000 IU/d of VD3 for VD repletion, but acknowledges
that patients with CKD may require a more aggressive therapeutic plan [26]. The National Institute for
Clinical Excellence (NICE) in the UK suggests that people aged > 65 years who are not exposed
to much sun should take 400 IU of VD3 daily, nevertheless, this guideline did not address VD
supplementation in individuals with VDD or VDI [27]. In Australia and New Zealand, the Kidney
Health Australia-Caring for Australasians with Renal Impairment (KHA-CARI) does not suggest any
specific dosage for VD repletion [114].

Another matter of debate is around which form of VD should be used. VD, and VDj
undergo identical hydroxylation processes and in theory are equally used by the body to generate
1,25(0OH),-VD [115]. In fact, their chemical structure only differs in the side chains (Figure 1) [116].
Armas et al. compared the potency of a single dose of 50,000 IU VD, and VDj3 in 30 healthy subjects.
Both VD analogues produced similar initial increments in serum 25(OH)-VD, but individuals treated
with VD3 had a more sustained response with a three-fold difference in the area under the curve on
the 28th day [117]. Several theories have been proposed to explain the difference between the two
calciferols. VD3 might have a higher affinity to both VDR and 25-hydroxylase [118,119]. Other studies
have suggested a lesser affinity of VD, for VDBP compared to VD3, resulting in higher clearance
and subsequently a shorter circulating half-life [120-122]. Recently, a meta-analysis including seven
heterogeneous studies indicated that regardless of the dosage, frequency or administration (oral
or intramuscular), VD3 was more effective at raising serum 25(OH)-VD concentrations compared
to VD, [123]. Four studies that applied bolus doses also favored VD3 over VD;, whereas there
was no statistical difference between VD3 and VD; in the pulled data from studies that used daily
supplementation [123]. Although VD3 may be more effective than VD5, clinicians should ultimately
use the presentation commercially available in the context of their clinical practice. For instance, VD, is
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mostly used in the United States, whilst in other countries, such as Australia and Brazil, VDs is the
most common presentation.

6. Conclusions

In summary, the studies reviewed here highlight the potential role of VD beyond bone mineral
disease in patients with CKD. Currently, the strongest available evidence supports 25(OH)-VD
supplementation, aiming to control secondary hyperparathyroidism in CKD patients. Despite the
striking observational data showing the association between lower levels of 25(OH)-VD and various
deleterious outcomes (such as low bone turnover, risk of falls and factures, albuminuria, progression
of CKD and mortality), there is still a lack of RCTs supporting the potential beneficial effects of
supplementation. Many questions remain unanswered regarding the dosing, timing of administration
and type of VD analogues in patients with CKD. In addition, the current guidelines are subject to
criticism for being mainly opinion-based and derived from observational data. However, given the
low-cost and high safety profile, patients with CKD might benefit from 25(OH)-VD supplementation
in the setting of VDD and VDI Although doses of up to 4,000 IU of VD5 are considered safe for the
general population [124], we recommend caution in renal patients, especially in those who are on
calcium-containing phosphate binders and/or on active VD analogues.
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