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Abstract: Arsenic is ubiquitous and has a potentially adverse impact on human health. We
compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms
(uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the
relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human
biomonitoring study on 271 subjects (132 men) aged 20–44, randomly sampled and stratified by
area, gender, and age. Data on environmental and occupational exposure and dietary habits were
collected through a questionnaire. Arsenic was speciated using chromatographic separation and
inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure
factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval
by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for
the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical
significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR:
2.68 [1.79–4.00]), GSTT gene (GMR: 0.68 [0.52–0.80]), consumption of tap water (GMR: 1.35 [1.02–1.77]),
seafood (GMR: 1.44 [1.11–1.88]), whole milk (GMR: 1.34 [1.04–1.73]), and fruit/vegetables (GMR:
1.37 [1.03–1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to
assess environmental exposure. In a public health context, this information could be used to support
remedial action, to prevent individuals from being further exposed to environmental arsenic sources.
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1. Introduction

Arsenic (As) is a naturally occurring element widely distributed throughout the earth’s crust,
with higher concentrations in some geographical areas, in combination with either inorganic or organic
substances that form many different compounds. Both organic As (oAs) and inorganic As (iAs)
compounds can be emitted into the air, and then deposited into water and soil during industrial
operations, such as ore mining and smelting, volcanic eruptions, and forest fires [1]. Arsenic and its
inorganic compounds are classified as carcinogenic to humans [2,3]. Exposure to iAs in drinking water
is associated with both carcinogenic and non-carcinogenic effects [3–7]. Despite As not being able to
induce gene mutations [8–10], it can still be considered a genotoxic metalloid, as it induces micronuclei,
DNA strand breaks, sister chromatid exchanges, chromosomal aberrations, and aneuploidy [11–23].

The main routes for human exposure to As are contaminated drinking water, contaminated water
in food preparation and irrigation of food crops, industrial processes, contaminated food, and smoking
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tobacco [24]. Fish, shellfish, meat, milk, and cereals are the main contributors for As in the human diet,
although As exposure from food is generally lower than from contaminated groundwater [25,26].

In drinking water, iAs is usually found in the form of arsenate [As(V)] and arsenite [As(III)].
The ingested iAs is mainly metabolized in the human liver [27]. The metabolic pathway consists
in an alternation of reduction and oxidation reactions: reduction of the pentavalent form (As(V)) to
form compounds such as monomethylarsonic acid (MMA(V)) and dimethylarsonic acid (DMA(V)),
and oxidative methylation of (As(III)), monomethylarsonous acid (MMA(III)), and dimethylarsonous
acid (DMA(III)) [28,29]. The metabolic pattern is considered a detoxification pattern because of the
relatively low toxicity of MMA and DMA [30], therefore, As toxicity is closely related to its metabolism.
Arsenic species in the trivalent state are generally considered more toxic at lower doses than the other
As species [1,31]. However, recent investigations suggest that MMA(III) and DMA(III) are more toxic
than iAs arsenite [32–34]. As the methylation process is incomplete, iAs along with MMA and DMA,
are excreted in human urine. Vahter [35] showed that relative distributions of iA, MMA, and DMA in
the urine of various populations are generally 10–30%, 10–20%, and 60–70%, respectively. On the other
hand, there are large variations in As metabolism at individual and population levels [36]. It is known
that biological and environmental factors, including age, sex, pregnancy, As exposure level, smoking
habits, nutritional status, and diet, determine the inter-individual variations [37].

Compared with the convincing evidence on high-dose exposure, the risk assessment of exposures
to low-to-moderate levels of environmental As is challenging for research and public health. The focus
on the association between As exposure in drinking water in the concentration range of 10–100 µg/L
and the health risk has increased, however, epidemiological studies are still limited, and results are
not sufficiently consistent [38,39]. Several studies report associations between low doses of As and
non-cancer diseases, such as cardiovascular diseases, diabetes, and neurological disorders, although
epidemiological knowledge on this topic is limited or insufficient [40–46].

In Italy, the health risk to exposures to low-to-moderate As levels in drinking water is a great
concern in many areas affected by As pollution of a natural and/or anthropogenic origin [47–49].
Directive 98/83/EC [50], in force since 2003, imposed the limit value of 10 µg/L for As in drinking
water. Considering the specific geological conditions in different Italian regions that determine the
natural occurrence of As in the aquifers used for the production of drinking water, Italy asked and
obtained two derogations to 50 µg/L between 2003 and 2009, and a third one at 20 µg/L between
2010–2012 in four regions, including Tuscany and Latium (included in SEpiAs study) [51].

The health risk assessment for residents in As-contaminated areas is required in order to define
primary prevention actions and to strengthen the control activities of public health through the
development of an effective environment and health monitoring system, capable of providing rapid
responses to administrators and citizens.

An epidemiological study in Italy called SEpiAs (Epidemiologic Surveillance in areas with natural
or anthropic Arsenic pollution, funded by the Italian Ministry of Health), was thus carried out in four
As-contaminated areas in Italy. The aim of SEpiAs, based on the Human BioMonitoring (HBM) of As
and preclinical risks, was to assess the relationship between human As exposure, estimated by dose
intake indicators, and biological markers of early health effects, in order to define indicators for an
advanced environmental public health surveillance.

In the framework of SEpiAs, the distribution of urinary iAs (uiAs) plus methylated forms, such as
urinary MMA (uMMA) and urinary DMA (uDMA), defined as u(iAs+MMA+DMA), was described.

The aims of this article are to

• compare the distribution of u(iAs+MMA+DMA) with other baseline international studies;
• assess the relationship between the u(iAs+MMA+DMA) concentration and various exposure

factors investigated by the HBM questionnaire using stepwise multiple regression.
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2. Materials and Methods

All detailed information on the materials and methods are provided in the SEpiAs report [49].
A summary is given of the study areas, samples, data collection, urine sample collection, As analysis,
genetic susceptibility, and statistical methods.

Study areas—SEpiAs was carried out in two mountainous/hilly areas located in central Italy
(Amiata in Tuscany, and Viterbese in Latium) and in two cities in southern Italy (Taranto in Apulia
and Gela in Sicily). In Amiata and Viterbese, the As was of a natural origin (contamination of soil and
water), while in Taranto and Gela, it was anthropogenic (contamination of soil, water, and air associated
with industrial activities). The industrial areas of Taranto and Gela were declared as Reclamation Sites
of National Interest on the basis of documented environmental contamination and/or presence of
hazardous waste [48,52–55].

Study Sample—SEpiAs was designed as a multicentric epidemiological HBM-based sample
survey. The initial objective was to study at least 200 unit samples (50 units for each area), however,
during the preparation of the operative protocol, in order to meet local demand, 290 units was set as
the objective. Of the 500 residents, randomly selected from the municipal registries, stratified by area,
gender, and age (20–29, 30–39, 40–44 years), 341 subjects were contacted and invited to participate in
the study. For each area and gender, the percentages of subjects sampled by the three age classes were
40%, 40%, and 20%, respectively. A total of 271 subjects were recruited (participation rate: 79.4% of the
341 contacted subjects, 93.4% of the initial objective of 290) (Table 1). A urine sample from these 271
subjects was also collected. Each subject was told not to consume fish for three days before the urine
collection. This information was also checked by the questionnaire and by the organic uAs level.

Table 1. Distribution by area, gender, and age (20–29, 30–39, 40–44 years) of the 271 subjects recruited
after the accession to the interview and the collection of a urine sample. The percentage was calculated
on the contacted subjects by area.

Area
Male Female Total

20–29
(%)

30–39
(%)

40–44
(%)

Total
(%)

20–29
(%)

30–39
(%)

40–44
(%)

Total
(%)

20–29
(%)

30–39
(%)

40–44
(%)

Total
(%)

Amiata 10
(62.5)

12
(75.0)

6
(75.0)

28
(70.0)

11
(68.7)

11
(68.7)

8
(100.0)

30
(75.0)

21
(65.6)

23
(71.9)

14
(87.5)

58
(72.5)

Viterbese 15
(88.2)

11
(68.8)

6
(66.7)

32
(76.2)

16
(94.1)

15
(93.8)

9
(100.0)

40
(95.2)

31
(91.2)

26
(81.3)

15
(83.3)

72
(85.7)

Taranto 11
(84.6)

9
(69.2)

4
(66.7)

24
(75.0)

11
(84.6)

10
(76.9)

5
(83.3)

26
(81.3)

22
(84.6)

19
(73.1)

9
(75.0)

50
(78.1)

Gela 16
(69.6)

20
(86.9)

12
(100.0)

48
(82.8)

23
(100.0)

12
(52.2)

8
(66.7)

43
(74.1)

39
(84.8)

32
(69.6)

20
(83.3)

91
(78.4)

Total 52
(75.4)

52
(76.5)

28
(80.0)

132
(75.9)

61
(88.4)

48
(70.6)

30
(85.7)

139
(80.8)

113
(81.9)

100
(73.5)

58
(82.6)

271
(78.8)

Data collection—for the 271 subjects recruited, individual data on residential history,
socio-economic status, environmental and occupational exposures, lifestyle, and dietary habits,
were collected through a questionnaire. Variables considered in the literature associated with
As concentration were selected, such as sex, age classes, area of residence, and education level.
The following dichotomous variables were also selected, as they were considered principal pathways
of As exposure [25,26]:

• usual consumption (more than twice a week) of tap water for drinking or cooking;
• usual consumption (more than twice a week) of meat, seafood, vegetables and fruit, bread, whole

milk, coffee, wine, and beer;
• usual consumption (more than twice a week) of locally-produced meat, seafood, vegetables or

fruit, bread and whole milk;
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• occupational exposure in chemical industries and to industrial dust, chemical substances, gases,
in particular: exposure to inorganic solvents and acids, oil derivatives, and silica (As is used for
doping microchips);

• active cigarette smokers or former smokers who had given up less than six months ago;
• seafood consumption during three days before urine collection.

Urine Sample Collection and Arsenic Analysis—the choice of urinary biomarker depended on
the source of As (natural or anthropogenic), and thus its chemical form. The most common biomarker
is uAs, which reflects short term exposure to environmental and occupational sources of As [1]. uiAs
and methylated species, such as uMMA and uDMA, were measured using a dynamic reaction cell
inductively coupled plasma mass spectrometer (DRC ICP-MS), after chromatographic separation with
HPLC (high-performance liquid chromatography).

The validation process aims to demonstrate the validity of a method and the reliability of the
results through the valuation of all parameters that are used (technical characteristics, applicability,
analytical performance, etc.). The method limits of quantification for the different As species were in
the range of 0.1–0.2 µg/L. Quantification was carried out by a seven point matrix-matched calibration
in the range 0.1–20 µg/L. The accuracy for the determination of total As was tested by analyzing the
quality control material Lyphochek 1 (urine metal control level 1, Bio-Rad, Irvine, CA, USA). The target
value was 71 µg/L. Our average concentration from day to day (n = 20) was 70 µg/L (RSD = 6.5%),
a value in very good agreement with the target value for total As [56]. As to MMA, DMA, As (III),
and As (V), urine samples spiked with 20 µg/L of each As species, were analyzed (day-to-day, n = 20),
and the average recovery was between 90% and 105%. Average intra- and inter-day repeatability,
determined for total As and each As species, was <5%.

Concentrations below the limit of detection (LOD) of 0.2 µg/L, due to the instrument’s inability
to detect extremely low levels of chemicals, were found in less than 10% of sampled subjects; a value
of 0.141 (LOD/SQRT(2)) was assigned to measurements that were less than the LOD [57].

Genetic susceptibility—in order to define different metabolic and reparative capacities related
to the genetic constitution, the presence of specific functional polymorphisms of genes involved
in metabolic detoxification mechanisms was assessed in SEpiAs. This can create the basis for
inter-individual differences in the triggering of biological effects and clinical factors related to As
exposure. Genetic susceptibility was evaluated by a set of polymorphisms considered by the scientific
literature to be associated with As methylation, such as AS3MT Met287Thr polymorphism in the
arsenite methyltransferase gene (AS3MT) and glutathione S-transferase polymorphisms (GST-T1,
GST-M1) [58–60].

Below, we report the characteristics of the new analyses that we performed in this study.
Urine biomarker—most studies on As speciation focus on the urine matrix, because collection is

easy and because uAs is a good biomarker of recent exposure to iAs [61]. Arsenic and its metabolites
are, in fact, rapidly absorbed in the intestine and 45–85% As is excreted in urine within 2–3 days
after exposure [62]. uAs can also be used both to monitor subjects occupationally exposed and for
population studies, especially in continuous exposures influenced by local anthropogenic factors.
However, it can also be considered a good indicator for chronic exposure [63]. Total urine As (tuAs)
minus arsenobetaine (AsB) has been used as a marker of iAs exposure in several studies [64–67].

DMA is the most abundant As species occurring in urine after exposure to iAs as a result of As
metabolism [28]. Seafood, including fish, shellfish, and seaweed, are important sources of organic
arsenicals (AB, arsenosugars, and arsenolipids), which are believed to have a low toxicity [68–70].
Seaweed, mollusks, and fatty fish are rich in arsenosugars and/or arsenolipids, which are metabolized
into several As species, including DMA, dimethylated thio As species, and possibly MMA [71–74].
Therefore, in populations with a moderate-to-high fish intake, the sum of inorganic and methylated
As species levels in urine is not considered as the best biomarker of iAs intake [75]. One study
demonstrated increased tuAs metabolites, especially DMA, in a group of volunteers after consuming
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seaweed. Thus, uDMA does not represent occupational exposure to As, but is a marker of seafood
intake [76].

In the absence of seafood intake, DMA accounts for ~60–80% of tAs in urine [28,77,78].
In populations with a low seafood intake, the sum of inorganic and methylated As species levels in
urine correlates well with As intake from drinking water and dietary sources, and is an accepted
biomarker of iAs exposure [48,79,80]. Hakala et al. (1995) [81] performed a study in copper smelter
workers to assess occupational As exposure. They showed that uiAs (As3+, As5+) is more useful for
assessing occupational exposure to As, than tuiAs metabolites. In this study, the concentration of
iAs (As3+, As5+) was significantly different between groups [81]. Because seafood consumption in
Asian countries is higher than in Western countries, on the basis of their findings in the Japanese
general population, Hata et al. (1995) [82] recommended excluding DMA when assessing occupational
exposure to As.

In SEpiAs, two regions were characterized by anthropogenic As pollution (Taranto and Gela) and
two by natural As pollution (Viterbese and Amiata). Considering the heterogeneity of the exposure
factors (diet, genetic susceptibility, occupational and environmental factors) among the four areas, we
decided to use u(iAs+MMA+DMA) as the best biomarker for recent As exposure according to the
scientific literature [1,48,83–85]. This way, all values would be comparable.

Statistical methods—the statistical analyses were performed using u(iAs+MMA+DMA). In order
to generate a residual distribution close to a normal distribution, a logarithmic transformation of
u(iAs+MMA+DMA) was carried out. To evaluate heterogeneity and variability, u(iAs+MMA+DMA)
distribution by area and gender using geometric mean (GM), 5th, 25th, 50th, 75th, and 95th percentiles
(5p, 25p, 50p, 75p, and 95p, respectively) and standard deviation (SD) were presented and discussed.
The use of u(iAs+MMA+DMA) enables GM and 75p to be compared with results from other Italian
and international studies. For the whole sample and for each area, factors influencing As levels were
identified through multivariate regression with backward stepwise selection, starting from the selected
factors and removing terms with a p-value ≥ 0.2. The associations between u(iAs+MMA+DMA) and
each significant estimator were reported using the GM ratio (GMR), with a 90% confidence interval
(90% CI), adjusted for the other significant factors. Statistical significance was set at p < 0.1. In the
multivariate regression analysis, factors with few sample units (<3 subjects) by class of exposure were
not considered. Multivariate regression analysis was performed on 267 subjects, because of a lack of
genetic data for four subjects. In order to highlight associations similarities among exposure factors
and inorganic/organic As species, separate analyses considering uiAs and u(MMA+DMA) were also
performed for the complex and for each area. All the analyses were carried out using STATA 13 [86].

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by Ethics Committee of the provincial healthcare company of Viterbo, Caltanissetta (for Gela),
Siena (for Amiata) and Taranto. Project Identification Code: B51J10001120005.

3. Results

3.1. Distribution of u(iAs+uMMA+uDMA) Levels by Area and Gender

The results obtained from validation process of As speciation showed their suitability for the
study, and confirmed the high linearity, sensitivity, precision, and accuracy of the method used.

Figure 1 shows high heterogeneity among areas, high variability within areas, and various
differences between genders. Taranto and Gela have a greater internal variability than Viterbese
and Amiata.
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Figure 1. Distribution of u(iAs+MMA+DMA) (µg/L) by area and gender. Notes: Diamonds represent
the GM; upper whiskers represent 95th percentile.

Table 2 shows that Taranto and Gela had higher u(iAs+MMA+DMA) concentrations (Taranto:
GM = 12.77 µg/L; Gela: GM = 12.68 µg/L) than Viterbese (GM = 7.73 µg/L) and Amiata
(GM = 4.13 µg/L).

Higher concentrations were observed in men in each area, with a stronger difference in Gela (GM
difference = 6.65 µg/L), and to a lesser extent in Viterbese (GM difference = 1.99 µg/L).

Table 2. Descriptive analysis on u(iAs+MMA+DMA) (µg/L) by area and gender.

Statistics
Amiata Viterbese Taranto Gela Total

M F M + F M F M + F M F M + F M F M + F M F M + F

n 28 30 58 32 40 72 24 26 50 48 42 91 132 139 271
AM 10.23 6.24 8.16 12.89 13.37 13.15 24.24 30.23 27.36 29.89 24.76 27.47 20.57 18.51 19.51
GM 4.70 3.66 4.13 8.90 6.91 7.73 12.87 12.68 12.77 16.29 9.64 12.68 10.35 7.47 8.76
SD 19.54 7.96 14.73 12.18 28.55 22.64 34.34 56.57 46.86 30.07 32.96 31.26 26.77 35.03 31.24
5p 1.30 1.32 1.26 3.67 1.99 2.23 3.54 2.62 2.72 2.36 1.19 1.46 1.73 1.42 1.50

25p 2.65 1.75 1.92 5.58 4.20 5.15 7.92 5.93 6.64 7.23 3.58 4.51 4.42 3.27 3.71
50p 3.22 2.42 3.02 7.71 5.80 7.05 10.69 9.91 10.25 10.96 6.52 9.95 8.81 5.99 7.78
75p 8.78 8.27 8.27 14.50 11.07 11.83 31.33 23.15 28.68 55.07 37.12 45.65 28.21 12.47 16.37
95p 37.37 26.92 32.49 42.58 46.04 42.58 72.79 155.91 155.91 88.68 90.08 89.07 73.37 90.08 86.28

Notes: n: sample size; AM: arithmetic mean; GM: geometric mean; SD: standard deviation; 5p: 5th percentile;
25p: 25th percentile; 50p: 50th percentile; 75p: 75th percentile; 95p: 95th percentile M: males; F: females.

3.2. Stepwise Multiple Regression

Tables 3–7 show the results of the multivariate analysis of exposure factors on GM of
u(iAs+MMA+DMA).

Total sample (Table 3) showed a significant difference in u(iAs+MMA+DMA) by area and a
significant increase in GM according to GSTT polymorphism (presence of null genotype), consumption
of seafood (adjusted for consumption the three days before urine collection), consumption of whole
milk, wine, meat, whole milk, fruit, and vegetables of own/local production (all estimates difference
were adjusted for the other factors).
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Table 3. Overall sample. Factors associated with u(iAs+MMA+DMA) concentration by stepwise
multivariate regression analysis.

Factors Selected (p < 0.2) Class GM Exp. 90% CI GMR 90% CI

Area

Amiata 3.86 3.05–4.89 1 (reference)
Viterbese 8.60 6.93–10.68 2.23 1.62–3.06
Taranto 11.75 8.82–15.66 3.05 2.08–4.46

Gela 13.42 11.02–16.34 3.48 2.54–4.76

GSTT
- 12.02 9.56–15.13 1 (reference)
+ 8.12 7.21–9.15 0.68 0.52–0.88

Occupational exposure in chemical industrials No 8.17 7.31–9.12 1 (reference)
Yes 21.87 14.92–32.05 2.68 1.79–4.00

Seafood
No 6.62 5.24–8.37 1 (reference)
Yes 9.57 8.49–10.78 1.44 1.11–1.88

Seafood consumption 3 days before urine collection No 7.75 6.86–8.75 1 (reference)
Yes 13.66 10.95–17.03 1.76 1.37–2.27

Whole milk
No 8.25 7.30–9.31 1 (reference)
Yes 11.06 8.88–13.77 1.34 1.04–1.73

Wine
No 8.69 7.80–9.67 1 (reference)
Yes 13.88 8.17–23.58 1.60 0.93–2.75

Meat
No 7.96 6.83–9.27 1 (reference)
Yes 9.85 8.45–11.47 1.24 0.99–1.54

Whole milk of own/local production No 8.64 7.76–9.61 1 (reference)
Yes 18.25 9.90–33.64 2.11 1.13–3.94

Fruit/Vegetables of own/local production No 8.06 7.05–9.23 1 (reference)
Yes 11.03 8.80–13.82 1.37 1.03–1.82

Notes: GM exp.: expected geometric mean estimated by regression model; 90% CI: confidence interval at 90%
probability; GMR: geometric mean ratio.

We observed a statistically significant difference (p < 0.001) among GMs of the four areas with
Taranto and Gela showing higher values, 11.75 µg/L and 13.42 µg/L, respectively, compared to
Viterbese and Amiata, 8.60 µg/L and 3.86 µg/L, respectively. A statistically significant decrease
(p = 0.014) in the GMs of u(iAs+MMA+DMA) concentration was observed among GSTT positive
genotype carriers (8.12 vs. 12.02 µg/L). Subjects occupationally exposed to chemical industrials had
higher GM values than those not exposed (21.87 vs. 8.17 µg/L) (p < 0.001). Seafood consumption (both
in general and three days before urine collection) was also a factor associated with u(iAs+MMA+DMA)
concentration (p = 0.023). In fact, subjects that consumed seafood had u(iAs+MMA+DMA) higher GM
values than those who do not consume fish (9.57 vs. 6.62 µg/L), and also, if the seafood is consumed
three days before urine collection (13.66 vs. 7.75 µg/L) (p < 0.001). A statistically significant increase in
GM concentration was also observed among those consuming whole milk of own/local production
(p = 0.049) and not (p = 0.057) (11.03 vs. 8.06 µg/L and 11.06 vs. 8.25 µg/L, respectively). No significant
increase in GM values was observed among subjects consuming wine (p = 0.155) and meat (p = 0.113).

Significant exposure factors identified by the analyses on uc(iAs) are the same as those identified
by the analyses on uc(MMA+DMA). These results are in line with those obtained with analysis
performed with uc(iAs+MMA+DMA). Complete results of the analyses carried out for the overall
sample are reported in the Tables S1 and S2.

From the multivariate regression analyses, in Amiata we found a statistically significant (p = 0.05)
decrease in the GM of u(iAs+MMA+DMA) concentration among carriers of the GSTT positive genotype
(3.21 vs. 5.57 µg/L). Significant increases (p = 0.075) in GM for u(iAs+MMA+DMA) concentration
were also observed for smokers versus non-smokers (4.97 vs. 3.10 µg/L) and among consumers of
seafood three days before the urine collection (6.56 vs. 3.02 µg/L) (p = 0.007), meat (4.62 vs. 2.85 µg/L)
(p = 0.056), and whole milk of own/local production (9.17 vs. 3.51 µg/L) (p = 0.011) (Table 4).
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Table 4. Amiata sample. Factors associated with u(iAs+MMA+DMA) concentration by stepwise
multivariate regression.

Factors Selected (p < 0.2) Class GM Exp. 90% CI GMR 90% CI

GSTT
- 5.57 3.72–8.32 1 (reference)
+ 3.21 2.54–4.06 0.58 0.36–0.91

Smoker
No 3.10 2.44–3.94 1 (reference)
Yes 4.97 3.43–7.22 1.61 1.04–2.48

Seafood consumption 3 days before urine collection No 3.02 2.40–3.81 1 (reference)
Yes 6.56 4.37–9.84 2.17 1.37–3.43

Meat
No 2.85 2.07–3.91 1 (reference)
Yes 4.62 3.55–6.00 1.62 1.07–2.45

Whole milk of own/local production No 3.51 2.85–4.34 1 (reference)
Yes 9.17 5.13–16.38 2.61 1.42–4.79

Notes: GM exp.: expected geometric mean estimated by regression model; 90% CI: confidence interval at 90%
probability; GMR: geometric mean ratio.

The Viterbese sample showed a significant increase (p = 0.076) in GM in subjects drinking
tap water or using tap water to cook with (9.23 vs. 6.85 µg/L) (Table 5). Statistically significant
increases in GM were also found for smokers (10.55 vs. 7.50 µg/L) (p = 0.046), for consumers
of whole milk (10.75 vs. 7.77 µg/L) (p = 0.061), and seafood in the three days before the urine
collection (19.75 vs. 6.46 µg/L) (p < 0.001). A statistically significant increase (p = 0.016) in GM value of
u(iAs+MMA+DMA) concentration was observed among subjects occupationally exposed to inorganic
solvents and acids compared with those not exposed (19.42 vs. 6.90 µg/L) (Table 5).

Table 5. Viterbese sample. Factors associated with u(iAs+MMA+DMA) concentration by stepwise
multivariate regression.

Factors Selected (p < 0.2) Class GM Exp. 90% CI GMR 90% CI

Tap water No 6.85 5.41–8.68 1 (reference)
Yes 9.23 7.53–11.31 1.35 1.02–1.77

Smoker
No 7.50 6.15–9.16 1 (reference)
Yes 10.55 8.24–13.51 1.41 1.06–1.86

Exposure to inorganic solvents and acids No 6.90 5.93–8.02 1 (reference)
Yes 19.42 9.89–38.14 2.81 1.40–5.67

Whole milk
No 7.77 6.42–9.39 1 (reference)
Yes 10.75 8.23–14.04 1.38 1.04–1.84

Seafood consumption 3 days before urine collection No 6.46 5.29–7.88 1 (reference)
Yes 19.75 15.18–25.70 3.06 2.25–4.16

Notes: GM exp.: expected geometric mean estimated by regression model; 90% CI: confidence interval at 90%
probability; GMR: geometric mean ratio.

The Taranto sample showed a significant increase in GM values in consumers, compared
to non-consumers, of some foodstuffs, such as seafood (7.34 vs. 3.56 µg/L) (p = 0.044), meat
(8.31 vs. 4.78 µg/L) (p = 0.06), bread, pasta, and cereals (6.61 vs. 1.85 µg/L) (p = 0.027), whole
milk (14.75 vs. 4.81 µg/L) (p < 0.001), coffee (7.64 vs. 3.43 µg/L) (p = 0.018), and fruit/vegetables of
own/local production (11.17 vs. 4.95 µg/L) (p = 0.015). A statistically significant increase (p = 0.002) in
GM concentration was observed among subjects occupationally exposed to inorganic solvents and
acids, compared with the non-exposed (19.42 vs. 6.90 µg/L). No significant increase in GM values
was observed among subjects with AS3MT polymorphism (presence of Met287Thr) (p = 0.18) and
consuming tap water (p = 0.105) (Table 6).
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Table 6. Taranto sample. Factors associated with u(iAs+MMA+DMA) concentration by stepwise
multivariate regression.

Factors Selected (p < 0.2) Class GM Exp. 90% CI GMR 90% CI

AS3MT
No 5.64 3.59–8.87 1 (reference)
Yes 8.19 4.84–13.87 1.45 0.92–2.30

Tap water No 3.48 1.43–8.47 1 (reference)
Yes 8.29 5.66–12.13 2.38 0.99–5.73

Exposure to inorganic solvents and acids No 5.17 3.31–8.07 1 (reference)
Yes 14.81 8.28–26.50 2.86 1.69–4.84

Seafood
No 3.56 1.78–7.12 1 (reference)
Yes 7.34 4.83–11.15 2.06 1.15–3.71

Meat
No 4.78 3.20–7.14 1 (reference)
Yes 8.31 4.73–14.61 1.74 1.07–2.81

Bread, pasta, cereals No 1.85 0.64–5.39 1 (reference)
Yes 6.61 4.34–10.08 3.57 1.40–9.10

Whole milk
No 4.81 3.11–7.45 1 (reference)
Yes 14.75 7.99–27.23 3.06 1.78–5.26

Coffee
No 3.43 1.97–5.97 1 (reference)
Yes 7.64 4.81–12.14 2.23 1.29–3.84

Fruit/Vegetables of own/local production No 4.95 2.87–8.53 1 (reference)
Yes 11.17 7.92–15.77 2.26 1.31–3.88

Notes: GM exp.: expected geometric mean estimated by regression model; 90% CI: confidence interval at 90%
probability; GMR: geometric mean ratio.

The Gela sample showed a significant increase in GM of u(iAs+MMA+DMA) concentrations
in males exposed to occupational factors in the chemical industry (36.67 vs. 10.48 µg/L) (p < 0.001),
and among seafood consumers compared to non-consumers (13.37 vs. 6.89 µg/L) (p = 0.023) (Table 7).
We found a statistically significant decrease in GM concentration both among carriers of the null
genotype of GSTT (9.68 vs. 22.43 µg/L) (p = 0.008) and among those drinking coffee (9.81 vs. 19.86 µg/L)
(p = 0.012).

Table 7. Gela sample. Factors associated with u(iAs+MMA+DMA) concentration by stepwise
multivariate regression.

Factors Selected (p < 0.2) Class GM Exp. 90% CI GMR 90% CI

GSTT
- 22.43 14.12–35.62 1 (reference)
+ 9.68 7.65–12.25 0.43 0.26–0.72

Occupational exposure in chemical industrials No 10.48 8.34–13.17 1 (reference)
Yes 36.67 23.15–58.08 3.50 2.09–5.85

Seafood
No 6.89 4.55–10.44 1 (reference)
Yes 13.37 10.48–17.04 1.94 1.21–3.12

Coffee
No 19.86 13.45–29.31 1 (reference)
Yes 9.81 7.66–12.57 0.49 0.31–0.78

Notes: GM exp.: expected geometric mean estimated by regression model; 90% CI: confidence interval at 90%
probability; GMR: geometric mean ratio.

4. Discussion

The aim of our research was to compare the distribution of u(iAs+MMA+DMA) in people
living in four Italian areas, with other baseline international studies, and to assess the relationship
between u(iAs+MMA+DMA) concentration and various exposure factors investigated through a
specific HBM questionnaire.

Regarding the first objective, the results obtained from descriptive analyses suggest that the
As exposure for inhabitants in industrial areas with high environmental pressure was greater than
for those living in areas with natural contamination (Table 2). These results are in line with other
studies. Janasik et al. reported a correlation between occupational iAs pollution and both u(iAs+MMA)
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(statistically significant) and u(iAs+MMA+DMA) (not statistically significant) [87]. Two other studies
found a correlation between occupational exposure and u(iAs+MMA+DMA) [81,88]. To explain the
high variability within the areas, the presence of multifactorial exposures must be taken into account.
The sampled subjects have different lifestyles, eating habits, professional exposure, and genetic
characteristics. Furthermore, it can be reasonably assumed that the interaction between these factors
may have an effect on the inter-subject variability.

The observed 95p value of 86.28 µg/L for u(iAs+MMA+DMA) for all areas and for both genders, is
higher than the value defined by the Italian Society of Reference Values (ISRV) of 15 µg/L [89]. We also
compared our values with the results of studies (Table 8) conducted in Germany [90,91], France [83,92],
and in the United States [57]. All SEpiAs GMs, median, and 95p values were significantly higher than
the references (Table 8). Considering the individual areas, only Amiata presented a lower GM than the
values reported in the other studies (Table 8).

Table 8. Geometric mean, 50p and 95p values for u(iAs+MMA+DMA) concentration in our study and
in other studies reporting reference values.

Country Acronym of the Study Year of Recruitment Age Class n GM 50p 95p Reference

Italy SEpiAs 2010 20–44 271 8.76 7.78 86.28 [49]

Germany GerES-III 1998 18–69
25–69

4741
4052

3.92
3.87

4.1
4.0

18.9
19.3 [90,91]

France ENNS 2006–2007 18–39
18–74

444
1500

4.07
3.75

4.49
4.03

10.72
10.68 [92]

France ENNS 2006–2007 18–74 3015 3.75 nr nr [83]

USA NHANES 2009–2010
2011–2012 >20 years 2020

1724
6.7
5.6

5.95
5.15

23.2
17.6 [57]

Notes—n: sample size; nr: not reported; 50p: 50th percentile; 95p: 95th percentile; GerES-III: third German
Environmental Surveys; ENNS: French Nutrition and Health Service; NHANES: National Health and Nutrition
Examination Survey.

Our data were also compared with those observed in a similar study conducted in Mexico.
The Mexican study was carried out in four towns (43 subjects) in the Yaqui Valley, in order to
characterize uAs excretion among adults. The GM values for u(iAs+MMA+DMA) concentrations in
the selected towns ranged from 28.0 µg/L to 65.1 µg/L [93]. The lower value of this range was higher
than the GM value (8.76 µg/L) for u(iAs+MMA+DMA) observed in our study.

A recent study conducted in Taranto found a mean value of 6.1 µg/L for u(iAs+MMA+DMA) [94],
which is lower than the value we observed of 27.36 µg/L.

In Inner Mongolia, in an endemic area for As poisoning where the groundwater typically
contains high As concentrations of up to 1354 µg/L, with a mean value of 173 µg/L, the mean
u(iAs+MMA+DMA) concentration was 300.17 µg/L [30]. In the same area, another study found mean
u(iAs+MMA+DMA) concentrations of 252.84 µg/L [95]. The values observed in SEpiAs are lower
than the values observed in Mongolia. This is due to the fact that Mongolia is characterized by high
As concentrations in the groundwater.

Regarding the second aim of this study, the results are discussed below for each statistically
significant exposure factor identified by our analyses.

Occupational exposure—we observed a statistically significant correlation between
u(iAs+MMA+DMA) concentration and occupational exposure in the overall sample, and in
Taranto and Viterbese. Our findings are consistent with previous results. A recent study conducted
in Poland on 149 workers in a copper mill showed a statistically significant correlation between iAs
concentrations in the air and u(iAs+MMA) concentration [87]. The same correlation was reported
considering u(iAs+MMA+DMA) concentration, although not statistically significant. This was
probably the result of increased DMA concentrations, especially in individuals who confirmed that
they had eaten fish dishes before the study [87]. A study carried out in Manfredonia, in Apulia in
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southern Italy, highlighted that the mean values of u(iAs+MMA+DMA) were 23.9 µg/L in July 2006
and 15.1 µg/L in August–October 2006, before and after a recommended more careful use of personal
protective equipment, respectively [96].

Tap water—a statistically significant association between u(iAs+MMA+DMA) concentration and
tap water consumption was observed in the Viterbese and Taranto samples. Other studies found
the same association. A study conducted in Pabna, Bangladesh, investigating factors influencing
biomarkers of As exposure, reported that u(iAs+MMA+DMA) concentrations were significantly
associated with As concentration in drinking water (p < 0.001) [97]. In a study performed in inner
Mongolia among inhabitants of a rural area, Wei et al., showed a positive association between As in
drinking water and u(iAs+MMA+DMA) [30]. In a recent study carried out in Taranto [94], the authors
reported higher median values of u(iAs+MMA+DMA) in those who drank tap water (3.6 µg/L) than
those who drank bottled mineral water (2.5 µg/L).

Seafood consumption—we observed an overall statistically significant association between
u(iAs+MMA+DMA) and both seafood consumption and seafood consumption three days before
the sampling. Considering other national surveys, the German study found that the frequency of fish
consumption was the most dominant determinant [90,91]. Saoudi et al., observed that concentrations
of tuAs and u(iAS+MMA+DMA) were influenced by sociodemographic and economic factors, and by
risk factors such as consumption of seafood products and wine [83]. A study involving participants of
NHANES 2003–2006 evaluated the association of seafood intake with spot uAs concentrations [79].
Although different biomarkers were used compared with those of our study, their study found
that participants reporting any seafood intake in the past 24 h had increased levels of all uAs
biomarkers than participants with no seafood intake [79], thus concluding that seafood intake was a
key determinant of increased urine concentration of some As metabolites [79].

A cross-sectional study was carried out in France, to evaluate As exposure of residents living
in an area with a soil naturally rich in As, through urinary measurements. Significant associations
were found between u(iAs+MMA+DMA) concentration and consumption of seafood (p = 0.03),
consumption of wine (p = 0.03), and beer (p = 0.001), respectively three and four days before the
investigation [98]. These findings were also confirmed by a Korean study that reported a significantly
positive relationship between As intake from diet and u(iAs+MMA+DMA) concentration. This
finding suggested that dietary As intake may affect the total As levels in urine. Further analyses
were performed to assess the correlation of urine As with the consumption of specific food groups.
In particular, u(iAs+MMA+DMA) concentration was positively correlated with the consumptions
of specific food groups, such as seaweed (p < 0.01), fish and shellfish, and grains, however, it was
negatively correlated with meat consumption [99].

Considering individual areas, we found that u(iAs+MMA+DMA) concentrations were associated
with fish consumption in Taranto and Gela, and with seafood consumption three days before the
sampling in Amiata and in Viterbese. An Italian study conducted in Manfredonia (Apulia), showed a
statistical association (p < 0.001) only between the consumption of fish and shellfish 48–72 h prior to
urinary sampling and the excretion of u(iAs+MMA+DMA). Comparing the levels of excretion of iAs
and its methylated metabolites between the two monitoring phases (July 2006 and August–October
2006), there was a statistically significant reduction in the investigated biomarker [96]. Another Italian
study carried out in the provinces of Viterbo, Rome, and Latina assessed iAs exposure and metabolism
in 269 residents from 27 municipalities [48]. The u(iAs+MMA+DMA) concentration in subjects using
water with As levels >10 µg/L was taken as an estimate of the iAs historical exposure of the population.
The average concentration exceeded the upper limit of the reference concentration range of 2–15 µg/L
proposed for the Italian population [89], and most individual levels were also above the upper limit.
In the study conducted in Taranto by Vimercati et al., statistically significant differences were shown
when comparing u(iAs+MMA+DMA) concentrations in consumers of shellfish and/or seafood in the
48–72 h before sampling (9.8 vs. 3.8 µg/L) [94].
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Genetic factors: GSTT—after the multivariate regression analysis, we found a statistically
significant decrease in the GM of u(iAs+MMA+DMA) concentration according to carriers of the
GSTT positive genotype. Considering individual areas, the same results were found in Amiata and
Taranto. These findings are consistent with a study in Chile, in which 66 subjects from Antofagasta
who were exposed to low levels of As were examined, in order to evaluate the relationship between
polymorphic variants of GST and As species urinary concentration [100]. After adjusting As species
level for creatinine, the absolute level of u(iAs+MMA+DMA) was higher among null GSTT1 carriers
than among those carrying the active gene (p = 0.062) [100], as reported in our study, despite the lack
of creatinine adjustment. In Vietnam, a study investigated the association of genetic polymorphisms
in the members of glutathione S-transferase (GST) superfamily with As levels in hair and urine,
and the uAs profile in residents in the Red River Delta [101]. Arsenic concentrations were given as
single metabolites As(III), As(V), DMA(V), MMA(V), and arsenobetaine, As(III) + As(V), and the
overall sum and u(iAs+MMA+DMA) were not reported. No significant associations between GSTT1
wild/null with concentrations and compositions of uAs were found [101]. In a study conducted in
Bangladesh [94], GSTT1 was slightly associated with increased utAs reported as u(iAs+MMA+DMA)
(p = 0.06) in adjusted models. In particular, individuals with the null genotype had a slightly higher
excretion rate of As, compared to individuals with a wildtype GSTT1 genotype, after adjusting for
some factors (including creatinine). The study by Kile et al., confirmed our findings, thus, it is likely
that GSTT influenced the relative concentration of methylated uAs metabolites.

This study presents some limitations. The results are based on a single urine sample from each
participant. Hence, we could not establish the reproducibility and accuracy of the measurements.
Instead of asking participants to avoid seafood consumption within three days before the urine
collection, through a questionnaire we asked if they had consumed seafood, and used this variable to
adjust the analyses.

Despite these limitations, this study allowed us to examine, in depth, the relationships between
uiAs plus uAs methylated species in subjects living in areas with recognized low-to-moderate
concentrations of As pollution of an anthropogenic or natural origin.

Our results highlighted considerable differences among the four areas and between industrial
and natural polluted areas, as previously reported in the literature [81,87,88]. In fact, a comparison
between areas with natural or anthropogenic As pollution and reference areas, suggested that As
contamination led to higher u(iAs+MMA+DMA) in the industrial areas of Gela and Taranto. These
findings highlight the heterogeneous profiles among areas, with a marked difference between Amiata
and Gela, similarities between males and females within the samples of Amiata and Viterbese and,
conversely, differences by gender within the samples of Gela and Taranto.

There is wide evidence demonstrating that some individuals are more susceptible to
As [102,103], and genetic factors can also play a role in susceptibility [104,105]. The factors we found to
be associated with the urinary profile of As are supported by the scientific literature: consumption of
seafood [48,79,83,90,91,94,96,98,99], consumption of contaminated tap water [30,94,97], occupational
exposure [87,96], and some polymorphisms [97,100,101]. We also identified some other factors, such
as wine, grains, meat, and milk consumption, which make for interesting further investigations.

In our study, the factors commonly reported in the literature as associated with the organic or
inorganic arsenic forms are associated with both inorganic and organic forms, considered separately
and as a sum. Therefore, we suggest the use of uc(iAs+MMA+DMA) biomarker in studies of areas
with different exposure pathways.

5. Conclusions

Due to the widespread presence of arsenic in the environment and its potential impact on health,
the health system is often called into question. Our results highlight higher arsenic exposure in areas
characterized by natural or anthropogenic arsenic pollution compared to national and international
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reference areas. The study therefore confirms the need for an environmental and health surveillance
system in recognized areas with documented contamination.

Our results confirm that occupational exposure, and consumption of tap water and fish, represent
the main factors of exposure. The study also highlights the role of genetic susceptibility and indicates
the need to study further exposure factors, such as the consumption of meat, milk, fruit, and vegetables.
With the appropriate sample collection, analysis, and interpretation, biomonitoring in conjunction
with questionnaires can provide an accurate picture of environmental exposure.

Considering the significant differences in sources of exposure, biotransformation in the human
body, and toxicity of inorganic and organic forms, our results highlight the need for arsenic speciation
in appropriate arsenic risk assessment and together with the utility of u(iAs+MMA+DMA) as a
biomarker in areas with different exposure pathways.

In a public health context, this information could be used to support remediation measures
to reduce exposure to arsenic. Recent advances in genomics and epigenetics offer additional
insight into the toxicity of arsenic and into the mechanisms of arsenic carcinogenicity. Identifying
polymorphisms, gene–environment interactions, and related effects on arsenic metabolism, will
provide important information on the mechanisms behind the biotransformation of arsenic, and also
facilitate comprehension of individual differences in arsenic metabolism. This will help us to identify
susceptible groups, and may provide better risk estimates for arsenic.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/2/299/s1,
Table S1: Overall sample. Factors associated with uiAs concentration by stepwise multivariate regression analysis,
Table S2: Overall sample. Factors associated with ui(MMA+DMA) concentration by stepwise multivariate
regression analysis.
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