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Abstract: We investigated the impact of a sustainable development technology on the macroeconomic
variables in a small economy utilizing a case study with a stochastically improving energy saving
technology and a stochastically increasing energy price. The results show the technological
displacement effects of energy saving technology are stronger, but there are more ambiguous
instantaneous returns to physical capital. However, the energy saving technology’s displacement
effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect
holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous
instantaneous returns, but the conditions under which the HLM effect holds are different.

Keywords: sustainable development technology; energy saving technology; macroeconomic
variables in a small economy; stochastic analysis

1. Introduction

According to the literature on sustainable development technology, the specific future direction
of energy technology will be more energy-saving due to sustainable energy policies and regulations
from various governments, the price of energy rising relative to those of other goods, and research
and development (R&D) efforts. The International Energy Agency [1] reported a reduction in global
energy intensity (energy share of Gross Domestic Product, GDP) of 0.5% per year over the last decade
and predicts a 1.8% per year decline by 2035. Narayanan and Sahu [2] found that the aggregate energy
intensity of manufacturing industries decreased from 1990 to 2008. Hooker [3] demonstrated that
energy intensity declined (implying energy-saving activities) in the U.S. from 1949 to 1999, and the
intensity was 1.0% in the first quarter of 2000.

The sustainable energy policies and regulations implemented by governments have affected the
energy-saving technologies available on the market. Many governments have used several types of
policy tools to fund basic R&D, to support product launches, to reduce and overcome barriers to entry,
and to provide suppliers and users the correct incentives to encourage them to employ energy-saving
technologies. The policy tools include subsidizing R&D, technology and performance standards,
subsidizing the distribution of energy-saving technology, taxes, and cap-and-trade systems, voluntary
agreements, or a combination of such policies [4]. Jaffe et al. [5] reviewed U.S.A. federal climate
technology initiatives (based on the 2004 budget) and found that energy conservation accounts for
41% of R&D spending, which is valued at approximately $1.3 billion a year, and 34% of adoption
spending ($1.0 billion a year) goes to state energy efficiency grants. The International Energy Agency [1]
proposed policies to increase energy efficiency that include increasing the visibility and affordability
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of energy efficiency, prioritizing energy efficiency, and making energy efficiency more practical and
more mainstream.

As the price of energy rises relative to those of other goods, the production function or capital
goods will contain more energy-saving technologies. The International Energy Agency [1] predicted
that electricity prices will increase at an annual rate of 15% (by 2035) due to higher fuel prices, increased
use of renewables, CO2 pricing, etc. Firms will use labor to produce when energy price is cheaper and
to replace their capital goods (such as cars) with more energy-efficient models that are available on
the market [6].

R&D effort is a key element in developing energy-saving technology and has the potential to
drive down the costs for firms. The International Energy Agency [7] uses experience curves and the
progress ratios of the power-generating sector to understand why new technology has reduced costs
over time. The progress ratio is the degree to which the cost of installing a technology reduces when
the total amount of installed energy technology doubles. The progress ratio for photovoltaic modules
in the world market in the period of 1976–1992 was 82% (a price reduction by 18%); the figure for
Danish wind turbines in the period of 1982–1997 was 96%; and the value in the wind power sector in
the United States (European Union) in the period of 1985–1994 (1980–1995) was 68% (82%).

The energy-saving technology should be a joint process that can be affected by various means of
energy generation (like coal, gas, nuclear, and renewables), market experience, government policies,
the development path of technology, etc. As the International Energy Agency [1] stated, the electricity
demand in emerging economies (like China and India) drives a 70% increase of worldwide demand
with renewables accounting for half of its new capacity. The International Energy Agency [4] suggests
that technical change is a cyclical process that is affected by the interaction of market experience
and further technological development. Hooker [3] showed that U.S. energy intensity declined
fairly steadily during the period of 1949–2000, with several small rises but more rapid declines.
The International Energy Agency [7] termed an R&D breakthrough in production as structural
technology change that results in a radical change in technology, such as new temperature-resistant
materials for gas turbines. Roehrl and Riahi [8] used a cost assessment of greenhouse gas emissions
mitigation efforts to study technological dynamics and found that technological improvement develops
in a “path-dependent” direction, where the cost of changing the course of this development increases
after a particular initial point.

There are many economic studies on sustainable development technologies, but few have
discussed the impact of energy-saving technologies on macroeconomic variables. To fill this research
gap, we investigated the impact of an increasing variety of energy-saving technologies and energy
prices on the growth rate of real wealth, and the Harberger-Laursen-Metzler (HLM) effect of a small
open economy. According to Arrow [9], Kamien and Schwartz [10], Reinganum [11], and Clarke and
Weyant [12], the development of additional energy-saving technologies would be the endogenous
equilibrium of the economic system, which could be affected by policy. However, such technologies
may receive a sub-optimal level of investment from the private sector. As argued by Romer [13,14],
Grossman and Helpman [15], Aghion and Howitt [16], Clarke and Weyant [12], and Acemoglu [17],
the spillovers from energy-saving technologies might be a source of steady, long-term economic
growth. The International Energy Agency [1] estimated that energy efficiency and more energy-saving
technologies could improve energy security and economic growth and could increase the total global
economic output through 2035 by $18 trillion.

For a small economy, the literature has demonstrated that the validity or invalidity of the HLM
effect depends on the economic factors or the specific formulations of the model. In this paper, they
are energy-saving technologies, an increasing price of energy, and their cross-variance. This paper
focuses on the impact of energy price and its association with physical capital and bonds. The HLM
effect is the specific effect of terms of trade (TOT) shocks on the economy, meaning that, when the
levels of investment and income are fixed, a deterioration in the TOT will raise real expenditures,
reduce savings, and cause a deterioration in the current account [18,19]. Many research studies have
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explained how energy price fluctuations can affect macroeconomic performance [20]. The energy price
(increasing and stochastic) can have effects on the labor market, aggregation and allocation, interest
rates, and petroleum product market channels [21,22]. Hamilton [23] further argued that increases
in energy prices might be a factor in U.S. macroeconomic performance. Davis and Haltiwanger [21]
demonstrated the asymmetric effects of oil price shocks on the creation and destruction of U.S.A.
manufacturing jobs.

As the time path of energy-saving technology should be a stochastically increasing process, this
paper shows that the uncertainty of energy-saving technology can impact macroeconomic variables.
We employed a continuous-time, representative household, stochastic optimizing model to examine
and evaluate the impact of an increasing variety of energy-saving technologies and energy prices
on the growth rate of real wealth, and the Harberger–Laursen–Metzler (HLM) effect of a small open
economy. Many researchers have used deterministic models to discuss the economic factors of the HLM
effect. Obstfeld [24] and Svesson and Razin [25] used a household intertemporal utility optimization
model to show how the HLM effect would fail to hold when time preferences are increasing in utility.
Persson and Svensson [26] and Mansoorian [27] constructed a habit persistence and infinite horizon
model to demonstrate that the HLM effect holds if the marginal utility of consumption is increasing.
Ikeda [28] used a model with weakly non-separable preferences to find that the HLM effect occurs if
consumers’ preferences toward imports increase in wealth.

We analyzed the effects of changes in energy-saving technology and energy prices on the
consumption, saving, and wealth of a country. We provide a theoretical model where individuals
decide how much to consume (domestic and foreign goods) and how much to save (investments in
capital or bonds). Domestic production levels are determined by the input usages (labor, capital, and
energy) and production technology. We assume that the changes in energy-saving technology, energy
prices, and the prices of foreign goods are exogenous and focuses on how the unanticipated shocks
in energy-saving technology and energy prices affect the wealth of a country as well as the levels of
consumption and saving.

The rest of this paper is organized as follows. Section 2 develops the analytical framework that the
impact of energy-saving technology on a small economy. Section 3 analyses macroeconomic variables
of a small economy by energy-saving technologies’ impact. The last section offers conclusions.

2. The Analytical Framework

We assume a small open economy with exogenous prices of foreign goods and interest rate, two
perfectly competitive and complete markets (a commodity and a financial asset), a representative
household (no firms), no externalities or trade barriers (no tariffs or freight costs), and three goods
(energy and a final good in a foreign country that is imported from abroad and a final good in the
home country). A representative household uses energy, labor, and capital to produce the final good
and consumes the final good and the imported good. The context is set by paradigmatic articles related
to the analytical framework, such as those by Sadorsky [29] and Turnovsky [30,31].

The path of the energy price should be determined through a process of stochastically increasing
prices of oil and other energy products, and the mean and volatility of the energy price should affect
the macroeconomic variables. Thus, the relative price of energy (Pe, the price of the final good in the
home country is fixed at 1) is exogenously given and generated by the Brownian motion process, using
the following formula:

dPe/Pe= α+ due, (1)

where α is the instantaneous expected rate of change in the relative energy price, and due is a random
variable with mean zero and variance, σ2

edt. Sadorsky [29] used a vector autoregression to demonstrate
that oil prices and oil price volatility can affect economic activity (stock returns).

The relative price of the final good in foreign country (Pf) is

dPf/Pf= duf, (2)
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where duf is a random variable with mean zero and variance σ2
f dt. The relative price of the imported

goods (Pi) is Pi= Pθ1
e P1−θ1

f , which is aggregated by the prices of energy and the final good in a foreign
country. θ1 is the ratio of the imported value of energy by the total imported value, so 0 < θ1 < 1.
From Equations (1) and (2), TOT should be 1/Pi and follows the Brownian motion process:

dPi/Pi = βdt + θ1due+(1− θ1)duf, (3)

where β = αθ1−θ1(1− θ1)(σ
2
e+σ

2
f )/2, which is the instantaneous expected change rate of TOT, is

different from the assumption of Turnovsky [30,31], which considers only one imported good.
Final good in home country (Yh) is produced by the inputs of labor (L), capital (K), and energy (E),

which are measured by the final good in the home country. Let L = 1 and physical capital is the
summary of capital and the imported value of energy, so its production function is

Yh= Tef(Tl, K, PeE) = TeTθ2
l (K + PeE)1−θ2 , (4)

where Te is energy-saving technical displacement; Tl is the effective labor force, which could be
seen as the labor augmenting technical change; PeE is the inputted (read: imported) value of energy;
0 < θ2 < 1. (Labor, capital, and energy are the necessity to produce the final good in home country,
so f(0, K, PeE) = f(Tl, 0, PeE) = f(Tl, K, 0) = 0).

Te and Tl are exogenous variables, so dTe/Te= δdt + duTe and dTl/Tl= duTl are assumed, where
duTe and duTl are random variables with mean zero and variance σ2

Te
dt and σ2

Tl
dt. Based on the existing

literature, more and more energy-saving technologies should be contained for physical capital and
energy, so Te might be closer to the total factor productivity in conventional settings.

From Equations (1) and (4) about energy-saving technical displacement and effective labor force,
the stochastic production function is

dYh= Yh{[1 + δ− θ2(1− θ2)(σ
2
Tl
+E2

Rσ
2
e)/2]dt + duTe

+θ2duTl+(1− θ2)ERdue}, (5)

where ER= PeE/(K + PeE) > 0 is constant.
The model is real (no money), and the representative household holds two securities (traded

bonds and claims on capital) that generate returns as stipulated by an exogenous interest rate (r), such
that the rate of return on physical capital (MPK+PeE) is equal to the interest rate necessary to satisfy the
long-term equilibrium condition of the financial asset market, which is

MPK+PeE= (1− θ2)Yh/(K + PeE) = r, (6)

The instantaneous utility of the representative household is decided by the consumption
of final good in home country and in foreign country (Chdt, Cfdt), which can be written as
U(Ch, Cf)= (Cθ3

h C1−θ3
f )$1 /$1, where −∞ < $1 < 1, and 0 < θ3 < 1. The value function of the

representative household at t (Vt(Ch, Cf)) is its expected value of discounted utility at t, which is

Vt(Ch, Cf)= MaxEt

∫ ∞

t
(Cθ3

h C1−θ3
f )

$1 /$1e−$2Sds (7)

where $2 is time preference rate of the representative household.
The representative household’s real wealth (W) is summary of capital and the relative value of

bond (PiB, which is valued by the relative price of the imported goods), so the wealth is given by
W = K + PiB. Let NK = K/W > 0 and NB= PiB/W be the shares of capital and bond in portfolio held
of the representative household. Then, the portfolio shares adding up condition is

NK+NB = 1. (8)
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The instantaneous returns of physical capital (capital and energy) and bond (dRK+PeE, dRB),
the instantaneous consumption values of final good in home country and in foreign country
(Chdt, PiCfdt), and instantaneous production input of energy (PeEdt) are the sources of wealth
accumulation. For ER is constant, the share of energy in portfolio held by the representative household
is NPeE= PeE/W = ERNK/(1− ER).

For Equations (5) and (6), dRK+PeE= dYh/(K + PeE) and Let d(K + PeE) = 0, the instantaneous
returns of physical capital is

dRK+PeE= r{[1 + δ− θ2(1− θ2)(σ
2
Tl
+ E2

Rσ
2
e)/2]dt+duTe+θ2duTl+(1− θ2)ERdue}/(1− θ2) (9)

For Equation (3) and dRB= [rPiBdt + d(PiB)]/PiB, the instantaneous returns of bond is

dRB = (r + β)dt + θ1due+(1− θ1)duf. (10)

For Equations (9) and (10), the stochastic wealth accumulate equation is

dW = W[(NK+NPeE)dRK+PeE+NBdRB−(NC+NPeE)dt]

= W{[φNK+(r + β)NB−NC]dt + rNK(duTe
+θ2duTl)/[(1− ER)(1− θ2)]

+(1− θ1)NBduf+[rERNK/(1− ER) + θ1NB]due}

(11)

where φ= {r{[1+δ−θ2(1−θ2)(σ
2
Tl
+E2

Rσ
2
e)/2]−E

R
(1−θ2)}/[(1−θ2)(1−ER)], and NC= (Ch+PfCf)/W

is the share of consumption in portfolio held of the representative household.
The optimization is to choose Ch, Cf, NK, and NB to maximize Equation (7) subject to Equations (2),

(3), (8), and (11) and follow the procedure set out in Turnovsky [30–32]. Define aggregate consumption
C by C ≡ Ch+PfCf. The first-order optimality conditions are

Ch= θ3C (12a)

Cf= (1− θ3)C (12b)

NC= {$2−$1[φNK+(r + β)NB] + β$1(1− θ3)}/(1− $1)

−$1{{$1(1− θ3)NB+(1− θ3)[$1(1− θ3)− 1]/2(1− $1)}[θ
2
1σ

2
e+(1− θ1)

2σ2
f ]/(1− $1)

+r2N2
K(σ

2
Te
+θ2

2σ
2
Tl
)/[(1− θ2)(1− ER)]

2+(1− θ1)
2N2

Bσ
2
f +[rERNK/(1− ER) + θ1NB]

2σ2
e}/2

(12c)

φ− (1− $1)NK{r
2(σ2

Te
+θ2

2σ
2
Tl
)/[(1− θ2)(1− ER)]

2+rER[rERNK/(1− ER) + θ1NB]σ
2
e/(1− ER)

= r + β+ (1− $1){θ1[rERNK/(1− ER) + θ1NB]σ
2
e+(1− θ1)

2NBσ
2
f−$2

1(1− θ3)[θ
2
1σ

2
e+(1− θ1)

2σ2
f ]}.

(12d)

Equations (12a) and (12b) describe the consumption of the final good in the home country
and in the foreign country as fixed shares of overall consumption expenditures. The mean of
Equation (12c) is the aggregate consumption–wealth ratio, which depends on portfolio share and
preference parameters, permanent and temporary shocks, and the value and production functions of
the representative household.

Solving Equations (8) and (12d) for the equilibrium portfolio shares of physical capital and bond,
we have NB as

NB = (r + β−φ)/Ra+{(1− $1)[r
2(σ2

Te
+θ2

2σ
2
Tl
)/[(1− θ2)(1− ER)]

2+rER[rER/(1− ER)− θ1]σ
2
e/(1− ER)]

−$1(1− θ3)[θ
2
1σ

2
e+(1− θ1)

2σ2
f ]}/Ra

(13)

where Ra= (1− $1){r
2(σ2

Te
+θ2

2σ
2
Tl
)/[(1− θ2)(1− ER)]

2+[rER/(1− ER)− θ1]
2σ2

e+(1− θ1)
2σ2

f } is the
risk adjudge factor of NB. Equation (13) could indicate the representative household’s speculative
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and hedging behavior regarding bonds. The speculative component depends on the difference
between the differential between the expected real return rates on bonds and physical capital, and the
hedging component depends on the variances in the energy price, the final good in the foreign
country, energy-saving technical displacement in energy production, and the effect of labor on
technological improving.

For Equations (8), (12c) and (13), the equilibrium NK, NPeE, NB, NC should be constancy, then the
growth rate of the representative household is

dC/C = d(K + PeE)/(K + PeE) = dPiB/PiB = dW/W

= [φNK+(r + β)NB−NC]dt + rNK(duTe
+θ2duTl)/[(1− ER)(1− θ2)]

+(1− θ1)NBduf+[rERNK/(1− ER) + θ1NB]due.

(14)

where the expected value should be equal to the difference between the earning rate and the shares of
aggregated consumption of wealth.

From Equation (14), if the dynamic adjustments in the shares of capital, bonds, and consumption
are not considered, the permanent energy-saving technical displacement (δ) will be larger, or the
variance in the size of the effective labor force (σ2

Tl
) will be smaller, and the permanent growth rate

of the economy will be faster. Moreover, the larger the permanent change in the energy price (α)
or the lower the variance in the final good’s price in the foreign country (σ2

f ), the faster or slower
the permanent growth rate of the energy price will be when the representative household is a net
creditor (NB > 0) or debtor (NB < 0), respectively. However, the variance in energy-saving technical
displacement (σ2

Te
) might not change its permanent growth rate, and the effect of the energy price’s

variance (σ2
e) on its permanent growth rate will depend on the shares of capital and bonds held by the

representative household. (The absolute value of [φNK+PeE+(r + β)NB−NC] should be small enough
to be consistent the transversality condition.)

3. Analysis of the Macroeconomic Variables

Many papers have proved the macroeconomic effects (growth rate and HLM effect) of
permanent, temporary, anticipated, or unanticipated production. The production and TOT shocks are
different [25,26,30,31,33,34]. Svensson and Razin [25] show that a temporary (permanent) TOT
deterioration implies a deterioration (ambiguous effect) of the trade balance.

To analyze the permanent and temporary impact of energy-saving technology (the changes of δ
and σ2

Te
) and other shocks (the changes of α, σ2

f , σ2
Tl

, and σ2
e) on the growth rate and HLM effect of a

small economy, Equation (13) is differentiated by the above shocks. The solutions are

∂NB/∂δ < 0,∂NB/∂σ2
Te

> 0; ∂NB/∂α > 0, ∂NB/∂σ2
f < 0, ∂NB/∂σ2

Tl
> 0, ∂NB/∂σ2

e

>

=

<

0. (15)

To illustrate an explicit mathematical derivation for proving the existence of more ambiguous
instantaneous returns to physical capital and bonds due to the permanent technological displacement
effects of energy saving technology, we found ∂NB/∂δ = −r/[(1− θ2)(1− ER)Ra] < 0, for
Equation (8), ∂NK/∂δ = r/[(1− θ2)(1− ER)Ra] > 0. Thus, an increase in δwould raise the expected
return to physical capital, leading to an increasing share of physical capital being held by the rational
representative household. Its impact factors for the increment on share of physical capital are
exogenous interest rate (r), the share of physical capital in its production function (1− θ2), the share of
capital in its physical capital (1− ER), and the risk adjudge factor of NB (Ra). However, in Equation (8),
the share of bonds is forced to decrease.

According to Equation (15), for the representative household, increases in σ2
Te

and σ2
Tl

raise the
level of uncertainty associated with physical capital, so, for a risk-averse representative household,
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given (−∞ < $1 < 1) and Equation (8), its share of bonds must increase. An increase in α (σ2
f ) raises the

expected return (uncertainty) on bonds, leading to an increasing (decreasing) share of bonds being held
by a rational (risk-averse) representative household. An increase in σ2

e raises the uncertainty associated
with physical capital and bonds. Therefore, whether such an increase results in an increasing, constant,
or decreasing share of bonds depends on the parameters associated with the relative price of the
imported good, the production function, and the value function. These effects are similar to the results
obtained by Dreze and Modigliani [35] and other papers analyzing consumption, production, and
investment decisions under uncertainty.

The solutions that Equation (12c) is differentiated by the above shocks are

∂NC/∂δ, ∂NC/∂σ2
Te

, ∂NC/∂α,

∂NC/∂σ2
f , ∂NC/∂σ2

Tl
, ∂NB/∂σ2

e

>

=

<

0. (16)

To illustrate the explicit mathematical derivation for proving the existence of more ambiguous
instantaneous returns to the aggregate consumption–wealth ratio due to the permanent technological
displacement effects of energy saving technology, we found

∂NC/∂δ = −[ρ1/(1− ρ1)]{rNK/[(1− θ2)(1− ER)] + (∂NK/∂δ)[ϕ− r− β

−ρ1(1− θ3)[θ
2
1σ

2
e+(1− θ1)

2σ2
f ]/2(1− ρ1) + r2NK(1− $1)(σ

2
Te

+ θ2
2σ

2
Tl
)/[(1− θ2)(1− ER)]

2

−(1− θ1)
2(1− $1)(1−NK)σ

2
f + rNK(1− $1)E

2
Rσ

2
e/(1− ER)

2

+rθ1ERσ
2
e(1− $1)(1− 2NK)/(1− ER)

−θ2
1σ

2
e(1− $1)(1−NK)}.

(17)

For the above formula, ∂NC/∂δ would be positive, zero, or negative, which depends on the
relative values of all parameters.

According to Equation (16), an increase in δ (σ2
Te

and σ2
Tl

) would raise (reduce) the expected
return of welfare and the output of the final good in the home country, an increase in α (σ2

e) would
raise (reduce) the expected welfare and the price of energy (the output of the final good in the home
country), and an increase in σ2

f would reduce the expected return of welfare. However, due to the
income and substitution effects, whether these changes would result in an increasing, constant, or
decreasing share of consumption depends on all of the model parameters.

From Equation (11), the covariance of dW/W between duTe , duTl , duf, and due are

cov(dW/W, duTe) = {rσ
2
Te

NK/[(1− ER)(1− θ2)]}dt > 0,

cov(dW/W, duTl) = {rθ2NKσ
2
Tl

/[(1− ER)(1− θ2)]}dt > 0,

cov(dW/W, duf) = (1− θ1)NBσ
2
f dt,

cov(dW/W, due) = [rERNK/(1− ER) + θ1NB]σ
2
edt.

(18)

According to Equation (18), the effects of the unanticipated productivity growth (duTe , duTl ) on the
growth rate of the representative household are positive; thus, stochastic productivity growth would
raise the expected return on physical capital, leading to an increasing rate of wealth accumulation.
The effects of the unanticipated TOT deterioration (duf, due) on the growth rate of the representative
household are determined by its share of bonds. When NB< −rERNK/[θ1(1− ER)] (the representative
household is a debtor), following a stochastic deterioration in TOT induced by the price of energy or
the final good in the foreign country, the HLM effect holds. When 0 > NB > −rERNK/[θ1(1− ER)]

(debtor), following a stochastic deterioration in TOT induced by the price of the final good in the
foreign country, the HLM effect holds, but a stochastic deterioration in TOT induced by the energy price
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would imply that the HLM effect does not hold. When NB > 0 (creditor), any stochastic deterioration
in TOT would eliminate the HLM effect.

From Equation (11), the expected values of dW/W differentiated by the above shocks are

∂E(dW/W)/∂δ, ∂E(dW/W)/∂α,

∂E(dW/W)/∂σ2
Te

, ∂E(dW/W)/∂σ2
Tl

,

∂E(dW/W)/∂σ2
f , ∂E(dW/W)/∂σ2

e,

∂var(dW/W)/∂σ2
Te

, ∂var(dW/W)/∂σ2
Tl

,

∂var(dW/W)/∂σ2
f , ∂var(dW/W)/∂σ2

e,

>

=

<

0. (19)

To illustrate an explicit mathematical derivation for proving the existence of more ambiguous
instantaneous returns to the expect value of the wealth growth rate due to the permanent technological
displacement effects of energy saving technology, we found

∂E(dW/W)/∂δ = [(1− 2ρ1)/(1− ρ1)]{rNK/[(1− θ2)(1− ER)] + (∂NK/∂δ)(ϕ− r− β)}

(∂NK/∂δ)[−ρ2
1(1− θ3)[θ

2
1σ

2
e+(1− θ1)

2σ2
f ]/2(1− ρ1)

2

−r2NK$1(σ
2
Te

+ θ2
2σ

2
Tl
)/[(1− θ2)(1− ER)]

2

+(1− θ1)
2$1(1−NK)σ

2
f − rNK$1E2

Rσ
2
e/(1− ER)

2 − rθ1ERσ
2
e$1(1− 2NK)/(1− ER)

+θ2
1σ2

e $1(1−NK)}.

(20)

For the above formula, ∂E(dW/W)/∂δ would be positive, zero, or negative which depends on the
relative values of all parameters.

According to Equation (19), the effects of anticipated productivity growth (δ) and TOT
deterioration (α), the increased variances in productivity (σ2

Te
, σ2

Tl
) and TOT (σ2

f , σ2
e) on the wealth

growth rate of the representative household, and the variances in their wealth growth rates are
all determined by the share of bonds held by the household (debtor or creditor), the income and
substitution effects, and the household’s degree of risk aversion.

Thus, the HLM effect of anticipated deterioration in TOT will hold under certain conditions.
For example, the effects of increasing δ, α, σ2

Te
, σ2

Tl
, σ2

f , and σ2
e on their growth rates would be equal

to the difference between the impacts of welfare and consumption. Increases in σ2
Te

, σ2
Tl

, σ2
f , and σ2

e
would increase the variances in their growth rates when the shares of capital, bonds, and consumption
are given. However, increasing σ2

Te
and σ2

Tl
should reduce the share of capital, an increase in σ2

f should
reduce the share of bonds, and an increase in σ2

e should reduce the shares of capital and bonds, in turn
reducing the variances in their growth rates when the impacts of σ2

Te
, σ2

Tl
, σ2

Tf
, and σ2

e on the variances
in their growth rates are given. Thus, the results of Equation (18) could be positive, zero, or negative.
This is verified by the fact that Kalulumia and Nyankiye [36] generated positive correlations between
investment, saving, and the HLM effect. In addition, Bouakez and Kano [37] used data from Australia,
Canada, and the United Kingdom to show that terms-of-trade movements do not affect the current
account (no HLM effect).

4. Conclusions

This paper validates the impacts of sustainable development technology on the macroeconomic
variables in a small economy. The identified variables hopefully can elicit a possible response
for the government to make in establishing a policy to support green growth by sustainable
development technology. At the same time, the enterprise who wants to penetrate into those
countries in green growth can be more collaborative by understanding the possible impacts in their
decision-making process.
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Many literatures of sustainable development technology and sustainable energy policies have
been suggested that the future direction of energy technology will be driven by energy-saving.
Although studies on sustainable development technologies are numerous in engineering, very few
have discussed the impact of energy-saving technologies by looking at the macroeconomic variables.

Here, a continuous-time, representative household, stochastic optimizing model is used to discuss
the impact of sustainable development technology on the growth rate of real wealth and the HLM
effect. The introduction of additional energy-saving technologies is considered. Our main findings are
as follows. First, an innovation in energy-saving technology raises the returns of capital investments
and thus increases the investments in capital stocks. The uncertainty in future technology reduces
the consumers’ incentive to invest in capital. An increase in energy prices raises the expected return
on bonds and reduces capital investments. Finally, these effects on the wealth of a country and
the share of consumption are ambiguous and depend on other factors such as portfolio shares and
preference parameters.

The displacement effects of energy-saving techniques are stronger, but the instantaneous returns to
physical capital are uncertain, and the anticipated (unanticipated) component of technical displacement
will increase (reduce) the share of capital and the frequency (possibility) of experiencing a positive
growth rate. Thus, the impact of energy-saving techniques on the share of capital and the growth rate
depends on the relative magnitudes of its anticipated and unanticipated components, the share of
bonds (debtor or creditor), the income and substitution effects, and the representative household’s
degree of risk aversion. However, the energy-saving techniques might not affect the conditions under
which the HLM effect holds.

The effects of rising energy price are stronger, but the effects on the instantaneous returns of bonds
are unclear. The anticipated component of the increase in energy price will increase the share of bonds,
but the sum of the portfolio and the unanticipated component of the increase in the energy price will
have simultaneous effects on the shares of capital and bonds. Therefore, the impact of an increase in
the energy price on the share of bonds and the growth rate depends on the relative magnitudes of its
anticipated and unanticipated components, the share of bonds (debtor or creditor), the income and
substitution effects, and the representative household’s degree of risk aversion.

For the scarcity of energy, energy price will increase by time, but the degree of uncertainty in
the deterioration in TOT and the conditions under which the HLM effect holds differ as a result of
the conditions induced by the deterioration in TOT, which is caused by the final good’s price in the
foreign country. This result is more complicated than that obtained by Turnovsky [30,31], as Turnovsky
considers a greater permanent and temporary energy price and technical displacement shocks than
Turnovsky [30,31]. Thus, the results of this paper should be more realistic and should provide more
detailed explanations of the impact of energy technological improvement on a small economy.

The economic implications of the above conclusion are as follows: (1) For the growth rate of
national wealth, environmental sustainability, and the stability of TOT, governments should improve
energy-saving techniques, reduce the uncertainty of the development of energy-saving techniques,
and make good use of the financial policies by closely considering the long-term trend and short-term
volatility of oil prices. (2) For the growth rate of output and operational sustainability, an enterprise
should purchase energy-saving equipment to increase the share of capital and make good use of
the financial products related to oil prices. (3) For the growth rate of wealth of the representative
household, the household should use the energy-saving equipment and buy the financial products
related to energy-saving techniques and oil prices.

Future studies could focus on the impacts of national or regional differences in energy
prices, as the International Energy Agency [1] obtained electricity price estimates with significant
regional differences, and the highest prices were observed in the European Union and in Japan.
Moreover, changes in energy technology (more energy saving) should have regional differences.
Therefore, these changes could affect the competitive positions and export potential of nations or
industries through their different energy costs. Narayanan and Sahu [2] found that the energy



Int. J. Environ. Res. Public Health 2018, 15, 295 10 of 11

intensities in the aggregate manufacturing, chemical, diversified, food & beverages, machinery,
metals & metal products, miscellaneous manufacturing, non-metallic mineral products, textiles, and
transport equipment industries from 1990 to 2008 are different in different regions, respectively.

The effects of energy-saving techniques and the energy price increment on macroeconomic
variables may differ for small and large economies. Kilian [38] demonstrated that exogenous oil supply
shocks had little effect on macroeconomic variables and explained that this was due to the endogenous
responses of oil producers elsewhere, U.S. policy makers, etc.

The covariance between energy technical change and an increasing energy price (Cov(dPe, dTe))
should be positive, as increasing energy prices will induce innovation in capital goods, resulting in less
energy intensive production (more energy-saving technologies). Hicks [39] proposed a macroeconomic
hypothesis regarding induced innovation that argued for the economization of a factor that has
become relatively expensive. There is considerable academic support for the notion that energy-saving
technology is a global phenomenon whereby households, firms and governments will develop or
use cars, appliances, or industrial equipment that produce more output per unit of energy consumed.
Following Schumpeter [40], when energy prices rise, products with energy-saving attributes will
spread more rapidly than they would were they to lack such attributes.
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