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Abstract: To reflect the initiative design and initiative of human security management and safety
warning, ecological safety assessment is of great value. In the comprehensive evaluation of regional
ecological security with the participation of experts, the expert’s individual judgment level, ability
and the consistency of the expert’s overall opinion will have a very important influence on the
evaluation result. This paper studies the consistency measure and consensus measure based on
the multiplicative and additive consistency property of fuzzy preference relation (FPR). We firstly
propose the optimization methods to obtain the optimal multiplicative consistent and additively
consistent FPRs of individual and group judgments, respectively. Then, we put forward a consistency
measure by computing the distance between the original individual judgment and the optimal
individual estimation, along with a consensus measure by computing the distance between the
original collective judgment and the optimal collective estimation. In the end, we make a case study
on ecological security for five cities. Result shows that the optimal FPRs are helpful in measuring the
consistency degree of individual judgment and the consensus degree of collective judgment.

Keywords: ecological security; sustainable development; group decision making; fuzzy preference
relation; consensus measure

1. Introduction

Ecological security refers to the overall level of ecosystem integrity and health, especially the
minimum risk of survival and development, and the state of being not threatened. With the rapid
growth of population and the development of social economy, the pressure of human activities on
the environment is increasing, the contradiction between people and the earth is exacerbated, and
the problem of excessive consumption of resources is becoming more and more serious. The threat
of ecological damage and the environmental disasters caused by environmental degradation and
ecological destruction to regional development, national security and social progress is increasing.
Thus, the ecological security issue has been paid much attention on a global scale. The problem
of ecological security has become a hot issue that needs to be solved urgently both in theory and
practice [1–7].

The Yangtze River Delta urban agglomeration is the highest degree of urbanization, the most
densely distributed towns and the highest level of economic development in China. Because the
Yangtze River Delta urban agglomeration is located on the eastern coast of China and along the
developed areas along the Yangtze River, the geographical advantages are prominent and the ecological
status is very important. It plays an important role in maintaining the ecological balance of the middle
and lower reaches of the Yangtze River and promoting the healthy development of the economy in
the middle and lower reaches. In recent years, the economic development of the Yangtze River Delta
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region has shown a rapid growth trend, but, due to the degradation of the ecological environment
and frequent ecological disasters, ecological security has become an important factor restricting the
sustainable development of the Yangtze River Delta region. At present, the study on the ecological
security of the Yangtze River Delta is still lacking. Therefore, it is urgent to carry out the comprehensive
evaluation of the ecological security of the region, and then put forward the countermeasures to curb
the deterioration of the ecological environment. Comprehensive evaluation of ecological security
not only involves the natural environment, ecological and environmental disasters, environmental
pollution, socio-economic and many other objective indicators, but also need to fully respect the
subjective experience of experts and judgments. In the comprehensive evaluation of regional ecological
security, the expert’s individual judgment level, ability and the consistency of the expert opinion
(consensus level) have a very important influence on the evaluation result. This paper will study
the consistency test method of expert opinion in ecological security assessment based on consensus
decision theory.

In group decision making (GDM) analysis, it is often required to establish a procedure to
aggregate multiple individual subjective preferences into an optimal consensus and then select the
most favorable alternative. Usually, preference relations are widely used to express the subjective
preference in group decision. In each preference relation, the decision maker (DM) is expected to
provide a rational judgment or estimation; in a collective preference relation, the whole group of
DMs is expected to reach a full agreement [8]. The first expectation leads to the consistency measure
research for individual preference relations, and the second to the consensus measure research for
collective preference relations. Obtaining a high level of consistency for an individual judgment
and a high level of consensus between the DMs is a better choice. There are two main kinds of
preference relations: multiplicative preference relation (reciprocal judgment matrix) [9,10] and fuzzy
preference relation [11,12]. The original consistency framework of multiplicative preference relations
was suggested by Saaty [9,10]: perfect consistency, acceptable consistency, consistency indexes, etc.
To improve consistency, Saaty [9,10] compared each element of the given multiplicative preference
relation with the ratio of weights. In [13], Lamata and Pelaez extended Saaty’s work. Considering
the fact that the accuracy of the final ranking of the alternatives must satisfy the consistency ratio,
many methods are proposed to properly adjust the multiplicative preference relation to an acceptable
consistency index. Xu and Wei [14] proposed an algorithm to improve the consistency of the original
multiplicative preference relation and prove that the algorithm is convergent. Dong et al. [15] extended
the improved method to construct consensus models of a collective multiplicative preference relation
under geometric mean prioritization method. Traditionally, this work is associated with the ratio
of weights. Recently, Wang et al. [16] suggested a geometric mean method to obtain the perfectly
consistent matrix from an indirect point of view.

The consistency framework of FPR was constructed in, (e.g. [8,11,17,18]). There are two main
consistency properties of the FPR. One is called multiplicative consistency, and the other is additive
consistency. The central issue of these two kinds of consistencies includes three main aspects: (1) the
priority of the FPR; (2) the estimation of the missing values in the FPR [18–21]; and (3) consistency
measure and consensus measure of the FPRs [12,19,22–37]. The latter two aspects have been hotly
discussed in recent years. For example, Xu [18] and Jiang et al. [21] developed different optimization
methods to determine the priority vector of an incomplete FPR, and developed procedures for
decision making based on incomplete FPR. Alonso et al. [24] presented an implemented web based
consensus support system that is able to help the moderator in a consensus process where experts
are allowed to provide their preferences using one of many types of incomplete preference relations.
Chiclana et al. [31] presented a consensus model for GDM problems that proceeds from consistency
to consensus, which is also a consensus framework for GDM based on additively consistent FPR.
Dong et al. [32] extended Chiclana and coworkers’ work. In 2006, Ma et al. [21] established a method
for repairing the inconsistency of FPRs from an indirect point of view. Xu and Cai [33] established
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several goal programming models and quadratic programming models based on minimizing deviation
variables from the viewpoint of maximizing consensus.

In this paper, we derive an optimization method to obtain an optimal multiplicative consistent
FPR and an optimal additively consistent FPR for individual and group judgments, respectively.
We also propose a consistency measure by computing the distance between the original individual
judgment and the optimal individual estimation, along with a consensus measure by computing the
distance between the original collective judgment and the optimal collective estimation.

The paper is organized as follows. In Section 2, we provide a brief description of the perfect
consistency of two kinds of FPR. In Section 3, we propose two optimization models for constructing
the multiplicative consistent FPR and the additively consistent FPR. In Section 4, we introduce a
consistency measure for individual FPR. In Section 5, we firstly derive two methods for constructing
the optimal collective multiplicative consistent FPR and the optimal collective additively consistent
FPR, and then construct a consensus measure for collective FPR. In Section 6, we made a case study on
ecological security; A short conclusion is given in Section 7.

2. Literature Review for the Consistency of Two Kinds of FPR

For simplicity, we denote N = {1, 2, . . . , n}, M = {1, 2, . . . , m}.
In decision making, pairwise comparisons are often used by the DMs to compare a set of decision

alternatives with respect to a criterion. Different DMs may have different preferences. Usually,
there are two main preferences used to quantify the comparative judgments. One is the reciprocal
preference relation, which is initially proposed by Saaty [9,10]. For a set X = {x1, x2, . . . , xn} of
alternatives, the preference information of pairwise comparisons with respect to a single criterion is
represented numerically using a positive reciprocal matrix P = (pij)n×n on the scale of 1–9, where
entry pij estimates the preference degree or intensity of alternative xi over xj, and satisfies pij pji = 1,
pij > 0. Such a matrix is also called a multiplicative preference relation. Particularly, pij = 1 indicates
indifference between xi and xj, pij > 1 indicates xi is preferred to xj, and pij < 1 indicates xj is
preferred to xi.

Another is the complementary preference relation, which is also called an FPR. It is firstly put
forward by Orlovsky [38]. For alternatives X = {x1, x2, . . . , xn}, the preference information of pairwise
comparisons with respect to a single criterion is represented numerically using a complementary
matrix A = (aij)n×n on the fuzzy scale of 0.1–0.9, where entry aij estimates the preference degree or
intensity of alternative xi over xj, and satisfies aij + aji = 1, aij > 0. Such a matrix is called an FPR.
Particularly, aij = 0.5 indicates indifference between xi and xj, aij > 0.5 indicates xi is preferred to xj,
and aij < 0.5 indicates xj is preferred to xi.

Let P = (pij)n×n be a multiplicative preference relation with pij pji = 1 and pij > 0 for i, j ∈ N.
According to Saaty’s definition, P = (pij)n×n is perfectly consistent (also called multiplicative
consistent) if, pij = pik pkj holds for k ∈ N. However, because: (1) the rating scale itself is discrete
instead of continuous; (2) most decision-making may be complex; and (3) the DMs have to perform all
the n(n− 1)/2 required comparisons even when n is large, the DMs’ thinking may be inconsistent or
illogical. Consequently, such consistency is hard to meet practically. Much work has been devoted
to the construction of the consistent reciprocal preference relation. Recently, Wang et al. [16] propose
an indirect judgments method to construct a perfectly consistent multiplicative preference relation

P̂ = ( p̂ij)n×n by using geometric average p̂ij = ∏n
k=1 (pik pkj)

1
n , i, j ∈ N.

Let A = (aij)n×n be an FPR with aij + aji = 1, aij > 0 for i, j ∈ N. In 1984, Tanino [11] introduced
pij = aij/aji as a ratio of the preference intensity of xi to xj. In this sense, xi is aij/aji times as good as xj.
Thus, we have a new reciprocal preference relation P = (pij)n×n whose entries satisfy pij pji = 1, pij > 0
for i, j ∈ N. Thus, if pij pjk = pik, that is, if

aij

aji

ajk

akj
=

aik
aki

(1)
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then P = (pij)n×n is also a multiplicative consistent preference relation. Tanino [11] defined
Equation (1) as a multiplicative transitivity condition of the FPR A = (aij)n×n. An FPR A = (aij)n×n
satisfying Equation (1) is called a multiplicative consistent FPR [9,39], and much work has been done
on the priority issues of the FPR [18,20,39–41]. Similar studies have been carried out combining
consistency and preference relations, for example intuitionistic fuzzy preference relations [42,43].
Zhang [18], Tan and Gong [20], Wan et al. [39], Zhang [40], and Razmi [41] have done much work
on the priority issues of the FPR. Tanino [11] also suggested another concept of transitivity for FPRs
which is called an additive consistency. In particular, for an FPR A = (aij)n×n, i, j, l ∈ N

aij − 0.5 = ail − 0.5 + al j − 0.5 (2)

or equivalently,
aij = ail + al j − 0.5 (3)

Usually, Equation (2) or Equation (3) is called the additively consistent condition of the FPR A.
The additively consistent condition is very helpful in measuring the consistency or the consensus of the
FPRs and in adding the missing information of the incomplete FPR, etc. For example, Herrera-Viedma
et al. [8] gave a new characterization of consistency based on the additively consistent of FPRs,
and showed that the new characterization of consistency can be readily checked by looking at the
consistency in the DMs’ opinions. Alonso et al. [19,22–24] presented several consistency and consensus
measures utilizing the additive consistency property to tackle missing information of incomplete
preference relations. Ma et al. [21] also derived an indirect judgment method to construct an additively

consistent preference relation Â = (âij)n×n by using arithmetic average âij = 0.5 + 1
n (

n
∑

l=1
ail − ajl),

i, j ∈ N.
In the following section, based on the indirect methods of Wang et al. [16], Ma et al. [21], and Xu

et al. [33], we derive two optimization models to construct the multiplicative consistent and additively
consistent FPR.

3. Optimization Methods for Constructing the Perfectly Consistent FPRs

3.1. A Logarithmic Least Squares Method for Constructing the Multiplicative Consistent FPR

Let A = (aij)n×n be an FPR whose entries satisfy aij + aji = 1, aij > 0, for all i, j ∈ N.
If A = (aij)n×n is multiplicative consistent, then Equation (1) holds for all i, j, k ∈ N. Equation (1) is
equivalent to

log(
aij

aji
) = log(

aikakj

akiajk
) (4)

However, A = (aij)n×n may be not multiplicative consistent, which denotes that

log(
aij
aji
) 6= log(

aikakj
akiajk

). Let lij = |log(
aij
aji
)− log(

aikakj
akiajk

)| denote the logarithmic distance between
aij
aji

and
aikakj
akiajk

. Obviously, the smaller the squared distance lij is, the better consistency of the FPR A = (aij)n×n.
This also denotes the better estimation by the DM. An ideal estimation âij should be the optimal
solution such that the sum of the squared distances between log(âij/âji) and log(

aikakj
akiajk

), i, j, k ∈ N, is
the minimum. Thus, we have the following optimization model:

min l2
ij =

n

∑
k=1

[log(âij/âji)− log(aikakj/akiajk)]
2s.t. 0 < âij < 1 (5)

Model (5) can be easily solved, leading to the unique solution

log(âij/âji) =
1
n

n

∑
k=1

log(aikakj/akiajk) (6)
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That is,

âij/âji =
n

∏
k=1

(aikakj/akiajk)
1
n (7)

If âij + âji = 1, we then have

âij =
∏n

k=1 (aikakj/akiajk)
1
n

1 + ∏n
k=1 (aikakj/akiajk)

1
n

(8)

for all i, j ∈ N.

Theorem 1. If âij + âji = 1 for all i, j ∈ N, then the optimization Model (5) has a unique solution

âij = ∏n
k=1 (aikakj/akiajk)

1
n /(1 + ∏n

k=1 (aikakj/akiajk)
1
n ).

Let us now construct a new matrix Â = (âij)n×n such that âij =
∏n

k=1 (aikakj/akiajk)
1
n

1+∏n
k=1 (aikakj/akiajk)

1
n

, i, j ∈ N.

In the following, we prove that matrix Â = (âij)n×n is an FPR and satisfies the multiplicative
consistency condition (1).

(I). For all i ∈ N, we have
âii = 0.5

(II). For all i, j ∈ N, we have
âij + âji = 1

(III). For all i, j ∈ N, we have
0 < âij < 1

(IV). For all i, j, k ∈ N, we have

âij/âji =
n

∏
l=1

(ailal j/aliajl)
1
n ,âki/âik =

n

∏
l=1

(aklali/alkail)
1
n ,

and

âjk/âkj =
n

∏
l=1

(ajlalk/al jakl)
1
n .

Thus, we have

âij âki âjk/âji âik âkj =
n

∏
l=1

(ailal jaklaliajlalk/aliajlalkailal jakl)
1
n = 1 (9)

which denotes that the condition
âij
âji

âjk
âkj

= âik
âki

holds for all i, j, k ∈ N.

Consequently, the matrix Â = (âij)n×n is an FPR which satisfies multiplicative consistent
condition following from (I), (III) and (III) and (IV).

Theorem 2. The matrix Â = (âij)n×n is an FPR which satisfies the multiplicative consistency, where

âij =
∏n

k=1 (aikakj/akiajk)
1
n

1+∏n
k=1 (aikakj/akiajk)

1
n

, i, j ∈ N.
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We call the multiplicative consistent FPR Â = (âij)n×n satisfying âij =
∏n

k=1 (aikakj/akiajk)
1
n

1+∏n
k=1 (aikakj/akiajk)

1
n

,

i, j ∈ N, the optimal estimation matrix (or the optimal multiplicative consistent FPR) of A = (aij)n×n.
In fact, Â can be regarded as an objective estimation of matrix A.

3.2. The Optimal Additively Consistent FPR

Let A = (aij)n×n be an FPR whose entries satisfy aij + aji = 1, aij > 0, for all i, j ∈ N.
If A = (aij)n×n is additively consistent, then Equation (3) holds for all i, j, k ∈ N. However,
A = (aij)n×n may be not additively consistent, which denotes that aij 6= ail + al j − 0.5.
Let dij = |aij − (ail + al j − 0.5)| denote the distance between aij and ail + al j − 0.5. It is obvious that
the smaller the squared distance dij is, the better consistency of the estimation by the DM. Suppose
âij is an optimal estimation such that the sum of the squared distance between âij and ail + al j − 0.5,
i, j ∈ N is the minimum. Thus we have the following optimization model

min d2
ij =

n

∑
i=1

(âij − (ail + al j − 0.5))2s.t. 0 < âij < 1 (10)

We can readily see that

âij =
1
n

n

∑
l=1

(ail + al j − 0.5) (11)

is the unique solution to Model (10).

Theorem 3. The optimal Model (10) has a unique solution âij =
1
n

n
∑

l=1
(ail + al j − 0.5).

Let us construct a new matrix Â = (âij)n×n such that âij = 1
n

n
∑

l=1
(ail + al j − 0.5), i, j ∈ N.

In the following, it is proven that matrix Â = (âij)n×n is an FPR and satisfies the additive
consistency condition.

(I). For all i ∈ N, we have

âii =
1
n

n

∑
l=1

(ail + ali − 0.5) = 0.5.

(II). For all i, j ∈ N,

âij =
1
n

n

∑
l=1

(ail + al j − 0.5),

and

âji =
1
n

n

∑
l=1

(ajl + ali − 0.5).

We can readily see that

âij + âji =
1
n

n

∑
l=1

(ail + ali + al j + ajl)− 1 = 1 (12)

(III). For all i, j ∈ N,

âik =
1
n

n

∑
l=1

(ail + alk − 0.5),

and

âkj =
1
n

n

∑
l=1

(akl + al j − 0.5).
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Thus,

âik + âkj =
1
n

n

∑
l=1

(ail + al j + alk + akl)− 1 (13)

=
1
n

n

∑
l=1

(ail + al j) (14)

Meanwhile, we have

âij =
1
n

n

∑
l=1

(ail + al j − 0.5)=
1
n

n

∑
l=1

(ail + al j)− 0.5= âik + âkj − 0.5 (15)

Consequently, if 0 < âij < 1, then the matrix Â = (âij)n×n is an FPR and satisfies consistent
condition following from (I), (III) and (III).

Theorem 4. The matrix Â = (âij)n×n is an FPR and possesses the additive consistency if 0 < âij < 1, where

âij =
1
n

n
∑

l=1
(ail + al j − 0.5), i, j ∈ N.

We also call the additively consistent FPR Â = (âij)n×n satisfying âij = 1
n

n
∑

l=1
(ail + al j − 0.5),

i, j ∈ N, the optimal estimation matrix (or the optimal additively consistent FPR) of A = (aij)n×n.
In fact, Â can be regarded as an objective estimation of matrix A.

4. The Consistency Measure of the Individual FPRs

Let A = (aij)n×n be an FPR, and Â = (âij)n×n the corresponding optimal estimation matrix
calculated using Equation (8) or Equation (11). If A = (aij)n×n is not consistent, then there exists
at least one pair i, j ∈ N such that âij 6= aij. The smaller deviation between âij and aij is, the better
consistency of the estimation. This also denotes that the bigger deviation between âij and aij is, the
higher inconsistency of the estimation. Let δij = |âij − aij|, for all i, j ∈ N. In the following, three
consistent measures between the original FPR and its optimal estimation matrix are proposed.

(I). Consistency degree associated with a pair of alternatives xi and xj.

Definition 1. We call cij = 1− δij the consistency degree associated with the pair of alternative xi and xj, and
CM = (cij)n×n the consistency degree matrix associated with all the pair of alternatives xi and xj, i, j ∈ N.

In fact, δij = |âij − aij| is an inconsistency degree measure between aij and its optimal estimation
âij, for all i, j ∈ N. The smaller δij (or the bigger 1− δij) is, the higher consistency of the estimation
associated with aij.

(II). Consistency degree associated with an alternative xi.

Definition 2. We call ci =
n
∑

j=1,j 6=i
(1− δij)/(n− 1) the consistency degree associated with the alternative xi,

and CV = (c1c2 . . . cn)
T the consistency degree vector associated with all the alternatives.

The consistency degree ci is actually an index for measuring the consistency degree between the
original estimation and its optimal estimation for the alternative xi. In other words, the bigger the
value of ci is, the higher consistency of the estimation associated with the alternative xi, i ∈ N.

(III). Consistency degree of the FPR A = (aij)n×n.
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Definition 3. Let A = (aij)n×n be an FPR, and Â = (âij)n×n the corresponding optimal estimation matrix

calculated using Equation (8) or Equation (11). We call C =
n
∑

i=1
ci/n the consistency degree of the FPR

A = (aij)n×n.

The bigger the value ci is, the higher consistency of the FPR A = (aij)n×n. This consistent measure
is similar to that of Chiclana et al. [31].

Example 1. The FPR A presented by Chiclana [31] is given below:

A =


0.5 0.7 0.9 0.5
0.3 0.5 0.6 0.7
0.1 0.4 0.5 0.8
0.5 0.3 0.2 0.5



From Equation (11), the optimal estimation matrix of A is

Â =


0.5000 0.6250 0.7000 0.7750
0.3750 0.5000 0.5750 0.6500
0.3000 0.4250 0.5000 0.5750
0.2250 0.3500 0.4250 0.5000


The consistency measures of A as proposed in this paper and proposed by Chiclana are listed in

Table 1.

Table 1. The Consistency Measures of the Preference Relation.

Pairs of Alternatives (CM) Alternatives (CV) Relation (C)

Our method


1.0000 0.9250 0.8000 0.7250
0.9250 1.0000 0.9750 0.9500
0.8000 0.9750 1.0000 0.7750
0.7250 0.9500 0.7750 1.0000




0.8167
0.9500
0.8500
0.8167


T

0.8583

Chiclana’s method


1.0000 0.8500 0.6000 0.5000
0.8500 1.0000 0.9500 0.9000
0.6000 0.9500 1.0000 0.5500
0.5000 0.9000 0.5500 1.0000




0.6500
0.9000
0.7000
0.6500


T

0.7300

Here, we have two different consistency measures. The first consistency measure (our measure)
is based on the optimal estimation matrix. That is, we regard this matrix as an objective matrix.
The consistency degree of the FPR is based on the differences between the collective FPR (aggregated
by arithmetic average of individual FPRs) and its optimal estimation FPR. In this sense, the first
consistency measure is constructed from the point of view of collective divergence. The second
consistency (Chiclana’s measure [31]) is based on the differences among all the individual FPRs. In this
sense, the second consistency measure is constructed from the point of view of individual divergence.
Consequently, the numerical values of the first consistency measure are greater than that of the second
consistency measure, as shown in Table 1.

5. The Consensus Measure of Collective FPR

In group decision making, the collective preference relation is very helpful in selecting the best
alternative. Usually, when aggregating the individual preference relations to a collective preference
relation, the consensus measure is desirable. The consensus index is a useful tool for measuring the
degree of consensus between the individual preference estimations and collective preference estimation.
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Dong et al. [15] defined the geometric cardinal consensus index and the geometric ordinal consensus
index for AHP group decision making using RGMM (row geometric mean method). Chiclana et al. [31]
measured the consensus degree by calculating the similarity between the preferences of each DMs in
the group and the collective preferences. They also suggested that consistency needs to be checked
before the application of the consensus process. In this section, using the consistent FPR derived by
Section 3, we put forward consensus indexes to measure the consensus degree between individual and
collective FPRs.

5.1. Construction of Two Kinds of Collective Consistent FPRs

In group decision making, the weighted geometric average and weighted arithmetic average
methods are often used to aggregate different individual preferences into a collective preference. In
this section, we show by two theorems that the optimal estimation matrix for the aggregated FPR is
equivalent to the aggregated optimal estimation matrix for different individual FPRs.

Let As = (aijs)n×n be an FPR presented by DM ds, and the corresponding weight of DM ds be ωs,

where
m
∑

s=1
ωs = 1, s ∈ M. We introduce an auxiliary matrix Bs = (bijs)n×n, where bijs =

aijs
ajis

, s ∈ M.

In fact, Bs = (bijs)n×n is a multiplicative preference relation.

Lemma 1. Bs = (bijs)n×n is a perfectly consistent preference relation if As = (aijs)n×n, s ∈ M, is
multiplicative consistent.

Let bij = ∏m
s=1 (

aijs
ajis

)
ωs , then we call B = (bij)n×n the weighted geometric average combination of

Bs = (bijs)n×n.

Lemma 2. B = (bij)n×n is perfectly consistent if As = (aijs)n×n, s ∈ M, is multiplicative consistent.

Lemmas 1 and 2 are obvious, the proof is omitted.

Let us consider an FPR A = (aij)n×n whose entries satisfy aij =
bij

1+bij
, i, j ∈ N. Then B = (bij)n×n

is an auxiliary matrix of A = (aij)n×n for the reason that bij =
aij
aji

, i, j ∈ N.

For aij =
bij

1+bij
, we have

aij =
∏m

s=1 (
aijs
ajis

)
ωs

1 + ∏m
s=1 (

aijs
ajis

)
ωs (16)

=
∏m

s=1 (aijs)
ωs

∏m
s=1 (aijs)

ωs + ∏m
s=1 (ajis)

ωs (17)

Equation (17) is equivalent to
aij

aji
=

m

∏
s=1

(
aijs

ajis
)

ωs
(18)

and aij + aji = 1, 0 < aij < 1.
Consequently, we define A = (aij)n×n as a weighted (particular) geometric average combination

of As = (aijs)n×n, s = 1, 2, . . . , m, if Equation (17) holds for all i, j ∈ N. It is ready to prove that if
As = (aijs)n×n is an FPR, s = 1, 2, . . . , m, then A = (aij)n×n is an FPR.

(I). Suppose that As = (aijs)n×n is multiplicative consistent, for all s = 1, 2, . . . , m. By Lemma 2,
B = (bij)n×n is perfectly consistent. Then, bijbjk = bik holds for all i, j, k ∈ N, which is equivalent

to that
aijajkaki
ajiakjaik

= 1 holds for all i, j, k ∈ N. This denotes that A = (aij)n×n is a multiplicative
consistent FPR. Thus, we have the following theorem.



Int. J. Environ. Res. Public Health 2017, 14, 1012 10 of 18

Theorem 5. Let As = (aijs)n×n be an FPR, s = 1, 2, . . . , m, then the weighted geometric average combination
A = (aij)n×n is also an FPR, where aij satisfies Equation (17), i, j ∈ N. Moreover, if all the individual FPRs
As = (aijs)n×n, s = 1, 2, . . . , m, are multiplicative consistent, then the weighted geometric average combination
A = (aij)n×n is also multiplicative consistent, where aij satisfies Equation (17), i, j ∈ N.

(II). Suppose there is at least one As = (aijs)n×n that is not multiplicative consistent, for some s ∈ M.
Then, the weighted geometric average combination A = (aij)n×n may not be multiplicative
consistent either, where Equation (17) holds for all i, j ∈ N. In many practical situations, it is
hard for each DM to directly present his/her multiplicative consistent fuzzy preference; and it is
also hard to directly obtain a collective multiplicative consistent FPR. Consequently, finding an
indirectly algorithm to reconstruct multiplicative consistent FPRs is a practically better choice.

On the one hand, by Equation (7), the optimal estimation matrix Â = (âij)n×s of A = (aij)n×n satisfies

âij

âji
=

n

∏
k=1

(aikakj/akiajk)
1
n =

n

∏
k=1

(
m

∏
s=1

(
aiks
akis

)ωs
m

∏
s=1

(
akjs

ajks
)ωs)

1
n =

n

∏
k=1

m

∏
s=1

(
aiksakjs

akisajks
)

ωs
n (19)

By Theorem 2, Â = (âij)n×s is multiplicative consistent.
On the other hand, the optimal estimation matrix As = (âijs)n×s of As = (aijs)n×n satisfies

âijs

âjis
=

n

∏
k=1

(
aiksakjs

akisajks
)

1
n (20)

Suppose that the weighted geometric average combination of As = (âijs)n×s, s ∈ M, is Â′ =

(â′ij)n×n
, where

â′ij
â′ji

= ∏m
s=1 (

âijs
âjis

)
as

. Then, we have

â′ij
â′ji

=
m

∏
s=1

(
âijs

âjis
)ωs=

m

∏
s=1

(
n

∏
k=1

(
aiksakjs

akisajks
)

1
n )ωs=

n

∏
s=1

m

∏
k=1

(
aiksakjs

akisajks
)

ωs
n =

n

∏
k=1

m

∏
s=1

(
aiksakjs

akisajks
)

ωs
n (21)

Combining Equation (19) with Equation (21), we have that Â = Â′. This means that Â′ = (â′ij)n×n
is also multiplicative consistent. Now, the following Theorem 6 follows from the above process
of reasoning.

Theorem 6. The optimal estimation matrix of the weighted geometric average combination of individual FPRs
is equivalent to the weighted geometric average combination of the optimal estimation matrix of the individual
FPRs.

Let As = (aijs)n×n be an FPR presented by DM ds, and the corresponding weight of the DM ds

be ωs, where
m
∑

i=1
ωs = 1, s ∈ M. Then, the weighted arithmetic average combination A = (aij)n×n

of As = (aijs)n×n, s ∈ M, is also an FPR, where aij =
m
∑

i=1
ωsaijs. If As = (aijs)n×n is additively

consistent, then we can readily prove that A = (aij)n×n is also additively consistent. Thus we have the
following theorem.

Theorem 7. A = (aij)n×n is an FPR if As = (aijs)n×n is an FPR, for all s = 1, 2, . . . , m; A = (aij)n×n is

additively consistent if As = (aijs)n×n is additively consistent, for all s = 1, 2, . . . , m, where aij =
m
∑

i=1
ωsaijs,

i, j ∈ N.
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According to Equation (11), the optimal estimation matrix for A = (aij)n×n is Â = (âij)n×n, where

âij =
1
n

n

∑
l=1

(ail + al j − 0.5) (22)

The optimal estimation matrix for As = (aijs)n×n is As = (âijs)n×n, where

âijs =
1
n

n

∑
l=1

(ails + al js − 0.5) (23)

Then, the arithmetic average of Âs = (âijs)n×n, s = 1, 2, . . . , m is Â = (âij)n×n, where

âij =
m
∑

s=1
ωs âijs

=
m
∑

s=1

ωs
n

n
∑

l=1
(ails + al js − 0.5)

=
m
∑

s=1

1
n

n
∑

l=1
(ωsails + ωsal js − 0.5ωs)

=
n
∑

l=1

m
∑

s=1

1
n (ωsails + ωsal js − 0.5ωs)

= 1
n

n
∑

l=1
(ail + al j − 0.5)

(24)

Thus, we have âij = âij, that is, Â = Â. This leads to the following result.

Theorem 8. The optimal estimation matrix of weighted arithmetic average combination of individual FPRs is
equivalent to the weighted arithmetic average combination of the optimal estimation matrix of individual FPRs.

5.2. Construction of Consensus Measure for Collective FPR

5.2.1. The Case of Additively Consistent FPR

Let A = (aij)n×n be the weighted arithmetic average combination of the FPRs As = (aijs)n×n,

s = 1, 2, . . . , m. That is, aij =
m
∑

s=1
ωsaijs, where ωs satisfying

m
∑

s=1
ωs = 1 represents the relative

importance of DM ds, s ∈ M. Let Â = (âij)n×n be the corresponding optimal estimation matrix of
A = (aij)n×n.

According to Theorem 7, if A = (aij)n×n is an additively consistent FPR, then Â = (âij)n×n is
also an additively consistent FPR. If A = (aij)n×n is not consistent, then there exists at least one pair
i, j ∈ N, such that âij 6= aij. The smaller distance between âij and aij is, the better consensus of the
estimation. This also denotes that, the bigger deviation between âij and aij is, the higher non-consensus
of the estimation.

Let δij = |âij − aij| denote the deviation between âij and aij. We propose three consensus measures
between the collective FPR and its optimal estimation matrix as follows.

(I). Consensus degree on a pair of alternatives xi and xj.

Definition 4. The deviation gcij = 1− δij is called the consensus degree on the pair of alternatives xi and xj,
and the matrix GCM = (gcij)n×n is called consensus degree associated with all the pairs of alternatives xi and
xj, i, j ∈ N.

The smaller δij (or the bigger 1− δij) is, the higher consensus of the estimation associated with aij.
(II). Consensus degree on an alternative xi.
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Definition 5. gci =
n
∑

j=1,j 6=i
gcij/(n − 1) is called the consensus degree on the alternative xi , and

GCV = (gc1 gc2 . . . gcn)
T the consistency degree vector associated with all the alternatives.

The number gci is actually an index for measuring the consensus degree between the optimal
estimation and the original estimation of the alternative xi. In other words, the bigger the value of gci
is, the higher consensus of the estimation associated with the alternative xi, i ∈ N.

(III). Consensus degree on the FPR A = (aij)n×n.

Definition 6. GC =
n
∑

i=1
gci/n is the called consensus degree of the collective FPR A = (aij)n×n.

The bigger the value of GC is, the higher consensus on the FPR As = (aijs)n×n, s, s ∈ M.
The consensus measure is also similar to that of Chiclana et al. [31].

Example 2. The FPRs As, s = 1, 2, 3, 4, as presented by Chiclana [31], are given as follows:

A1 =


0.5 0.2 0.6 0.4
0.8 0.5 0.9 0.7
0.4 0.1 0.5 0.3
0.6 0.3 0.7 0.5

; A2 =


0.5 0.7 0.9 0.5
0.3 0.5 0.6 0.7
0.1 0.4 0.5 0.8
0.5 0.3 0.2 0.5

;

A3 =


0.5 0.3 0.5 0.7
0.7 0.5 0.1 0.3
0.5 0.9 0.5 0.25
0.3 0.7 0.75 0.5

; A4 =


0.5 0.25 0.15 0.65

0.75 0.5 0.6 0.8
0.85 0.4 0.5 0.5
0.35 0.2 0.5 0.5

.

Suppose that the relative weight of each DM is 0.25. Then, the arithmetic average combination of
the FPRs Ai, i = 1, 2, 3, 4, is

A =


0.5000 0.3625 0.5375 0.5625
0.6375 0.5000 0.5500 0.6250
0.4625 0.4500 0.5000 0.4625
0.4375 0.3750 0.5375 0.5000


According to Section 3.2, the corresponding additively consistent FPR is

Â =


0.5000 0.4125 0.5219 0.5281
0.5875 0.5000 0.6094 0.6156
0.4781 0.3906 0.5000 0.5062
0.4719 0.3844 0.4938 0.5000


The consensus measures of the collective FPR A as proposed in this paper and by Chiclana,

respectively, are listed in Table 2.
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Table 2. The Consensus Measures of the Collective FPR.

Pairs of Alternatives (GCM) Alternatives (GCV) Relation (GC)

Our method


1 0.95 0.9844 0.9656

0.95 1 0.9406 0.9906
0.9844 0.9406 1 0.9563
0.9656 0.9906 0.9023 1




0.9667
0.9604
0.9604
0.9528


T

0.9601

Chiclana’s method


1 0.6700 0.7000 0.7400

0.6700 1 0.7600 0.7500
0.7000 0.7600 1 0.8700
0.7400 0.7500 0.8700 1




0.7100
0.7300
0.7800
0.7900


T

0.7500

Here, we have two different consensus measures. The first consensus measure (our measure)
is based on the optimal estimation matrix. That is, we regard this matrix as an objective matrix.
The consensus degree of the FPR is based on the differences between the collective FPR (aggregated
by arithmetic average of individual FPRs) and its optimal estimation FPR. In this sense, the first
consensus measure is constructed from the point of view of collective divergence. The second
consensus (Chiclana’s measure [31]) is based on the differences among all the individual FPRs. In this
sense, the second consensus measure is constructed from the point of view of individual divergence.
Consequently, the numerical values of the first consensus measure are greater than that of the second
consensus measure, as shown in Table 2.

5.2.2. The Case of Multiplicative Consistent FPRs

Let A = (aij)n×n be the weighted geometric average combination of the FPRs As = (aijs)n×n,

s = 1, 2, . . . , m. That is, aij =
∏m

s=1 (aijs)
ωs

∏m
s=1 (aijs)

ωs+∏m
s=1 (ajis)

ωs , where ωs satisfying
m
∑

s=1
ωs = 1 stands for the

relative importance of DM ds, s ∈ M. Let Â = (âij)n×n be the corresponding optimal estimation matrix
of A = (aij)n×n. Let δij = |âij − aij| denote the distance between âij and aij. Similar to Section 5.2.1,
three consensus measures between the collective FPR and its optimal estimation matrix from the
multiplicative consistency point of view are proposed as follows.

(I). Consensus degree on a pair of alternatives xi and xj.

Definition 7. gcij = 1− δij is called the consensus degree on the pair of alternatives xi and xj, and the matrix
GCM = (gcij)n×n the consensus degree associated with all pairs of alternatives xi and xj, i, j ∈ N.

(II). Consensus degree on an alternative xi.

Definition 8. gci =
n
∑

j=1,j 6=i
gcij/(n − 1) is called the consensus degree on the alternative xi,

GCV = (gc1 gc2 . . . gcn)
T the consensus degree vector associated with all the alternatives.

(III). Consensus degree on the FPR A = (aij)n×n.

Definition 9. GC =
n
∑

i=1
gci/n is called consensus degree of the collective FPR A = (aij)n×n.

5.2.3. The Algorithm for Consensus Measure of the FPRs

Step 1. Construct the optimal estimation matrix of the FPRs by using Equation (8) or Equation (11).
Step 2. Aggregate the individual FPRs into a collective FPR by using the weighted geometric

average or the weighted arithmetic average method.
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Step 3. Compute the consensus degree matrix GCM = (gcij)n×n, consistency degree vector

GCV = (gc1 gc2 . . . gcn)
T , and the consensus degree of all the FPRs As = (aijs)n×n, s ∈ M by using

Definitions 4–9.
In the following, we use an example to show the process of measuring the consensus of the FPRs.

6. Case Study

Taking the ecological security evaluation of five important cities, Shanghai, Nanjing, Hangzhou,
Suzhou and Wuxi, in the Yangtze River Delta as an example, with reference to the natural environment,
ecological environment disaster, environmental pollution, social and economic indicators, experts
d1, d2, d3 made the comprehensive evaluation of ecological security of the five cities according to their
own experience. Through pairwise comparison, the fuzzy preference relation A1, A2, A3 is constructed
to achieve the regional ecological grading of the five cities.

Due to the limited rationality of experts and the incompleteness of knowledge, in the process
of making judgments, it is often difficult for experts to ensure logical consistency. Based on the
consistency measure and the consensus measure method proposed in this paper, the consistency of the
logic and the validity of the judgment matrix are examined in the expert judgment process considering
the consistency and multiplicative consistency of the FPR.

Suppose that there are three FPRs A1, A2, A3 presented by DMs d1, d2, d3, and that the relative
weights of the DMs are 0.2, 0.4, and 0.4, respectively, where

A1 =


0.5 0.6 0.5 0.9 0.7
0.4 0.5 0.7 0.3 0.5
0.5 0.3 0.5 0.6 0.4
0.1 0.7 0.4 0.5 0.3
0.3 0.5 0.6 0.7 0.5

; A2 =


0.5 0.5 0.4 0.8 0.9
0.5 0.5 0.8 0.2 0.4
0.6 0.2 0.5 0.7 0.4
0.2 0.8 0.3 0.5 0.4
0.1 0.6 0.6 0.6 0.5

; A3 =


0.5 0.4 0.7 0.3 0.9
0.6 0.5 0.6 0.5 0.8
0.3 0.4 0.5 0.6 0.4
0.7 0.5 0.4 0.5 0.5
0.1 0.2 0.6 0.5 0.5

.

Step 1. According to Equation (8), the optimal estimation matrices of A1, A2, A3 are Â1, Â2,
Â3, respectively.

Â1 =


0.5000 0.6838 0.7025 0.7704 0.6477
0.3162 0.5000 0.5221 0.6081 0.4595
0.2975 0.4779 0.5000 0.5869 0.4377
0.2296 0.3919 0.4131 0.5000 0.3540
0.3523 0.5405 0.5623 0.6460 0.5000

;

Â2 =


0.5000 0.6719 0.6777 0.7081 0.6967
0.3281 0.5000 0.5067 0.5423 0.5287
0.3223 0.4933 0.5000 0.5356 0.5221
0.2919 0.4577 0.4644 0.5000 0.4864
0.3033 0.4713 0.4779 0.5136 0.5000

;

Â3 =


0.5000 0.4797 0.6477 0.5671 0.7299
0.5203 0.5000 0.6660 0.5869 0.7456
0.3523 0.3340 0.5000 0.4161 0.5951
0.4329 0.4131 0.5839 0.5000 0.6735
0.2701 0.2544 0.4049 0.3265 0.5000

.

For example, the (1,2) entry 0.6838 of Â1 is obtained as follows:

((0.5×0.6×0.5×0.9×0.7×0.6×0.5×0.3×0.7×0.5)/(0.5×0.4×0.5×0.1×0.3×0.4×0.5×0.7×0.3×0.5))0.2

1+((0.5×0.6×0.5×0.9×0.7×0.6×0.5×0.3×0.7×0.5)/(0.5×0.4×0.5×0.1×0.3×0.4×0.5×0.7×0.3×0.5))0.2 = 0.6838.

Step 2. The weighted geometric average combination A of A1, A2, A3 is

A =


0.5000 0.4797 0.5441 0.6581 0.8729
0.5203 0.5000 0.7081 0.3265 0.5968
0.4559 0.2919 0.5000 0.6416 0.4000
0.3419 0.6735 0.3584 0.5000 0.4178
0.1271 0.4032 0.6000 0.5822 0.5000


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According to Equation (16), we also take the (1,2) entry 0.4797 of A as an example to illustrate
how matrix A is obtained:

(0.6/0.4)0.2 × (0.5/0.5)0.4 × (0.4/0.6)0.4

1 + (0.6/0.4)0.2 × (0.5/0.5)0.4 × (0.4/0.6)0.4 = 0.4797

Step 3. The weighted geometric average combination Â of Â1, Â2, Â3 is

Â =


0.5000 0.6007 0.6710 0.6692 0.7010
0.3993 0.5000 0.5755 0.5735 0.6091
0.3290 0.4245 0.5000 0.4979 0.5348
0.3308 0.4265 0.5021 0.5000 0.5368
0.2990 0.3909 0.4652 0.4632 0.5000

.

According to Equation (16), we take the (1,2) entry 0.6007 of Â as an example:

(0.6838/0.3162)0.2 × (0.6719/0.3281)0.4 × (0.4797/0.5203)0.4

1 + ((0.6838/0.3162)0.2 × (0.6719/0.3281)0.4 × (0.4797/0.5203)0.4 = 0.6007

In fact, Â can also be obtained from A using Equation (8).
Step 4. The consensus degree matrix GC = (gcij)n×n is given below, where gcij = 1− δij, and

δij = |âij − aij| i, j ∈ N

GC =


1 0.8790 0.8731 0.9889 0.8281

0.8790 1 0.8674 0.7530 0.9877
0.8731 0.8674 1 0.8563 0.8652
0.9889 0.7530 0.8563 1 0.8810
0.8281 0.9877 0.8652 0.8810 1

.

In particular, we look at how the (2,4) entry 0.7530 of GC is produced as an example,
1− |0.5735− 0.3265| = 0.7530.

Step 5. The consensus vector GV = (gc1gc2 . . . gc5)
T on the alternatives xi, i = 1, 2, 3, 4, 5,

is GV = (0.8923, 0.8718, 0.8655, 0.8698, 0.8905)T . Taking 0.8923 as an example, it is obtained by
(0.8790 + 0.8731 + 0.9889 + 0.8281)/4.

Step 6. The global consensus of A = (aij)n×n is 0.8780, which is produced by (0.8923 + 0.8718 +
0.8655 + 0.8698 + 0.8905)/5.

The above research shows that the degree of consistency of the three experts’ comprehensive
evaluation of ecological security for five cities is 0.8780, which has a high degree of consensus. It also
shows that the overall judgment of three experts have a certain degree of reliability.

7. Conclusions

The evaluation of regional ecological security risk by group decision-making method can not
only make full use of the subjective experience of expert groups, but also overcomes the difficulties
of complex objective structure and incomplete objective data to a certain extent. Based on the theory
of consensus decision making of fuzzy preference relation, this paper studies the consistency test
method of expert opinion in ecological security assessment. In this paper, we proposed our consistency
measure model by computing the distance between the original individual FPR and its optimal
estimation matrix, and consensus measure model by computing the distance between the original
collective FPR and its optimal estimation matrix. The contribution of this work can be seen from
several different angles.
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(1) Every entry in an inconsistent FPR is useful for the reason that it reflects the overall thinking
of a DM. In this paper, we use the method of optimization to obtain the optimal additively
consistent or the optimal multiplicative consistent FPR. The optimization method is in fact either
the geometric average or the arithmetic average. It comprehensively considers each entry in the
inconsistent FPR. Consequently, all information in the inconsistent FPR is fully used.

(2) Every FPR in GDM is useful for the reason that it reflects the influence of each individual in
the group. In this paper, we use the weighted geometric average or the weighted arithmetic
average to aggregate individual FPRs into a collective FPR. We also show by two theorems that
the optimal estimation matrix of the aggregated FPR is equivalent to the aggregated optimal
estimation matrix of different individual FPRs. The theorems indicate additionally that there is
no information loss that occurs during the aggregation of the individual FPRs and reconstruction
of the optimal collective FPR.

(3) The optimal FPRs are helpful in measuring the consistency degree of individual judgment and the
consensus degree of collective judgment. Being similar to the consensus model as proposed by
Chiclana [31], a new consistency measure and new consensus measure, established on the distance
between the original estimation and the optimal estimation, are developed. We also show by
using two examples initially constructed by Chiclana et al. that the new models can better reflect
the consistency degree of individual judgments and the consensus degree of collective judgments.

(4) Additionally, we want to mention that our consensus measure is based on the deviation
between the original collective estimation and its optimal estimation, while Chiclana’s consensus
measure [31] on the deviation among all the individual estimation. In [31], Chiclana et al. also
suggested a consensus threshold, named the minimum level of agreement by the group of DMs.
Our next paper will cover this issue by using simulation on random data.
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