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Abstract: The non-linear relationship between provincial economic growth and carbon emissions is
investigated by using panel smooth transition regression (PSTR) models. The research indicates that,
on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure
(Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis
of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models
all contain only one transition function but different numbers of location parameters. The model
taking GDPpc as the transition variable has two location parameters, while the other two models
separately considering Es and Ul as the transition variables both contain one location parameter.
The three models applied in the study all favourably describe the non-linear relationship between
economic growth and CO2 emissions in China. It also can be seen that the conversion rate of the
influence of Ul on per capita CO2 emissions is significantly higher than those of GDPpc and Es on
per capita CO2 emissions.
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1. Introduction

Since the implementation of the reform and opening-up policy, the Chinese economy has
developed rapidly and China has become the largest developing country and the second biggest
economic entity in the world. However, excessive consumption of energy and mass emission of
pollutants are causing sustained environmental pollution and eco-deterioration in China as a result of
this growth. China thus bears huge responsibilities for environmental protection during such economic
development. In January, 2016, China Meteorological Administration released China Greenhouse Gas
Bulletin in 2014 in which it points out that the Chinese carbon emissions account for 28% of all global
emissions, surpassing the sum of those from the USA (14%), and the European Union (12%). In response
the Chinese Government has formulated a series of policies and goals. For example, the Sino-U.S.
Joint Declaration on Climate Change proposed that CO2 emissions per unit GDP in 2030 are expected to
decrease by 60% to 65% compared with those in 2005. In the long-term, for research into economic
growth and environmental pollution, scholars generally establish models by using environmental
Kuznets curve (EKC) theory while empirical result tends to show large disparities therewith. In this
study, the panel smooth transition regression (PSTR) model proposed by González et al. [1] is applied
to investigate the relationship between economic growth and carbon emissions in China. And the
innovations of this study is using this model to examine the non-linear relationship under different
transition variables. The PSTR model is more flexible than classical panel models and is good at
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describing cross-section heterogeneity. Furthermore, whether a non-linear relationship exists between
the two factors is verified and the transition rates on the condition of taking various variables as
thresholds are investigated. The rest of study is organised as follows: Section 2 contains a literature
review, Section 3 summarises the models used and the data therefrom, Section 4 summarises the
empirical results, and Section 5 draws the conclusions.

2. Literature Review

Among the research into environmental problems and economic development, the EKC
hypothesis is seminal: it proposes an inverted U-shaped curve mapping the relationship between
environmental pollution and economic development. After referring to Kuznets’ work [2] on
relationship between economic growth and income inequality, Grossman and Krueger [3] introduced
the hypothesis into the analysis of environmental problems in 1991. Grossman and Krueger proposed
a theory that changes in per capita income bring about two types of effects to explain the phenomenon.
They suggested that economic development brings large-scale economic activities and resource
demands, resulting in a negative effect on environmental quality. However, technologies develop
and the economic structures correspondingly improve with growth. Therefore, an inverted U-shaped
curve occurs due to the superposition of the two effects and among the empirical research on pollutant
emission and economic development, numerous papers have covered the theory thereof. For example,
the result of using inverted U-curves was obtained by multiple scholars including Grossman and
Krueger [4], Perman and Stern [5], Stern [6], Galeotti et al. [7], and Yavuz [8]. However, other scholars
acquired the results of an N-shaped mode of EKC such as Moomaw and Unruh [9], Martínez-Zarzoso
and Bengochea-Morancho [10] while some scholars obtained an inverted N, such as Ajimi et al. [11].

Numerous scholars have criticised the inconsistent results among the various EKC curves, for
example, Yang et al. [12] indicated that undersized data sets probably caused the relationship described
by EKC hypotheses to be unsuitable for the construction of specific models. Furthermore, different
models can be applied to different countries and regions in the world by constructing symbolic
regressions on the data. Li et al. [13] and Apergis [14] noticed that heterogeneity is easily found in
panel data from different countries and regions and they solved the problem by using traditional unit
root and co-integration tests. However, González et al. [1] pointed out that it is invalid, or incomplete,
to deal with the heterogeneity problem using these methods and furthermore, they proposed a new
non-linear model (the PSTR model) to deal with the heterogeneity problem.

There are various publications about the relationship between economic growth and carbon
emissions. Fernández-Amador et al. [15] investigated the relationship between GDP per capita and
CO2 emission per capita associated with production and consumption activities. They found that
carbon efficiency can gain from economic development. Ahamd [16] used cointegration analysis
and vector error correction model to investigate the relationships among carbon emission, energy
consumption and economic growth in India and found that a long run cointegration relationship exist.
Ito [17] examined the linkage between CO2 emissions, economic growth and relevant variables by
a dynamic panel model. Narayan et al. [18] used a cross-correlation estimates method to investigate the
dynamic relationship between economic growth and carbon emissions for 181 countries. Zhu et al. [19]
investigated the impact of foreign direct investment, economic growth and carbon emissions in five
ASEAN countries by a panel quantile regression model. In this paper, different from the above studies,
we consider the possible non-linear relationship between CO2 emissions and economic growth, and
using three different PSTR models to examine it.

Changing with time and sample cross-section, the regression coefficients of PSTR models are
heterogeneous and can be considered as the generalisation of panel threshold regression (PTR) models.
For a PTR model, it assumes that there are obvious grouping characteristics among observed data,
together with clear limits between different groups, and the threshold variables can be used for
corresponding grouping [20]. Whereas, changes in the actual economy and other variables cannot
strictly satisfy the hypothesis of the model, so regression results tend to be jumpy and discontinuous
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while using a PTR model to deal with practical problems, which does not conform to any practical law.
However, the problem can be overcome by using the PSTR model. For the PSTR model, the changes
in groups of variables not only reflect the jump in different regimes at the threshold but a transition
function of threshold variables, which enable panel data to achieve smooth regime transition within
a certain range. Therefore, the PSTR model is regarded as the generalisation of a PTR model and
favourably conforms to economic realities. In addition, the PSTR model has obvious advantages
over standard linear regression models for solving cross-section heterogeneity and time-instability
problems. Heidari et al. [21] found that the relationship between CO2 emissions and economic growth
conforms to the EKC hypothesis after fitting the relationship among economic growth, CO2 emissions,
and energy consumption of five countries in the ASEAN bloc by using the PSTR model. Chiu [22]
carried out PSTR modelling for the relationship between net incomes, energy use, and CO2 emissions
by using panel data from 99 countries. Also, different countries are grouped and the EKC hypothesis
verified between different groups.

3. Model and Data

3.1. Model Set-Up

The non-linear relationship between carbon emissions in China, and economic growth, is
described by using the PSTR model. The fundamental PSTR mode containing two regimes is defined
as follows:

yit = µi + β′0xit + β′1xitG(qit; γ, c) + εit (1)

In Equation (1), i = 1,2, . . . ,N and t = 1,2, . . . ,T in which N and T refer to the total individual
number and period number, respectively. G (qit; γ, c) represents a transition function, which is
a continuous function with values between 0 and 1, where, qit is a transition variable. Additionally, xit,
µi, and εit represent a k-dimensional exogenous variable, a fixed effect among individuals, and an error
term, respectively.

The common functional forms of G (qit; γ, c) include exponential and logistic functions.
In the study, a logistic function was applied with reference to Granger and Teräsvirta [23] and
González et al. [1]:

G(qit; γ, c) =

(
1 + exp

(
−γ

m

∏
j=1

(
qit − cj

)))−1

(2)

where, c = (c1, . . . ,cm)t refers to an m-dimensional location parameter vector and the slope parameter γ

determines the smoothness of the transition function, namely, the transition rate from one regime to
another. To identify the model, parameters c and γ are restricted, namely, c1 ≤ c2 ≤, . . . ≤ cm, γ > 0.
When the location parameter c is a fixed value, the estimation parameter of xit is smoothly transferred
within the range of β0 ~β0 + β1.

In empirical research, González et al. [1] suggested taking m = 1 or m = 2. At m = 1, γ → ∞,
the transition function G (qit; γ, c) degenerates into an indicative function and has the value 1 for qit > cj
and 0 otherwise. At m = 2, the transition function is symmetric with respect to the point (c1 + c2)/2 and
has a minimum at that point while the function G (qit; γ, c) has a value of 1 when the transition variable
qit has either large, or low, values. If γ→ ∞, the model is transformed to a three-regime transition
model and the two external regimes are the same, and differ from the middle regime. Generally, at
m > 1, γ→ ∞, there are two different regimes while the transition function G (qit; γ, c) has values in
the range 0 to 1, and is 0 or 1 only at c1, . . . ,cm. Additionally, under γ→ 0, the transition function G
(qit; γ, c) is a constant whatever the values of m, and model (1) degenerates into a panel fixed effect
model. The PSTR model can be extended to a multi-regime model, shown as follows:

yit = µi + β′0xit +
r

∑
j=1

β′ jxitG
(

q(j)
it ; γj, cj

)
+ εit (3)
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where, the logistic function form (2) is applied as the transition function G (q(j)
it ; γj, cj) with j = 1, . . . ,r.

When m = 1 and all slope parameters γj → ∞, the model (3) degenerates to the PTR model proposed
by Hansen [20]. Model (3) can be used to test residual heterogeneity.

Previous research into environmental problems and economic growth did not consider the
possible missing variable problem. Thus, guided by the practice of Wu et al. [24], apart from traditional
GDP per capita (GDPpc) and carbon emissions per capita (Rce), multiple variables are introduced
including energy structure (Es), urbanisation level (Ul), trade openness (To), and marketisation degree
or marketisation index (Mi). Here, GDPpc and Rce represent economic development level and pollution
level, respectively.

In the study, the transition variable qit varies with changes of individuals and time, which
allows the random change of regression parameters of different individuals in different periods. It is
reasonable to measure the non-linear relationship between carbon emissions and economic growth in
different provinces of China in different periods. Therefore, the equation is constructed as follows:

lnRceit = µi + β1lnRGDPit + β2lnEsit + β3lnUlit + β4lnToit + β5lnMiit+(
β
(1)
1 lnRGDPit + β

(1)
2 lnEsit + β

(1)
3 lnUlit + β

(1)
4 lnToit + β

(1)
5 lnMiit

)
∗G
(

q(1)it ; γ(1), c(1)
)
+ εit

(4)

The three models are established by taking logarithms of all variables in (4) and separately
valuing the transition variable as lnGDPpc, lnEs and lnUl. In the literature review, we known that CO2

emissions has strong relationship with economic growth. And before model construction, we have
done the grey correlation analysis on all series, and found that among all the variables, as lnGDPpc,
lnEs and lnUl are highly correlated with lnRce. Based on that, we choose as lnGDPpc, lnEs and lnUl as
the transition variables, respectively.

3.2. Data Specification

The data were taken from the China Statistical Yearbook, China Energy Yearbook, and local statistical
yearbooks from each province and region (except for Tibet) for the years from 1995 to 2015, inclusive.
The specific descriptions of various variables are shown as follows:

(1) GDP per capita (GDPpc): the EKC curve reflects that the development of economic levels probably
pollutes the environment while, with constant economic growth, the pollution levels increase at
first and then decrease after the economic levels reach a turning point. The GDPpc is taken as the
variable representing the economic growth levels. Based on 1995 constant prices, the practical
GDP converted by GDP index per capita represents the income level in unit of yuan. Province-level
GDP per capita can be found in China Statistical Yearbook.

(2) Energy structure (Es): restricted by natural resource endowment during energy production, coal
is always the primary constituent of China’s energy consumption and the burning of coal releases
huge amounts of CO2. For this reason, the influence of coal consumption, as a proportion of
overall energy use, on CO2 emissions cannot be ignored while investigating CO2 emissions in
China. Es in the study refers to the proportion of coal consumption of overall energy consumption
in China (unit: %). Coal consumption data can be found in China Energy Yearbook.

(3) Urbanisation level (Ul): this exerts an effect on CO2 emissions mainly through changes in land
use type and the improvement of Ul, which leads numerous people to change their lifestyles, thus
directly improving residential CO2 emissions. In this study, the proportion of urban population
in the total population is applied to represent Ul (unit: %). The urban population and the total
population can be found in local statistical year book.

(4) Trade openness (To): this exerts a significant influence on China’s carbon emissions because China
enjoys a trade surplus all year round due to her abundant export volumes. However, a direct
negative effect caused by this condition is that it causes domestic CO2 emissions and
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environmental pollution during production while acquiring abundant export exchanges: To is
measured by using the ratio of the total export-import volume to GDP (unit: %). The total
export-import volume and the province-level GDP can be found in local statistical year book.

(5) Marketisation index (Mi): this refers to a concept used for measuring the capacity to absorb
foreign capital inflow by calculating the ratio of foreign direct investment (FDI) to GDP. In this
study, a model with Mi was applied to measure the influence of the degree of marketisation on
CO2 emissions. The ratio of FDI to GDP was used to measure the marketisation index (unit: %).
FDI and the province-level GDP can be found in local statistical year book.

(6) Carbon emission per capita (Rce): this can be calculated by using the material balance algorithm
as recommended by the Intergovernmental Panel on Climate Change (IPCC) (unit: ton/person):

CE =
k

∑
i

ECi ∗ Coei ∗
44
12

(5)

where CE is the total CO2 emission, and ECi refers to the consumption of i-th energy and
Coei represents the carbon emissions factor of i-th energy. To get carbon emissions per capita
(Rce), we divide CE by the population. Table 1 is the emission factor of different energy from
Compilation of National and Provincial GHG Inventories. Energy consumption data can be
found in China Energy Yearbook and province-level population can be found in local statistical
year book.

Table 1. Carbon emissions factor.

Energy Coal Coke Crude Oil Gasoline Kerosene Diesel Oil Fuel Oil Nature Gas

carbon emissions factor 1.9003 2.8604 3.0202 2.9251 3.0179 3.0959 3.1705 2.1622

Note: The unit of nature gas carbon emission factor is kgCO2/m3, others is kgCO2/kg.

Table 2 shows the descriptive statistical magnitudes of all variables, each of which contains
30 observed values, and 20 observed periods, from 1995 to 2014.

Table 2. Statistical magnitudes of all variables.

Variables Rce GDPpc Es Ul To Mi

Observation 600 600 600 600 600 600
Mean 6.64 16,247.37 69.76 44.85 30.92 7.03

Standard deviation 5.180 27,093 16.652 16.634 39.861 7.9899
Maximum 31.20 369,120.78 97.92 89.6 205.12 49.51
Minimum 0.737 1826 15.543 17.19 0.336 0.067

4. Empirical Results

4.1. Relative Test

González et al. [1] suggested that, before establishing a PSTR model, it is necessary to conduct
a heterogeneity test on the model so as to determine the non-linear relationship between explanatory
variables and explained variables. Only the mode variables pass through the heterogeneity test,
the PSTR model can be established to investigate the non-linear relationship and transfer characteristics
of variables.

The homogeneity test is carried out on the PSTR model (1), i.e., we tested the null hypothesis.
On the condition of conforming to the null hypothesis H0, the model (1) is degenerated into a common
linear fixed effect model:

yit = µi + β′0xit + εit (6)
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However, under null hypothesis conditions, the PSTR model contains unidentified nuisance
parameters, as first proposed by Davies [25]. Guided by González et al., by substituting the transition
function G (qit; γ, c) into the first-order Taylor expansion at γ = 0, the auxiliary equation can be further
constructed:

yit = µi + β′∗0 xit + β′∗1 xitqit + · · ·+ β′∗m xitqm
it + ε∗it (7)

where, the parameter vector β∗1, . . . , β∗m is the product term of the slope parameter γ while
ε∗it = εit + Rmβ′1xit, in which Rm is the remainder of the Taylor series expansion. Therefore, testing H0:
γ = 0 on model (1) is equivalent to testing H∗0 : β∗1 = · · · = β∗m = 0 on model (5). Thus, by separately
estimating the parameters in models (5) and (6), LM and LR test statistics complying with the χ2

distribution is constructed based on the residual sums of squares SSR0 and SSR1 of the two models to
test the null hypothesis H0:

LM =
TN(SSR0 − SSR1)

SSR0
(8)

LMF =
(SSR0 − SSR1)/mk

SSR0/(TN − N −mk)
(9)

LR = −2[log(SSR1)− log(SSR0)] (10)

where, SSR0 and SSR1 refer to the panel residual sums of squares of the null hypothesis (namely,
the linear hypothesis) and alternative hypothesis (namely, the hypothesis of the PSTR model),
respectively. Under the condition of the null hypothesis, LMW and LR test statistics follow the
χ2 distribution while LMF statistics conform to an F (mk,TN − T − mk) distribution.

Table 3 shows that test statistics reject the null hypothesis H0 at the 1% significance level by taking
lnGDPpc as the transition variable, while it also denies the null hypothesis H0 at the 5% significance
level by taking lnEs and lnUl as transition variables. The rejection of the null hypothesis shows the
existence of panel heterogeneity, so the number of transition functions and location parameters needs
to be determined by further analysis. Considering the actual conditions, the data used in the study
span 20 years (1995 to 2014), so with such a short length time series, it is impractical to have more
than two transition functions in this context, or it does not conform to the general laws of economics.
Therefore, it is possible to have one or two transition functions. For the number of location parameters,
it is possible that m = 1 or m = 2 in practical situations according to González et al. [1]. Therefore, guided
by the methods of Colletaz and Hurlin [26], the most appropriate model is chosen by using different
information criteria (Table 4).

Table 3. Non-linear testing of models.

Model 1 2 3

threshold variables ln GDPpc ln Es ln Ul

H0 : r = 0 vs. H1 : r = 1

LM
150.772 153.199 83.540
(0.000) (0.000) (0.000)

LMF
18.795 38.745 18.278
(0.000) (0.000) (0.000)

LR
173.639 176.889 89.959
(0.000) (0.000) (0.000)

Note: the values in parentheses refer to significance level p.
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Table 4. Determination of model parameters.

Model 1 2 3

Threshold variables lnGDPpc lnEs lnUl

(r, m) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2) (1, 1) (1, 2) (2, 1) (2, 2)

AIC −3.54 −3.57 −3.60 −3.57 −3.60 −3.59 −3.60 −3.59 −3.54 −3.61 −3.64 −3.61

BIC −3.45 −3.48 −3.46 −3.48 −3.51 −3.50 −3.51 −3.50 −3.45 −3.51 −3.50 −3.51

Is the location parameter
out the of region? Yes No Yes No Yes No No Yes No No Yes No

Final model (r, m) (1, 2) (1, 1) (1, 2)

Note: r and m represent the numbers of transition functions and location parameters, respectively.

4.2. Determination of Models

For model 1, by taking lnGDPpc as the transition variable, it can be seen, through Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC), that AIC and BIC are minimised
at r = 2 and m = 1; however, by determining the locations of the transition parameters, it can be
seen that location parameter c is out with the range of transition variables, so the condition can be
excluded. Additionally, r = 1, m = 2 and r = 2, m = 1 have the same AIC and BIC but it is better to
choose r = 1, m = 2 for the sake of model simplification and also to decrease data loss. Namely, the
PSTR model established by taking lnGDPpc as the transition variable exhibited a two-regime PSTR
relationship and had two transition parameters.

For model 2, taking lnEs as the transition variable, r = 1, m = 2 and r = 2, m = 2 can be first
excluded because the location parameter c is beyond the range of transition variables, which is the
same as the analysis taking lnGDPpc as the transition variable. In a similar way, to simplify the model
and decrease data loss, r = 1, m = 1 is chosen in preference, namely, the PSTR model taking lnEs as
the transition variable showed a two-regime PSTR relationship and had one transition parameter.

For model 3, using lnUl as the transition variable, AIC and BIC had their maximum test
values at r = 2, m = 2 and the location parameter was within the range of transition variables.
Therefore, a two-regime transition PSTR model was established and each regime contained two
location parameters. However, it was worth noting that the result of parameter estimation for this
model showed that the four location parameters of the PSTR model established by taking r = 2, m = 2
satisfied c1 = c3, c2 = c4. Namely, yit = ui + β′0 + 2β′1G(Zit; γ, c) + εit. In fact, it was still the same
model at r = 1, m = 1, so the PSTR model taking lnEs as its transition variable contained a two-regime
PSTR relationship and had two location parameters.

By analysing the significance of the aforementioned tests and parameter estimation, the final
estimation results of the PSTR model separately taking lnGDPpc, lnEs, and lnUl as transition variables
are shown below.

4.3. Empirical Results and Discussion

4.3.1. PSTR Model Taking lnGDPpc as the Transition Parameter

By taking GDPpc as the transition variable, the model analyses the influence of changes in
GDPpc in different regions of China on per capita CO2 emissions. It can be seen from Table 5 that
whether in low, or high, states, the explanatory variables of the PSTR model all exhibit significance
at 1% significance level. The estimation results showed that the influence of lnGDPpcit on lnRceit
exhibited the characteristic of having double thresholds (duplication). Firstly, the two thresholds
of lnGDPpcit are c1 = c2 = 9.7307, namely, the two thresholds coincided. Moreover, the range of
variable values of lnGDPpcit is [7.5098, 12.8188] and the two thresholds are within the acceptable range.

Additionally, the transition function G(lnGDPpcit; γ, c1, c2) = (1 + exp(−γ(lnGDPpcit − c1)
2)
−1

shows the characteristic “first decreasing, then increasing” trend. When lnGDPpcit was 9.7037, i.e.,
GDPpc was 16,378 yuan, lim

lnGDPpcit→±∞
G(lnGDPpcit; γ, c1, c2) = 0.5 and in this context, the model is in
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a low regime/state. The model tends to the high regime/state when lnGDPpcit gradually decreases or
increases, namely, lim

lnGDPpcit→±∞
G(lnGDPpcit; γ, c1, c2) = 1. The slope parameter γ = 0.6468 is small,

which indicates that the model has a slow transition rate between its high- and low-regimes.

Table 5. Estimation results of the PSTR model.

Model 1 2 3

Threshold
Variables ln GDPpc ln Es ln Ul

β β (1) β β (1) β β (1)

ln GDPpc 0.6339 *** −0.4035 *** −0.6746 *** 2.1772 *** 0.7185 *** −0.5622 ***
(6.8580) (−3.4128) (−5.7824) (9.1263) (7.8991) (−4.3070)

ln Es
−0.1592 *** 0.1921 ** −0.2218 0.3254 −0.1660 *** 0.1779 **
(−3.0084) (2.4590) (−1.4833) (1.1975) (−3.1589) (2.4991)

ln Ul
−0.6490 *** 1.3625 *** −3.5520 *** 1.7178 *** −0.6829 *** 1.3278 ***
(−4.0785) (10.8281) (−3.0020) (5.8940) (−4.6742) (9.5960)

ln To
1.4856 *** −0.9914 ** 2.9676 *** −4.4498 *** 1.4559 *** −0.3981
(5.4447) (−2.7422) (3.9627) (−3.3184) (4.9173) (−1.0857)

ln Mi
−0.2777 *** 0.3182 *** −0.2874 0.5500 −0.2496 *** 0.2958 ***
(−4.2554) (3.0523) (−1.3856) (1.4246) (−4.4999) (3.8394)

γ 0.6468 1.1481 10.8779

c c1 = c2 = 9.7307 c = 4.1241 c1 = c2 = 3.7997
RSS 15.718 15.408 15.165

Note: The values in parentheses refer to values of t; ***, **, and separately refer to the presence of significance at 1%,
5%; β (1) separately represents the estimation coefficients of interaction between various explanatory variables and
the first transition function; transition functions are all expressed in the form of logistic functions.

Moreover, with the changes in lnGDPpcit, the influence of lnGDPpcit on lnRceit varied within
the range from 0.2304 to 0.6339. This indicated that, as GDPpc gradually increased, the influence
coefficient decreased from 0.4322 to 0.2304 although GDPpc showed a pull function effect on per capita
CO2 emissions.

4.3.2. The PSTR Model Taking lnEsit as the Transition Parameter

By taking Es as the transition variable, the model analyses the non-linear influence of changes in
energy consumption structures in different regions of China on per capita CO2 emissions. Table 5 shows
that, regardless of regime/status, GDPpc, Ul, and To in the PSTR model are significant at the 1% level.
The estimation showed that the influence of lnEsit on lnRceit exhibited the characteristic of a single
threshold. Moreover, the variable values of lnEsit were within [2.7436, 4.05841] and the thresholds
c = 4.1241 are within an acceptable range; however, the transition function G(lnGDPpcit; γ, c1, c2) =

(1 + exp(−γ(lnGDPpcit − c1)
2)
−1

monotonically increases and lim
lnEsit→±∞

G(lnEsit; γ, c1, c2) = 0 when

lnEsit gradually decreases. In this context, the model is in a low regime/status. With the increase
of lnEsit, the model tends to be in its high regime/status and lim

lnEsit→±∞
G(lnEsit;γ, c1, c2) = 1 while

lim
lnEsit→±∞

G(lnEsit;γ, c1, c2) = 0.5 and lnEsit = 4.1241. Additionally, the slope parameter γ is 1.1481

which indicated that the model exhibited a slow transition between high- and low-regimes, but was
slightly quicker compared than that using lnEsit. Upon changes in lnEsit, the influence of lnEsit on
lnRceit varied within the range from −0.6746 to 1.5026. Therefore, it showed that, with the decrease of
lnEsit, the influence of lnEsit on CO2 emissions gradually changed from high- to low-regime status
while the degree of this influence gradually changed from 1.5026 to −0.6746. It can be seen that
when coal accounts for a large proportion of overall energy consumptions, it exhibited a significant
positive effect on CO2 emissions, however, as ES gradually decreased, namely, the proportion of
coal in the overall energy consumption gradually decreased, not only did the extent of the pull of
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coal on CO2 emissions decrease, but coal exerted a negative influence on CO2 emissions after Es
exceeded a value such that lnEsit = 4.1241. Moreover, with the further decrease of lnEsit, the negative
influence increased because the larger the proportion of coal in overall energy consumptions, the more
unreasonable the energy consumption structure of the economy and the greater the CO2 emissions
produced by coal. However, gradual optimisation of Es not only decreased coal consumption but also
improved the efficiency of energy utilisation in the economy and as this promoted the utilisation of
new energy sources, CO2 emissions were increasingly reduced.

4.3.3. PSTR Model Taking lnUlit as the Transition Parameter

The model discusses the non-linear influence of Ul, and the changes therein, in different
regions of China on per capita CO2 emissions by taking Ul as the transition variable. Table 5 shows
that, whether in high or low regime status, the explanatory variables of the PSTR model exhibit
significance at the 1% significance. The results show that the influence of lnUlit on lnRceit had the
characteristic of double thresholds (duplication). Firstly, the two thresholds of lnUlit can be expressed
as c1 = c2 = 3.7997, namely, the two thresholds coincided. Moreover, the variable values of lnUlit
were within [2.8443, 4.4953] and the two thresholds were both within their acceptable range. However,

the transition function G(lnUlit; γ, c1, c2) = (1 + exp(−γ(lnUlit − c1)
2)
−1

decreased first and then
increased and when lnUlit = 3.7997, there existed lim

lnUlit→±∞
G(lnUlit; γ, c1, c2) = 0.5. In this context, the

model is in a low regime status. When lnUlit gradually decreased, or increased, the model tended
to its high regime status, namely, lim

lnUlit→±∞
G(lnUlit; γ, c1, c2) = 1. The slope parameter γ took the

large value of 10.8779, which indicated that the model had a rapid transition rate between its high-
and low-regimes. With changes in lnUlit, the influence of lnUlit on lnRcelit changed within the range
from 0.1563 to 0.4374, which indicated that, with gradual improvements in Ul, the influence coefficient
decreased from 0.4374 to 0.1563 although urbanisation generally exerts a pull effect on per capita CO2

emissions, it shows that the pull effect of lnUlit on lnRceit decreased. The primary reason for this
was that, in the early stage of urbanisation, various advantages of cities including the cluster effect
had not yet appeared and urban expansion, in its early stage, requires that more infrastructure be
built; however, when urbanisation reaches a certain level, the scale of urbanisation, its structure, and
infrastructure are relatively mature while the equivalent scale expansion of urbanisation requires little
boundary investment. Additionally, there is a synergistic effect between cities and towns and the
occurrence of city groups further reduces unit carbon emissions levels.

5. Conclusions

There has been much research into the relationship between CO2 emissions and economic growth,
which remains a problem worthy of discussion. Many previous studies do not take account the
non-linearity of the relationship. This study investigated a possible non-linear relationship between
economic growth and CO2 emissions in China fitted using the PSTR model. Additionally, considering
possible missing variables, multiple variables were introduced including Es, Ul, To, and Mi while three
variables were used as transition variables to establish the models.

The main results were as follows: for the PSTR model taking GDPpc, Es, and Ul as thresholds,
the influences of the three factors on per capita CO2 emissions exhibited non-linear panel smooth
transition characteristics. The transition rate of the influence of Ul on per capita CO2 emissions was
significantly higher than that of GDPpc and Es. For the PSTR model using GDPpc as the threshold,
the influence of GDPpc on per capita CO2 emissions showed the characteristic of coincident double
thresholds. Moreover, GDPpc exerted a pull effect on per capita CO2 emissions as it gradually increased,
but that influence coefficient gradually decreased from 0.4322 to 0.2304, which indicated that the
pull effect of GDPpc on per capita CO2 emissions gradually declined. It could be seen from the
empirical results that, for the relationship between economic development and carbon emissions,
government should pay attention to the various environmental pressures caused by Ul such as the
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growth of carbon emissions generated while improving Ul. With the development of the economy
and GDPpc, the pull effect of GDPpc on per capita CO2 emissions gradually declined. However, it
was necessary to concentrate on the absolute amount of carbon emissions and it was unreasonable to
follow the path of developing the economy first and then dealing with the pollution as an afterthought.
The results of empirical analysis show that with the development of economy, CO2 emission per capita
is growing in absolute amount, but the pull effect is declining. Based on that, the Chinese government
could maintain its economic growth goal while cutting carbon emissions through changing energy
consumption structure, i.e., using less coal and more clean energy. Chinese government plays a central
role in promoting urbanization, when the process reaches a certain level, carbon emissions began
to decline due to a synergistic effect between cities and towns. The government could formulate
an urbanization plan which is environment-friendly to cut carbon emissions.
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