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Abstract: In order to be prepared against potential balance-breaking risks affecting economic
development, more and more countries have recognized emergency response solutions evaluation (ERSE)
as an indispensable activity in their governance of sustainable development. Traditional multiple criteria
group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging
characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the
complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that
hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued
dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision
information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy
measure for IVDHFS so that its derivative decision models can avoid potential information distortion
in models based on classic IVDHFS distance measures with subjective supplementing mechanism;
further, based on defined entropy measure, we develop two fundamental prioritized operators for
IVDHFS by extending Yager’s prioritized operators. Furthermore, on the strength of above methods,
we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without
known weights for decision makers, respectively. Finally, case studies have been conducted to show
effectiveness and practicality of our proposed approaches.

Keywords: emergency response solutions evaluation; multiple criteria group decision making;
interval-valued dual hesitant fuzzy set; prioritized aggregation operators; fuzzy entropy

1. Introduction

Environmental problems that result from fast economic development planning, including chemical
spills, explosions and underground water pollution, etc. are threatening our natural and socioeconomic
systems [1,2]. Serious consequences have drawn extensive attention from local governments in the
global village. To accommodate potential environmental risks, different countries have accumulatively
established guidelines to instruct organizations in building emergency response solutions. Such as, the
Organization for Economic Cooperation and Development (OECD) Guiding Principles for Chemical
Accident Prevention [3], Hazardous Waste Operations and Emergency Response [4], Seveso III [5], etc.
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Aiming at bridging gaps between guidance and actual operations, academics have been working on
effective emergency management methodologies and tools. For instance, Duan and He [6] designed
an emergency response system to cope with potential safety incidents in chemical industry parks.
Shao et al. [7] included response solutions as an imperative component in their whole-process
environmental management framework. Most recently, Wan et al. [8] investigated the evaluation
methodology for green port development and also emphasized the necessity of response solutions
in case of extreme negative effects caused by climate change. As can be seen, getting prepared with
emergency response solutions is the intrinsic part of effective ways to address potential environmental
risks in the course of achieving sustainable development.

Although governments have continuously constructed a set of contingency solutions to known
disastrous events, economic development programs often break the balance by introducing new
threats to public health, such as the epidemic emergency event due to imported Zika virus in the
YiWu International Trading Community of China [9], risks by technology-driven industries (such as
nanotextiles, smart-textiles and chemical medicines) [10,11], and risks introduced by disreputable
aluminum ore mining industries in developing countries. Therefore, in order to get well prepared
to respond to potential risks, governments at different levels are behooved to establish decision
support systems for emergency management [12,13], and to adopt decision-making procedures for
risk assessment and emergency response solutions evaluation (ERSE) [1,13]. ERSE is thus observed as
an indispensable activity in governance for sustainable development.

For the reason that ERSE activities generally involve a group of stakeholders to comprehensively
consider response solutions under a set of criteria, ERSE is normally conceptualized as a type of
multi-criteria group decision making (MCGDM) problem [1,9,14–17], in which decision preferences
are often uncertain due to problem complexity. To effectively accommodate the uncertain multi-criteria
decision making problems, many efforts have been expended [18], such as the extended ELECTRE-III
under interval-valued intuitionistic fuzzy environment [19], complex proportional assessment
(COPRAS) approaches [20,21], the additive ratio assessment (ARAS) methods [22,23], Multiobjective
Optimisation by Ratio Analysis Plus Full Multiplicative Form (MULTIMOORA) [24–26], etc.
Regarding ERSE problems of uncertainty, only limited literature can be found currently, such
as, Ju et al. [15] who applied an analytical hierarchy process (AHP) to evaluate the capacity of
emergency response solutions based on linguistic assessments. Ju and Wang [14] who adopted
Dempster-Shafer theory and the AHP method to investigate problems with incomplete and uncertain
information. Moreover, Ju and Yang [16] have employed a trapezoid fuzzy linguistic set to effectively
elicit fuzzy uncertain opinions of decision makers. Wang et al. [17] introduced prospect theory
under interval uncertain environments to simulate dynamic reference points of decision makers’
psychological behaviors. Unfortunately, when asking decision makers to give membership degrees or
non-membership degrees to a fuzzy set, they usually behave hesitantly among possible values, so to
tackle this complicated decision-making situations with decision hesitancy, Torra and Narukawa [27]
and Torra [28] suggested hesitant fuzzy set (HFS) to allow membership degrees of an element to be a set
of possible crisp values. Because of its merits in expressing hesitant information, HFS has been widely
studied for more complex situations, including the dual hesitant fuzzy set (DHFS) [29] that contains
both possible membership degrees and non-membership degrees, interval-valued dual hesitant fuzzy
set (IVDHFS) [30,31] that more practically allows possible membership or non-membership degrees
to be interval values. Most recently, aiming at the complex ERSE problems where decision hesitancy
exists and weighting information for both criteria and decision makers cannot be determined in
advance, Zhang et al. [9] developed two approaches that utilized IVDHFS to elicit hesitant fuzzy
evaluations. However, in their approaches, the distance measure of IVDHFS that was adopted to derive
weighting information obeyed a classic complementing method [32,33], i.e., optimistic or pessimistic
mechanism of filling the unmatched membership degree set or non-membership degree set in any two
compared interval-valued dual hesitant fuzzy elements, but apparently, the value-filling mechanism
will inevitably cause some information distortion in contrast with the original preference information.
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Fortunately, programming models based on fuzzy entropy measures [34,35] have been shown to
be another effective way to derive unknown weighting information, and more importantly, these
entropy-based models only depend on information originally given by decision makers, thus they can
avoid the potential information distortion from subjective supplementation. Examples are models
based on interval-valued intuitionistic fuzzy entropy [36,37] and cross-entropy [38], cross-entropy
for interval neutrosophic set [39], hesitant fuzzy entropy and cross-entropy [40], dual hesitant fuzzy
cross-entropy [41], etc. However, up to now, scarcely any related research has been carried out on
entropy measures for IVDHFS. Therefore, in this paper, to tackle complex ERSE problems more
effectively and objectively, we follow the idea of classic fuzzy entropy [34,35] to develop an entropy
measure for IVDHFS in the first place.

From another perspective, due to evolving emergency event scenarios, ERSE usually has
event-dependent characteristics pertaining to decision making processes, and some efforts have
been carried out on various issues, such as Xie et al. [42] who proposed an multi-round agile
Delphi-based group decision-making method in which decision makers’ preference adjustments
on events were dynamically mapped to changes of their weights. By incorporating cellular automata,
Cao et al. [43] developed an integrated emergency response evaluation approach to select optimal
evacuation routes for toxic gas release accidents. Shi et al. [44] constructed a treatment and disposal
response plan repository for chemical pollution accidents by employing an event-tree method to
simulate dynamic processing changes, then utilized an AHP-based MCGDM method to evaluate
response plans. In order to select emergency treatment technologies for chemical contingency spills,
Liu et al. [45] presented a fuzzy grey relational analysis-based multiple criteria decision making
method with support of a dynamic fuzzy aggregation average operator that considers effects of time
periods. Wang et al. [17] noted the dynamic effects of decision makers’ psychological behaviors
on assessments, and thus employed prospect theory to establish event-dependent reference points
in their TOPSIS-based approach. However, there is still a lack of related literature on ERSE that
has noted event-dependent prioritization phenomena among assessing criteria, especially under
complex uncertain scenarios. Although AHP-based methods are applied to differentiate the relative
importance of assessment criteria, their reciprocal comparisons generally expect precisely consistent
judgements from decision makers otherwise multiple rounds of adjustments will be needed to improve
the judgement consistency, which behooves the existence of differentiating procedures rather than
complicated and time-consuming ones, while in practice, if confronted with emergency decision
scenarios, decision makers generally are capable of approximating fairly the accurate prioritization
relations among assessing criteria, based on their expertise and experience. For example, suppose
four criteria, i.e., response efficiency (C1), environmental impact (C2), social impact (C3) and cost
(C4), are to be considered to select response solutions for chemical spill events. If the event spot
A1 was in a desert area with scarce residences but freeways with regular traffic, decision makers
would naturally deduce the prioritization relation among the four criteria as: C1 � C4 � C3 � C2;
while if the spot A1 was located nearby a residential district, decision makers would derive a
different prioritization C1 � C3 � C2 � C4. In actuality, prioritization phenomena generally exist in
problem-oriented multiple criteria decision making, even in everyday life. Taking the example of sedan
purchase decision making, most people would consider: safety � (regular maintenance and price) �
comfort, while most hedonistiic people would perceive: safety � comfort � (regular maintenance and
price). Obviously, effective MCGDM approaches should be developed to accommodate practical ERSE
problems with prioritization relations among assessing criteria.

Fortuitously, from the perspective of information fusion, Yager [46,47] proposed the prioritized
average (PA) operator and the prioritized ordered weighted average (POWA) operator, which provide
an effective way to reflect both assessments under criteria and prioritization relations among those
criteria. Since then, prioritized operators have been developed in-depth to accommodate complicate
uncertain decision environments, such as those extended prioritized operators under intuitionistic
fuzzy environments [48–51], and those under multi-granular uncertain linguistic environments [52].
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The prioritized average operator also has been integrated into the classical PROMETHEE method
for handling prioritized multi-criteria decision making [53]. As for more complex decision making
scenarios where decision hesitancy exists [27,28], Wei [54] developed some extended prioritized
operators. Wu et al. [55] further investigated decision making approaches based on their proposed
generalized hesitant fuzzy linguistic prioritized operators. Jin et al. [56] extended this work to put
forward Einstein operations-based prioritized operators to accommodate interval-valued hesitant
fuzzy decision information, based on which they further constructed decision making approaches
and applied to resolve a talent recruitment problem. With respect to the equal importance of
non-membership degrees in depicting decision hesitancy [29], only Ren and Wei [57] have investigated
a multiple criteria decision-making method with prioritization relationship based on a dice similarity,
but their method was restricted to single-person decision-making with crisp membership and crisp
non-membership degrees. In actuality, when confronted with complex decision problems, decision
makers are often inclined to or only capable of expressing membership or non-membership degrees
by use of interval values [30,31]. Apparently, there is a practical and significant need to investigate
prioritized average aggregation operators and their derivative effective multiple criteria decision
making approaches under interval-valued dual hesitant fuzzy environment conditions.

Therefore, in this paper, focusing on the special type of practical ERSE problems where there exist
phenomena of prioritization among assessment criteria and there exist hesitant decision preferences,
we firstly employ IVDHFS to elicit hesitant fuzzy assessments from decision makers more effectively
and comprehensively. To rationally exploit decision information embedded in prioritization relations
among assessing criteria, we develop two fundamental prioritized average operators for IVDHFS,
i.e., the interval-valued dual hesitant fuzzy prioritized average (IVDHFPWA) operator and the
interval-valued dual hesitant fuzzy prioritized ordered weighted average (IVDHFPOWA) operator.
Furthermore, to objectively derive associated weighting vectors in the proposed IVDHFPWA and
IVDHFPOWA operators, we adapt their averaging mechanism to rely on our newly defined entropy
measure for IVDHFS. Moreover, according to specific complicated ERSE settings whether weights for
decision makers can be obtained in advance or not, we propose two MCGDM approaches, respectively.

The rest of this paper is organized as follows: in Section 2, we explain the special type of ERSE
problems with prioritization relations among assessment criteria, then formulate them concisely.
In Section 3, we define a fuzzy entropy measure for IVDHFS. Then in Section 4, the IVDHFPWA
operator and the IVDHFPOWA operator are proposed, and their desirable properties are also analyzed.
Subsequently in Section 5, on the strength of the above developed tools, we construct two MCGDM
approaches to tackle complex ERSE problems while simultaneously considering decision hesitancy
and prioritization relations among assessment criteria. Section 6 provides some experimental studies
to verify the effectiveness and practicality of our approaches. Finally, conclusions are drawn as well as
future research directions proposed in Section 7.

2. ERSE with Prioritization among Assessing Criteria

Generally, an emergency response solution is a set of procedures to be implemented in case of
certain catastrophic event situation, which involves risk analysis, communication, intervention actions,
operational supports, logistics supports and whatever is necessary to reduce harmful impacts [1,13,58].

Due to the fact that enforcement of emergency response solutions intrinsically involves multiple
participants, from the relatively macroscopic point of view, it has been suggested by academics
that emergency responses be implemented based on collaborative organization paradigms so as to
achieve relief objectives [59–62]. In view of that multi-organizational nature of large-scale disaster
response has been a challenging collaborative information system development, Maldonado et al. [59]
investigated a multi-level and multi-organizational information system coordination framework,
verified advantageous resource transferral along different organization levels and changeable
outcomes of authority coercion in their framework. Focusing on the structural complexity issue
in governance networks, Koliba at al. [60] identified explicit and implicit standards of collaborative
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accountability, such as written agreements, decision making procedures, reciprocity, and durability of
relationships. Kuo et al. [61] studied lessons from collaborative disaster management in Taiwan’s local
governments, and derived three crucial factors to effective collaborative disaster response, including
trust, information sharing and accountability. Noran [62] argued that emergency response services
from a heterogeneous set that often underperforms due to a lack of appropriate interoperation and
collaboration, then designed an collaborative response paradigm that was enabled by discipline
integration of interoperability, collaborative networks and enterprise architecture. By use of network
analysis [63], Guo and Kapucu [64] examined China’s emergency response governance, which is
characterized with a hierarchical organizational structure and centralized control, and its inherent
obstacles to effective coordination and collaboration.

While from a more microscopic perspective of emergency management, effective emergency
response heavily relies on planned emergency response solutions to various identified events [65].
As a result, local governments have laid down regulations or laws to construct emergency response
solutions against potential risks that frequently come along with economic exploitation programs,
especially in those countries with high population density and investment density. For example,
although the developing country of China actually confronts organizational-structural issues in
collaborative governance on emergency response, the Chinese central government still enacted
instructional regulations about nation-wide emergency response plans in 2011 [66] Since then, local
governments in China have included ERSE as one of the indispensable tasks in their emergency
management departments.

Due to the complexity of ERSE problems and their requirements of decision-making in settings
with a nexus of stakeholders, MCGDM methodologies have been widely employed to fulfil the
evaluation tasks [9]. Representatively, Ju and Wang [14] and Ju et al. [1] have been working on
effective MCGDM approaches to evaluate emergency response solutions on the premise of saving
lives or property in the first place. They set up an assessing criteria index from the perspective of
functional division in emergency response solutions, but they neglected the factors of social and
environmental influences during or after events. For example, from the tactical point of view in
coping with chemical pollution events, Shi et al. [44] developed the AHP-based MCGDM method for
evaluation and selection of the most desirable solutions to emergency accidents, in which they explicitly
included the factors of economic cost, social influence and environmental influence in their criteria
system, although the criteria system lacked systematical consideration of emergency response activities
from a lifecycle perspective. In actuality, emergency management practices [67] have emphasized that
effective and efficient response solutions should be well prepared coherently, including early warning,
event identifying and classification, information acquisition, supportive functioning division, recovery,
analysis on social impact and environmental impact, etc. That is, emergency response solution response
evaluation should consider desirable indicators to cover three stages: pre-activity, during-activity and
after-activity [68,69]. Therefore, inspired by the above-mentioned work, we here derive the following
assessing criteria system according to lifecycle model, as shown in Table 1.
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Table 1. Activity phase-oriented criteria for ERSE.

Phases Criteria Meanings of the Criteria

Before-activity

Response time to start emergency
response solution (C1) [1,14]

Projected least time interval between identified alert of
emergency event and start-up of emergency response
solution, which generally comprises of activities for
collection of first-hand information event, expert team
call-up, etc.

Reasonable organizational
structure and clear awareness of
responsibilities (C2) [1,14]

Rationality in configuration of organizational structure and
clearness of corresponding tasks and responsibilities.

Economic cost (C3) [70,71] Budget for estimated expenses of carrying out the
emergency response solution.

During-activity

Operability of the response
solution (C4) [1,66]

Operational effectiveness in execution of the response
solution, such as aspects on complexity of task division,
appropriate inclusion of modern emergency equipment, etc.

Monitoring and forecasting
potential hazards (C5) [1,14,70,71]

Capacity of utilizing scientific approaches, such as
information system and decision support system, to monitor
influencing factors and thereby identifying or forecasting
potential hazards.

Reconstruction ability (C6) [1,14] Response solution’s capacity in recovery of public
infrastructure, public utilities or housing in event areas.

After-activity
Social impact (C7) [72]

Capacity to appropriately cope with derivative social risks
caused by the emergency event or emergency response
solution, such as public panic, mass violent events in areas
of electricity outage due to emergent response actions.

Environmental impact (C8) [73,74] Estimated consequences that could be caused be response
solutions on the local environment of event spots.

More importantly, due to the fact that ERSE tasks are strongly event-dependent activities,
distinct event scenarios usually cause the phenomena of prioritization among assessment criteria.
Taking example of the aniline leak accident in the Zhang River Basin of China in 2012, to determine the
most appropriate emergency response solutions, Shi at al. [44] set up a criteria system for evaluating
alternative solutions from four aspects, including technical performance, economic cost, environmental
impact and social impact. The leak accident happened near Lucheng City and posed a potential threat
to the Yuecheng Reservoir drinking water source for the city residents. Because saving lives is always
first prioroty, the criterion of technical performance should be endowed with the highest priority level,
and the criterion of economic cost should be left with the least priority level correspondingly. For the
reason that the accident will probably contaminate water supplies and thus cause public panic along
with cascading emergency events, the criterion of social impact should be the adjoining one that is
inferior to the criterion of technical performance and is superior to the criterion of environmental
impact. In sum, the prioritization relationship among the above four criteria can be deduced as:
technical performance � social impact � environmental impact � economic cost, which was verified
by the analytical hierarchy process method in [44]. However, this prioritization relationship will
change in other event scenarios, for instance, if the aniline leak accident under discussion was located
near the water resources in a natural landscape area but far from any city or community, then we expect
that decision makers will naturally deduce the prioritization: environmental impact � social impact.
In practice, emergency departments generally are prompted to follow guidelines stipulated in special
laws or regulations of different countries [70,71], thereby constructing more comprehensive criteria
system for distinct types of response solutions, such as the activity phase-oriented assessing criteria
shown in Table 1. Still, when applying the criteria system to practical ERSE, we usually also have to
rationally infer prioritization relations among criteria based on the characteristics of various emergency
events, such as the examples shown in Table 2. As seen from the above analysis, prioritization relations
among criteria usually exist in ERSE activities and they vary according to the specific event scenario.
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Table 2. Example emergency events and their derived prioritization phenomena among the assessing
criteria in Table 1.

Event Title Event Description Deduced Prioritizations among
Assessing Criteria

1. Chemical spills

(i) Located nearby a city drinking water reservoir.
(ii) Will seriously contaminate the reservoir, thus cause

problems in water supply.
(iii) Needs collaboration between many city departments

and water supply needs quick recovery to avoid
public panic.

(iv) Chemical fluid materials spilled will cause
environmental damage to rivers along water
conveyance to the reservoir.

(v) Response solution cost can be covered by municipal
public finance.

(C2) � (C5) � (C1) �
(C8) � (C4) � (C6) � (C7) � (C3)

2. Hazardous materials
tank truck crash

(i) Located on a freeway bridge of typically heavy traffic
in mountain area and there is the main river under
the bridge.

(ii) Truck drivers were not injured.
(iii) Scarcely any residences nearby.
(iv) A large amount of corrosive fluid materials in both

trucks are leaking and about to come out quickly.
(v) Fluid materials exposed will irreversibly damage the

river and local environment.

(C2) � (C5) � (C1) �
(C4) � (C6) � (C8) � (C7) � (C3)

3. Hazardous materials
tank truck crash

(i) Located on an intersection of two highways in a
sandstorm desert area where no residences are nearby.

(ii) Truck drivers were injured.
(iii) A large amount of highly corrosive fluid materials in

both trucks are leaking.
(iv) Accident trucks destroyed a critical sand control dam.

(C1) � (C4) � (C2) �
(C5) � (C6) � (C3) � (C7) � (C8)

Therefore, in this paper, we focus on investigating this special type of practical ERSE problems
with prioritization relations among assessing criteria, which can be formulated concisely as follows.

Given an emergency event, to which there are a set of alternative response
solutions: X = {x1, x2, . . . , xn}. Let C = {C1, C2, . . . , Cm} be the assessing criteria which fall
into one of the prioritization levels which signified as H = {H1, H2, . . . , Hm}. We use Cu

j to denote that
the j-th (j = 1, . . . , m) criterion is assigned with the u-th (u = 1, . . . , m) prioritization level Hu. Because
the ERSE activities are intrinsically complicate and generally single decision maker only cannot assess
response solutions from hybrid perspectives, thus a group of decision makers E = {E1, E2, . . . , Et}
should be organized to consider all the response solutions xi (i = 1, . . . , n) under each criterion Cj
(j = 1, . . . , m). Subsequently, after decision makers depict their preferences with suitable expression
tools, we collect and construct their decision matrices Rk = (rij)m×n (k = 1, . . . , t), which normally take
the format as shown in Table 3. Then, based on the decision information in Table 3, effective multiple
criteria group decision making approaches should be developed to help city emergency management
departments determine the most appropriate response solution(s).

Table 3. Decision matrix given by the k-th decision maker.

Rk (k = 1, . . . , t)
Criterion with Its Prioritization Level

Cu
1 Cu

2 . . . Cu
m

Solutions

x1 rk
11 rk

12 . . . rk
1m

x2 rk
21 rk

22 . . . rk
2m

...
...

...
...

...
xn rk

n1 rk
n2 . . . rk

nm
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Usually, due to complexity in ERSE problem definition and the limited cognition of human beings,
decision makers are not straightforwardly capable of expressing their assessments in Rk = (rij)n×m
with crisp numbers, especially when decision makers are uncertain and hesitate about their assessments.
The literature thus encourages introduction of comprehensive expression tools to help decision
makers effectively elicit their actual preferences, such as linguistic variables [1,16], intuitionistic
fuzzy set [38,75], etc.

Nevertheless, regarding ill-structured complicated ERSE problems, decision makers can only
achieve approximate judgements and usually will hesitate about possible membership degrees [28] or
non-membership degrees [29] of their fuzzy opinions. To accommodate the uncertainty of hesitancy,
Farhadinia [30] and Ju et al. [31] introduced the conceot of interval-valued dual hesitant fuzzy set
(IVDHFS), which attains more practicality and flexibility in comparison to the conventional hesitant
fuzzy set (HFS) [28] and dual hesitant fuzzy set (DHFS) [29]. However, existing MCGDM [18,76]
based on IVDHFS were mostly derived from the supplementing distance measure [32,33] that will
cause distortion to some extent due to its artificial value-filling mechanism. Therefore, inspired by the
classic fuzzy entropy measure [34,35,37,77–80] and its derivative methodologies [37,38], we develop
an entropy-based distance measure for IVDHFS in the following sections to avoid the limitations of
methodologies based on the supplementing distance measure. Furthermore, by use of the IVDHFS
distance measure, we propose two aggregation operators to utilize decision information embedded
in the prioritization relationships objectively. Afterwards, on the basis of the developed operators,
we construct two effective MCGDM approaches to resolve the type of complex ERSE problems with
decision hesitancy and prioritization relations among assessment criteria.

3. An Entropy Measure for IVDHFS

3.1. Basic Notions of IVDHFS

Torra and Narukawa [27] and Torra [28] proposed a hesitant fuzzy set (HFS) to manage those
situations where several values are possible for defining a membership function of a given fuzzy
concept, while Zhu et al. [29] pointed out that non-membership degrees take on equal importance s
membership degrees when depicting the hesitancy of decision makers, they thus extended HFS to the
dual hesitant fuzzy set (DHFS). Further, by noticing the fact that decision makers are often inclined
to assign interval numbers to membership degrees or non-membership degrees, Farhadinia [30] and
Ju et al. [31] proposed the IVDHFS to attain more practicality and flexibility. In the following, we firstly
brief basic notions of IVDHFS.

Definition 1 [30,31]. LetX be a fixed set, then an interval-valued dual hesitant fuzzy set (IVDHFS) on X is
defined as:

Ã =
{〈

x, h̃(x), g̃(x)
〉
|x ∈ X

}
, (1)

where h̃(x) = ∪
[µL ,µU ]∈h̃(x){µ̃} = ∪

[µL ,µU ]∈h̃(x)

{
[µL, µU ]

}
, g̃(x) = ∪[νL ,νU ]∈g̃(x){ν̃} =

∪[νL ,νU ]∈g̃(x)
{
[νL, νU ]

}
are two sets of several interval values in [0, 1], denoting possible membership degrees

and possible non-membership degrees of element x ∈ X to Ã, respectively. And following conditions be
satisfied: µ̃, ν̃ ∈ [0, 1], 0 ≤ (µU)

+
+ (νU)

+ ≤ 1, where (µU)
+ ∈ h̃+(x) = ∪

[µL ,µU ]∈h̃(x)max
{

µU} and

(νU)
+ ∈ g̃+(x) = ∪[νL ,νU ]∈g̃(x)max

{
νU}for all x ∈ X.

Here α̃ = (h̃, g̃) is called an interval-valued dual hesitant fuzzy element (IVDHFE), then we use Ã to
denote the set of all interval-valued dual hesitant fuzzy elements (IVDHFEs).
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Definition 2 [31]. Considering any three IVDHFEs: α̃ = (h̃, g̃), α̃1 = (h̃1, g̃1), and α̃2 = (h̃2, g̃2), let λ > 0,
then some basic operations on them are defined as:

(1) α̃λ = ∪
[µL ,µU ]∈h̃,[νL ,νU ]∈g̃

{{
[(µL)

λ, (µU)
λ
]
}

,
{
[1− (1− νL)

λ, 1− (1− νU)
λ
]
}}

;

(2) λα̃ = ∪
[µL ,µU ]∈h̃,[νL ,νU ]∈g̃

{{
[1− (1− µL)

λ, 1− (1− µU)
λ
]
}

,
{
[(νL)

λ, (νU)
λ
]
}}

;

(3) α̃1 ⊕ α̃2 = ∪
[µL

1 ,µU
1 ]∈h̃1,[µL

2 ,µU
2 ]∈h̃2,[νL

1 ,νU
1 ]∈g̃1,[νL

2 ,νU
2 ]∈g̃2{{

[µL
1 + µL

2 − µL
1 µL

2 , µU
1 + µU

2 − µU
1 µU

2 ]
}

,
{
[νL

1 νL
2 , νU

1 νU
2 ]
}}

;
(4) α̃1 ⊗ α̃2 = ∪

[µL
1 ,µU

1 ]∈h̃1,[µL
2 ,µU

2 ]∈h̃2,[νL
1 ,νU

1 ]∈g̃1,[νL
2 ,νU

2 ]∈g̃2{{
[µL

1 µL
2 , µU

1 µU
2 ]
}

,
{
[νL

1 + νL
2 − νL

1 νL
2 , νU

1 + νU
2 − νU

1 νU
2 ]
}}

.

Definition 3 [31]. Let α̃1 = (h̃1, g̃1) and α̃2 = (h̃2, g̃2) be any two IVDHFEs, λ > 0, then the basic operational
rules on them are defined as:

(1) α̃1 ⊕ α̃2 = α̃2 ⊕ α̃1;
(2) α̃1 ⊗ α̃2 = α̃2 ⊗ α̃1;
(3) λ(α̃1 ⊕ α̃2) = λα̃1 ⊕ λα̃2;

(4) α̃λ
1 ⊗ α̃λ

2 = (α̃2 ⊗ α̃1)
λ.

In addition, to compare any two IVDHFEs, Ju, Liu and Yang [31] also introduced a score function s(α̃) to
compute scores of a given IVDHFE α̃ and an accuracy function v(α̃) to evaluate accuracy degrees of α̃, where

s(α̃) =
1
2

 1

l(h̃)
∑

[µL ,µU ]∈h̃

µL − 1
l(g̃) ∑

[νL ,νU ]∈g̃
νL +

1

l(h̃)
∑

[µL ,µU ]∈h̃

µU − 1
l(g̃) ∑

[νL ,νU ]∈g̃
νU

, (2)

v(α̃) =
1
2

 1

l(h̃)
∑

[µL ,µU ]∈h̃

µL +
1

l(g̃) ∑
[νL ,νU ]∈g̃

νL +
1

l(h̃)
∑

[µL ,µU ]∈h̃

µU +
1

l(g̃) ∑
[νL ,νU ]∈g̃

νU

. (3)

Here l(h̃) and l(g̃) are the numbers of interval values in h̃ and g̃, respectively. The larger the score S(α̃),
the larger the accuracy v(α̃), the greater the IVDHFE α̃. Then the ordering relation between any two IVDHFEs
α̃1 = (h̃1, g̃1) and α̃2 = (h̃2, g̃2) can be determined according to the following rules:

If s(α̃1) < s(α̃2), then α̃1 < α̃2.
If s(α̃1) = s(α̃2), then

(1) If v(α̃1) = v(α̃2), then α̃1 = α̃2;
(2) If v(α̃1) < v(α̃2), then α̃1 < α̃2.

3.2. An Entropy Measure for IVDHFS

Regarding the MCGDM problems of high uncertainty, weighting information often cannot be
determined in advance, so different approaches have thus been developed to derive the unknown
weighting information. Representatively: (i) maximum deviation programming methodologies for
obtaining unknown criteria weights, such as those models for intuitionistic fuzzy decision environment [81],
for hesitant fuzzy decision environment [40] and for interval-valued dual hesitant fuzzy environment [9];
(ii) similarity-based methodologies for deriving unknown weights of decision makers, such as the
compatibility maximizing model based on similarity of one decision matrix to others [9].

As can be seen, the above methodologies generally depend on appropriate distance measures for
specific forms of decision information. However, due to the fact that the length of membership degrees
or non-membership degrees of one hesitant fuzzy element generally does not match the length of the
other compared element, preceding efforts in the literature mostly adopted the classic supplementing
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distance measures [32,33], which extends the shorter sets of membership degrees or non-membership
degrees by adding values till the lengths match. As a result, although this supplementing mechanism
reflects two attitudes of decision makers, subjectively adding values will inevitably cause information
distortion to some extent.

Meanwhile, the methods based on fuzzy entropy [34,35] have provided us another effective ways
to objectively utilize assessments in determining unknown weighting information. Emblematically,
Ye [36] and Ye [37] developed an entropy-based model to obtain criteria weights under intuitionistic
fuzzy environments; Qi et al. [38] proposed an generalized interval-valued intuitionistic fuzzy
cross-entropy measure, based on which two programming model were developed to obtain unknown
criteria weights and unknown expert weights; Xu and Xia [40] investigated entropy measure and
cross-entropy measure for HFS, then designed a straightforward entropy-based criteria weighting
method. With respect to dual hesitant fuzzy decision making scenarios, only recently, Zhao and Xu [82]
studied some entropy measures and discussed their properties, Ye [41] defined a dual hesitant fuzzy
cross-entropy measure and utilized it to construct an ideal solution-based decision making approach.
Nevertheless, to the best of our knowledge, there is scarcely any effort that has been carried out to
investigate entropy measures for IVDHFS and derivative MCGDM approaches. Therefore, we here
introduce an entropy measure for IVDHFS and discuss its properties.

Definition 4. Given an interval-valued dual hesitant fuzzy element (IVDHFE) α̃, the following

e(α̃) = 1− d
(

α̃,
({[

1
2

,
1
2

]}
,
{[

1
2

,
1
2

]}))
, (4)

is an entropy for IVDHFEs, where distance d is calculated by the normalized Hamming distance according to

d
(

α̃,
({[

1
2 , 1

2

]}
,
{[

1
2 , 1

2

]}))
= 1

2l1

l1
∑

j=1

(∣∣∣µL
j −

1
2

∣∣∣+ ∣∣∣µU
j −

1
2

∣∣∣)+ 1
2l2

l2
∑

j=1

(∣∣∣νL
j −

1
2

∣∣∣+ ∣∣∣νU
j −

1
2

∣∣∣). (5)

Regarding the above entropy measure defined in Definition 4, we have the following theorem to
verify it meets the axiomatic requirements of a fuzzy entropy [40].

Theorem 1. The entropy e(α̃) on α̃ satisfies the following requirements:

(1) 0 ≤ e(α̃) ≤ 1;
(2) e(α̃) = 0, if and only if α̃ = ({[1, 1]}, {[0, 0]}) or α̃ = ({[0, 0]}, {[1, 1]});
(3) e(α̃) = 1, if and only if α̃ =

({[
1
2 , 1

2

]}
,
{[

1
2 , 1

2

]})
;

(4) e(α̃) = e(α̃c);
(5) e(α̃1) ≤ e(α̃2) if α̃1 is less fuzzy than α̃2.

All the properties listed in Theorem 1 are straightforward, thus their proofs are omitted
here. In addition, it is worth mentioning that the proposed entropy measure does not need any
artificially added values to supplement IVDHFEs, thus its derivative weighting approaches are
capable of avoiding the potential information distortion as caused by the classic supplementing
methods in [32,33].

Example 1. Let α̃1 = ({[0.1, 0.2]}, {[0.7, 0.8]}), α̃2 = ({[0.4, 0.5], [0.5, 0.6]}, {[0.2, 0.3]}), then according to
Definition 4, we have e(α̃1) = 0.4, e(α̃2) = 0.7.
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4. Interval-Valued Dual Hesitant Fuzzy Prioritized Average Operators

To facilitate multiple criteria decision making based on interval-valued dual hesitant fuzzy
information, Ju et al. [31] have developed some basic aggregation operators for developing effective
approaches. Among those operators, one of the most adopted is the interval-valued dual hesitant
fuzzy weighted average (IVDHFWA) operator as shown in the following Definition 5.

Definition 5 [31]. For a collection of IVDHFEs: α̃j(j = 1, 2, . . . , n), an interval-valued dual hesitant fuzzy
weighted average (IVDHFWA) operator is a mapping of Sn → S , such that

IVDHFWA(α̃1, α̃2, . . . , α̃n) =
n
⊕

j=1
(ωjα̃j)

= ∪
[µL

j ,µU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j

{{[
1−

n
∏
j=1

(1− µL
j )

ωj , 1−
n
∏
j=1

(1− µU
j )

ωj

]}
,

{[
n
∏
j=1

(νL
j )

ωj ,
n
∏
j=1

(νU
j )

ωj

]}} (6)

where ω = (ω1, ω2, . . . , ωn)
T is weights for α̃j(j = 1, 2, . . . , n), with ωj ∈ [0, 1] and ∑n

j=1 ωj = 1.

However, the IVDHFWA operator and other elementary operators cannot accommodate multiple
criteria decision making problems where there exists prioritization among assessment criteria. Actually,
Yager [46] already noticed the real-world prioritization phenomena among assessing criteria, and thus
developed the prioritized average (PA) operator [46] and the prioritized ordered weighted average
(POWA) operator [47], as shown in the following Definitions 6 and 7.

Definition 6 [46]. Let C = {c1, c2, . . . , cn} be a collection of criteria and that there is a prioritization among
the criteria expressed by the linear ordering c1 � c2 � . . . � cn, indicating criteria cj has a higher priority than
ck if j < k. The value cj(x) is the performance of any alternative under any criteria cj, and satisfies cj ∈ [0, 1], if

PA(cj(x)) =
n

∑
j=1

ωjcj(x), (7)

where ωj =
Tj

∑n
j=1 Tj

, T1 = 1 and Tj = ∏
j−1
k=1 ck(x), then PA is called the prioritized weighted average

(PA) operator.

Definition 7 [47]. Let C = {c1, c2, . . . , cn} be a collection of criteria and that there is a prioritization among
the criteria expressed by the linear ordering c1 � c2 � . . . � cn, indicating criteria cj has a higher priority than
ck if j < k. The value cj(x) is the performance of any alternative under any criteria cj, and satisfies cj ∈ [0, 1],
we have the prioritized ordered weighted average (POWA) operator as following

POWA(cj(x)) =
n

∑
j=1

ωjcind(j)(x), (8)

ωj = Q

∑
j
k=1 Tind(k)

∑n
j=1 Tj

−Q

∑
j−1
k=1 Tind(k)

∑n
j=1 Tj

,j = 1, 2, . . . , n, (9)

in which ind(·) is a permutation function such that ind(j − 1) ≥ ind(j), T1 = 1, Tind(0) = 0 and

Tj = ∏
j−1
k=1 ck(x) (j = 1, 2, . . . , n). Q : [0, 1]→ [0, 1] is a basic unit-interval monotonic (BUM) function,

which satisfying: (1) Q(0) = 0; (2) Q(1) = 1; (3) Q(x) ≥ Q(y) if x ≥ y.
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As discussed before, existing extensions of PA and POWA are not suitable for aggregation of
interval-valued dual hesitant fuzzy information. To help MCGDM methodologies accommodate
complicated problems where decision hesitancy and criteria prioritization exist, we here develop two
fundamental interval-valued dual hesitant fuzzy prioritized average operators and investigate their
desirable properties.

4.1. Interval-Valued Dual Hesitant Fuzzy PA Operator

By extending the conventional PA operator in Definition 6 to accommodate situations where
inputs are IVDHFEs, we derive the following interval-valued dual hesitant fuzzy prioritized weighted
average (IVDHFPWA) operator.

Definition 8. For a collection of IVDHFEs r̃j(j = 1, 2, . . . , n), which are prioritized so that r̃j ≺ r̃j−1, then the
IVDHFPWA operator is defined as

IVDHFPWA(r̃1, r̃2, . . . , r̃n) =
T1

∑n
j=1 Tj

r̃1 ⊕
T2

∑n
j=1 Tj

r̃2 ⊕ . . .⊕ Tn

∑n
j=1 Tj

r̃n (10)

=
n
⊕

j=1

(
Tj r̃j

∑n
j=1 Tj

)
. (11)

Here T1 = 1, Tj = ∏
j−1
k=1 1− e(r̃k) = (1− e(r̃j−1))Tj−1, and e(r̃k) is the entropy of r̃k as shown in Definition 4.

Based on the operations of IVDHFEs, IVDHFPWA operator can be rewritten according to the
following Theorem 2.

Theorem 2. Let r̃j =
(

h̃j, g̃j

)
be a collection of IVDHFEs, then the result aggregated from Definition 8 is still

an interval-valued dual hesitant fuzzy element, and we have:

IVDHFPWA(r̃1, r̃2, . . . , r̃n) =

∪
[µL

j ,µU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j


1−

n
∏
j=1

(1− µL
j )

Tj
∑n

j=1 Tj , 1−
n
∏
j=1

(1− µU
j )

Tj
∑n

j=1 Tj

 ,
 n

∏
j=1

(νL
j )

Tj
∑n

j=1 Tj ,
n
∏
j=1

(νU
j )

Tj
∑n

j=1 Tj


,

(12)

Proof. Theorem 2 can be proved by mathematical induction method as follows.

(1) When n = 1, obviously, Theorem 2 is right.

IVDHFPWA(r̃) = ∪
[µL ,µU ]∈h̃,[νL ,νU ]∈g̃

({[
µL

j , µU
j

]}
,
{[

νL
j , νU

j

]})
;

(2) When n = 2, r̃1 = ∪
[µL

1 ,µU
1 ]∈h̃1,[νL

1 ,νU
1 ]∈g̃1

({
[µL

1 , µU
1 ]
}

,
{
[νL

1 , νU
1 ]
})

,
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T1
∑n

j=1 Tj
r̃1 = ∪

[µL
1 ,µU

1 ]∈h̃1,[νL
1 ,νU

1 ]∈g̃1

({[
1− (1− µL

1 )

T1
∑n

j=1 Tj , 1− (1− µU
1 )

T1
∑n

j=1 Tj

]}
,

{[
(νL

1 )

T1
∑n

j=1 Tj , (νU
1 )

T1
∑n

j=1 Tj

]})
r̃2 = ∪

[µL
2 ,µU

2 ]∈h̃2,[νL
2 ,νU

2 ]∈g̃2

({
[µL

2 , µU
2 ]
}

,
{
[νL

2 , νU
2 ]
})

T2
∑n

j=1 Tj
r̃2 = ∪

[µL
2 ,µU

2 ]∈h̃2,[νL
2 ,νU

2 ]∈g̃2

({[
1− (1− µL

2 )

T2
∑n

j=1 Tj , 1− (1− µU
2 )

T2
∑n

j=1 Tj

]}
,

{[
(νL

2 )

T2
∑n

j=1 Tj , (νU
2 )

T2
∑n

j=1 Tj

]})
T1

∑n
j=1 Tj

r̃1 +
T2

∑n
j=1 Tj

r̃2 = ∪
[µL

1 ,µU
1 ]∈h̃1,[µL

2 ,µU
2 ]∈h̃2,[νL

1 ,νU
1 ]∈g̃1,[νL

2 ,νU
2 ]∈g̃2({[

1− (1− µL
1 )

T1
∑n

j=1 Tj (1− µL
2 )

T2
∑n

j=1 Tj , 1− (1− µU
1 )

T1
∑n

j=1 Tj (1− µU
2 )

T2
∑n

j=1 Tj

]}
,

{[
(νL

1 )

T1
∑n

j=1 Tj (νL
2 )

T2
∑n

j=1 Tj , (νU
1 )

T1
∑n

j=1 Tj (νU
2 )

T2
∑n

j=1 Tj

]})
.

So when n = 2, Theorem 2 also is right.
(3) Suppose when n = k, Theorem 2 is right, then we have:

IVDHFPWA(r̃1, r̃2, . . . , r̃k) = ∪[µL
j ,µU

j ]∈h̃j ,[νL
j ,νU

j ]∈g̃j

1−

k
∏
j=1

(1− µL
j )

T1
∑k

j=1 Tj , 1−
k

∏
j=1

(1− µU
j )

T1
∑k

j=1 Tj

,


 k

∏
j=1

(νL
j )

T1
∑k

j=1 Tj ,
k

∏
j=1

(νU
j )

T1
∑k

j=1 Tj


,

wk+1r̃k+1 =

∪
[µL

1 ,µU
1 ]∈h̃1,[νL

1 ,νU
1 ]∈g̃1


1− (1− µL

1 )

Tk+1
∑k+1

j=1 Tj , 1− (1− µU
1 )

Tk+1
∑k+1

j=1 Tj

,


(νL

1 )

Tk+1
∑k+1

j=1 Tj , (νU
1 )

Tk+1
∑k+1

j=1 Tj


.

Then when n = k + 1, we have

IVDHFPWA(r̃1, r̃2, . . . , r̃k+1) =

(
k
⊕

j=1
wj r̃j

)
⊕ wk+1r̃k+1 = ∪

[µL
j ,µU

j ]∈h̃j ,[νL
j ,νU

j ]∈g̃j

1−

k+1
∏
j=1

(1− µL
j )

Tj

∑k+1
j=1 Tj , 1−

k+1
∏
j=1

(1− µU
j )

Tj

∑k+1
j=1 Tj

,


k+1

∏
j=1

(νL
j )

Tj

∑k+1
j=1 Tj ,

k+1
∏
j=1

(νU
j )

Tj

∑k+1
j=1 Tj


.

So when n = k + 1, Theorem 2 is right too.
According to steps (1)–(3), we can conclude that Theorem 2 is right for all n.

Furthermore, it can be easily proved that the IVDHFPWA operator has the following properties.

Theorem 3. (Idempotency) Let r̃j =
(

h̃j, g̃j

)
(j = 1, 2, . . . , n) be a collection of IVDHFEs. If r̃j = r̃ = (h̃, g̃)

for all j = 1, 2, . . . , n, then:
IVDHFPWA(r̃1, r̃2, . . . , r̃n) = r̃ = (h̃, g̃).
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Theorem 4. (Boundedness) Let r̃j =
(

h̃j, g̃j

)
(j = 1, 2, . . . , n) be a collection of IVDHFEs, then IVDHFPWA

operator lie between the max and min values,

r̃− ≤ IVDHFPWA(r̃1, r̃2, . . . , r̃n) ≤ r̃+,

where

r̃− =

([
min

j
µL

j , min
j

µU
j

]
,
[

max
j

νL
j , max

j
νU

j

])
and r̃+ =

([
max

j
µL

j , max
j

µU
j

]
,
[

min
j

νL
j , min

j
νU

j

])
.

Theorem 5. (Commutativity) Let r̃j =
(

h̃j, g̃j

)
(j = 1, 2, . . . , n) be a collection of IVDHFEs, (r̃1

∗, r̃2
∗, . . . , r̃n

∗)

be any a permutation of (r̃1, r̃2, . . . , r̃n), then,

IVDHFPWA(r̃1
∗, r̃2

∗, . . . , r̃n
∗) = IVDHFPWA(r̃1, r̃2, . . . , r̃n).

Example 2. Suppose a collection of IVDHFEs: r̃1 = ({[0.1, 0.3], [0.3, 0.4]}, {[0.3, 0.4], [0.4, 0.5]}), r̃2 =

({[0.3, 0.4], [0.5, 0.7]}, {[0.1, 0.2]}), r̃3 = ({[0.4, 0.5]}, {[0.3, 0.4], [0.4, 0.5]}), r̃4 = ({[0.1, 0.3]}, {[0.6, 0.7]}).
Then according to Definition 8, we can obtain w = (0.6655, 0.2163, 0.1027, 0.0154), and the overall aggregation
result r̃ is

r̃ = IVDHFPWA(r̃1, r̃2, r̃3, r̃4)

= ({[0.1824, 0.346], [0.2398, 0.437], [0.3083, 0.4097], [0.3569, 0.4919]},
{[0.2391, 0.3473], [0.2463, 0.3553], [0.2895, 0.4029], [0.2982, 0.4122]}).

Further, according to Equation (2), we obtain the score of r̃ is s(r̃) = 0.0226.

4.2. Interval-Valued Dual Hesitant Fuzzy POWA Operator

In this subsection, by extending the POWA operator shown in Definition 7 to interval-valued dual
hesitant fuzzy environments, we propose the interval-valued dual hesitant fuzzy prioritized ordered
weighted average (IVDHFPOWA) operator.

Definition 9. For a collection of IVDHFEs r̃j(j = 1, 2, . . . , n), with the prioritized relationship r̃j ≺ r̃j−1, then
the IVDHFPOWA operator is defined as follows:

IVDHFPOWA(r̃1, r̃2, . . . , r̃n) =
n

∑
j=1

wj r̃ind(j) (13)

=
n

∑
j=1

 f

∑
j
k=1 Tind(k)

∑n
j=1 Tj

− f

∑
j−1
k=1 Tind(k)

∑n
j=1 Tj

r̃ind(k). (14)

Here ind(j) be the index of the jth most satisfied criterion that holds the jth largest of r̃j(j = 1, 2, . . . , n).

T1 = 1, Tσ(0) = 0, Tj = ∏
j
k=1 1− e(r̃k) = (1− e(r̃j−1))Tj−1, e(r̃k) is the entropy measure of r̃k as shown

in Definition 4. Q : [0, 1]→ [0, 1] is a basic unit-interval monotonic (BUM) function, which satisfies the
properties: (1) Q(0) = 0; (2) Q(1) = 1; (3) Q(x) ≥ Q(y) if x ≥ y.

Similar to Theorem 1, we obtain the following Theorem 5.
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Theorem 6. Let r̃j =
(

h̃j, g̃j

)
be a collection of IVDHFEs, r̃ind(j) =

(
h̃ind(j), g̃ind(j)

)
be the reordered

collection of r̃j, then the result obtained from Definition 9 is still an interval-valued dual hesitant fuzzy element,
and we have

IVDHFPOWA(r̃1, r̃2, . . . , r̃n) =

∪
[µL

ind(j),µ
U
ind(j) ]∈h̃ind(j),[ν

L
ind(j),ν

U
ind(j) ]∈g̃ind(j)

({[
1−

n
∏
j=1

(1− µL
ind(j))

wj , 1−
n
∏
j=1

(1− µU
ind(j))

wj

]}
,{[

n
∏
j=1

(νL
ind(j))

wj ,
n
∏
j=1

(νU
ind(j))

wj

]})
,

(15)

where

wj = f

∑
j
k=1 Tind(k)

∑n
j=1 Tj

− f

∑
j−1
k=1 Tind(k)

∑n
j=1 Tj

. (16)

Theorem 6 can be proved by mathematical induction method similar to Theorem 2, and the steps
in details are omitted here. Also similar to Theorems 3–5, it can be easily proved that IVDHFPOWA
operator has the following properties.

Theorem 7. (Idempotency) Let r̃j =
(

h̃j, g̃j

)
(j = 1, 2, . . . , n) be a collection of IVDHFEs. If r̃j = r̃ = (h̃, g̃)

for all j = 1, 2, . . . , n, j = 1, 2, . . . , n then: missing equation numbers

IVDHFPOWA(r̃1, r̃2, . . . , r̃n) = r̃ = (h̃, g̃).

Theorem 8. (Boundedness) Let r̃j =
(

h̃j, g̃j

)
(j = 1, 2, . . . , n) be a collection of IVDHFEs, then IVDHFPWA

operator lie between the max value r̃+ and min value r̃− , that is,

r̃− ≤ IVDHFPOWA(r̃1, r̃2, . . . , r̃n) ≤ r̃+,

where r̃− =

([
min

j
µL

j , min
j

µU
j

]
,
[

max
j

νL
j , max

j
νU

j

])
and r̃+ =

([
max

j
µL

j , max
j

µU
j

]
,
[

min
j

νL
j , min

j
νU

j

])
.

Theorem 9. (Commutativity) Let r̃j =
(

h̃j, g̃j

)
(j = 1, 2, . . . , n) be a collection of IVDHFEs, (r̃1

∗, r̃2
∗, . . . , r̃n

∗)

be any a permutation of (r̃1, r̃2, . . . , r̃n), then we have

IVDHFPOWA(r̃1
∗, r̃2

∗, . . . , r̃n
∗) = IVDHFPOWA(r̃1, r̃2, . . . , r̃n).

Additionally, as for the relationship between operators IVDHFPWA and IVDHFPOWA, we have
the following Theorem 10.

Theorem 10. If r̃ind(j) = r̃j for all j = 1, 2, . . . , n, then the IVDHFPOWA operator reduces to the
IVDHFPWA operator.

Example 3. Suppose a collection of IVDHFEs, r̃1 = ({[0.1, 0.3], [0.3, 0.4]}, {[0.3, 0.4], [0.4, 0.5]}),
r̃2 = ({[0.3, 0.4], [0.5, 0.7]}, {[0.1, 0.2]}), r̃3 = ({[0.4, 0.5]}, {[0.3, 0.4], [0.4, 0.5]}), r̃4 =

({[0.1, 0.3]}, {[0.6, 0.7]}). According to Definition 9, we firstly have the reordered collection of
IVDHFEs as: r̃ind(1) = ({[0.4, 0.5]}, {[0.3, 0.4], [0.4, 0.5]}), r̃ind(2) = ({[0.3, 0.4], [0.5, 0.7]}, {[0.1, 0.2]}),
r̃ind(3) = ({[0.1, 0.3]}, {[0.6, 0.7]}), and r̃ind(4) = ({[0.1, 0.3], [0.3, 0.4]}, {[0.3, 0.4], [0.4, 0.5]}). Then, let
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the basic unit-interval monotonic (BUM) function be f = x2, we obtain w = (0.6366, 0.2053, 0.1076, 0.0505).
Subsequently, the overall aggregation result r̃ is calculated as

r̃ = IVDHFPOWA(r̃1, r̃2, r̃3, r̃4) = ({[0.3397, 0.4526], [0.348, 0.4568], [0.3838, 0.5252], [0.3916, 0.5289]},
{[0.258, 0.3685], [0.2617, 0.3726], [0.3098, 0.4247], [0.3143, 0.4295]}).

Further, according to Equation (2), we have the score of r̃ as s(r̃) = 0.0859.

5. Approaches for ERSE with Decision Hesitancy and Prioritization among Criteria

On the strength of IVDHFS and the above-developed operators, i.e., IVDHFPWA and
IVDHFPOWA, now we construct effective MCGDM approaches to tackle complicate ERSE problems
in which prioritization relationships exists among criteria and decision hesitancy occurs when decision
makers give their uncertain assessments under those criteria.

Let X = {x1, . . . , xi, . . . , xn} be the set of response solutions, C =
{

C1, . . . , Cj, . . . , Cm
}

be the set
of criteria, and E = {E1, . . . , Ek, . . . , Et} be the set of decision makers. Suppose that, according to
knowledge from decision contexts, decision makers reach a prioritization relationship among these
criteria: Cσ(1) � . . . � Cσ(j) � . . . � Cσ(m), which means criterion Cσ(j−1) have a higher priority level

than criterion Cσ(j). Suppose R(k) = (r̃(k)ij )
n×m

(k = 1, 2, . . . , t) be the individual interval-valued dual

hesitant fuzzy (IVDHF) decision matrices, and r̃(k)ij denotes the assessment given by kth decision maker
with respect to the alternative xi under the criterion Cj.

Subsequently, in view of the fact weighting information for decision makers usually cannot
always be determined appropriately beforehand in complicate group decision making situations,
we develop the following Approach I for situations with known weights of decision makers, i.e.,
λ = {λ1, . . . , λk, . . . , λt}, and the following Approach II for other situations where decision makers’
weights cannot be obtained in advance.

Approach I. Interval-valued dual hesitant fuzzy MCGDM with prioritization among criteria and
known decision makers’ weights

Step I-1. Transform each individual IVDHF decision matrices R̃(k) = (r̃(k)ij )
n×m

= (h̃(k)ij , g̃(k)ij )
n×m

(k = 1, 2, . . . , t) to the prioritized individual IVDHF decision matrices R̃
(k)

= (r̃
(k)
ij )

n×m
=

(h̃
(k)
ij , g̃

(k)
ij )

n×m
(k = 1, 2, . . . , t) according to priority levels of criteria, where h̃

(k)
ij = ∪

µ̃
k
ij∈h̃

(k)
ij

{µ̃k
ij},

g̃
(k)
ij = ∪

ν̃
k
ij∈g̃

(k)
ij
{ν̃k

ij}.

Step I-2. Calculate prioritized levels in prioritized individual IVDHF decision matrices.

Derive the entropy values of r̃
(k)
ij according to Equations (4) and (5), then compute the numerical

prioritized levels T(k)
ij (i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , t) in each prioritized individual

IVDHF decision matrix, where

T(k)
ij =

j−1

∏
l=1

1− e(r̃
(k)
il ) = (1− e(r̃

(k)
i(j−1)))T

(k)
i,(j−1), (17)

T(k)
i1 = 1. (18)

Step I-3. Obtain aggregated results in prioritized individual IVDHF decision matrix by applying
operator IVDHFPWA, or operator IVDHFPOWA. Utilize the IVDHFPWA operator described in
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Definition 8 to aggregate r̃
(k)
ij so that we get the kth decision maker’s decision result r̃(k)i on the

alternative xi, where

r̃(k)i = IVDHFPWA(r̃
(k)
i1 , . . . , r̃

(k)
ij , . . . , r̃

(k)
im ) =

∪
[µLk

ij ,µUk
ij ]∈h̃

(k)
ij ,[νLk

ij ,νUk
ij ]∈g̃

(k)
ij



1−

m
∏
j=1

(1− µLk
ij )

T(k)ij

∑m
j=1 T(k)ij , 1−

m
∏
j=1

(1− µUk
ij )

T(k)ij

∑m
j=1 T(k)ij


,


 m

∏
j=1

(νLk
ij )

T(k)ij

∑m
j=1 T(k)ij ,

m
∏
j=1

(νUk
ij )

T(k)ij

∑m
j=1 T(k)ij



.

(19)

Or utilize the IVDHFPOWA operator described in Definition 9, then we have:

r̃(k)i = IVDHFPOWA(r̃
(k)
i1 , . . . , r̃

(k)
ij , . . . , r̃

(k)
im ) =

m
∑

j=1
wk

ij r̃
(k)
iind(j)

∪
[µLk

iind(j),µ
Uk
iind(j) ]∈h̃(k)iind(j),[ν

Lk
iind(j),ν

Uk
iind(j) ]∈g̃(k)iind(j)

({[
1−

m
∏
j=1

(1− µLk
iind(j))

wk
ij , 1−

m
∏
j=1

(1− µUk
iind(s))

wk
ij

]}
,{[

m
∏
j=1

(νLk
iind(j))

wk
ij ,

m
∏
j=1

(νUk
iind(s))

wk
ij

]})
,

(20)

where

wk
ij = f

∑
j
l=1 Tk

iind(l)

∑m
j=1 Tk

ij

− f

∑
j−1
l=1 Tk

iind(l)

∑m
j=1 Tk

ij

. (21)

Step I-4. Obtain collective results of all alternatives by applying weights of decision makers.
Suppose the weighting vector for decision makers be λ = {λ1, . . . , λk, . . . , λt}, then we aggregate

all individual overall decision values r̃(k)i (k = 1, 2, . . . , t) into the overall group decision values
r̃i(i = 1, 2, . . . , n) by use of IVDHFWA operator described in Definition 5, where

r̃i =
t
⊕

k=1
(λk r̃(k)i )= ∪

[µLk
i ,µUk

i ]∈h̃(k)i ,[νLk
i ,νUk

i ]∈g̃(k)i

{{[
1−

t
∏

k=1
(1− µLk

i )
λk , 1−

t
∏

k=1
(1− µUk

i )
λk

]}
,

{[
t

∏
k=1

(νLk
i )

λk ,
t

∏
k=1

(νUk
i )

λk

]}}
.

(22)

Step I-5. Determine the ranking order of all alternatives.
For each alternative, according to Equations (2) and (3) respectively, we calculate the score value

s(r̃i) and accuracy value v(r̃i) based on its group decision value r̃i. Then according to the comparative
method introduced by Ju, Liu and Yang [31], we can determine the ranking order of all alternatives.

More practically, due to ill-structured problem definitions in complex scenarios, weighting vector
for decision makers usually cannot be appropriately determined in advance, so we develop the
following Approach II to address these complicate situations.

Approach II. Interval-valued dual hesitant fuzzy MCGDM with prioritization among criteria but
unknown decision makers’ weights

Step II-1. See Step I-1.
Step II-2. Obtain prioritized interval-valued dual hesitant fuzzy group decision matrix.
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By combining each prioritized individual interval-valued dual hesitant fuzzy decision matrix

R̃
(k)

= (r̃
(k)
ij )

n×m
= (h̃

(k)
ij , g̃

(k)
ij )

n×m
(k = 1, 2, . . . , t) into the prioritized interval-valued dual hesitant

fuzzy group decision matrix:

R̃ = (r̃ij)n×m = (h̃ij, g̃ij)n×m
,

where h̃ij = ∪µ̃ij∈h̃ij

{
µ̃ij

}
and g̃ij = ∪ν̃ij∈g̃ij

{
ν̃ij

}
.

Step II-3. Calculate numerical prioritized levels in group decision matrix.
Derive the entropy values of r̃ij according to Equations (4) and (5), then derive the prioritized

levels Tij(i = 1, 2, . . . , n; j = 1, 2, . . . , m) in the prioritized group interval-valued dual hesitant fuzzy

decision matrix R̃, where

Tij =
j−1

∏
l=1

1− e(r̃il) = (1− e(r̃i,(j−1)))Ti,(j−1), (23)

Ti1 = 1. (24)

Step II-4. Acquire collective decision values of all alternatives by applying the aggregation
operator IVDHFPWA or the operator IVDHFPOWA.

Utilize the IVDHFPWA operator proposed in Definition 8 to aggregate r̃ij so that we get the group
decision result r̃i on the alternative xi, where

r̃i = IVDHFPWA(r̃i1, . . . , r̃ij, . . . , r̃im) =

∪
[µL

ij ,µ
U
ij ]∈h̃ij ,[ν

L
ij ,ν

U
ij ]∈g̃ij


1−

m
∏
j=1

(1− µL
ij)

Tij
∑m

j=1 Tij , 1−
m
∏
j=1

(1− µU
ij )

Tij
∑m

j=1 Tij

,
 m

∏
j=1

(νL
ij)

Tij
∑m

j=1 Tij ,
m
∏
j=1

(νU
ij )

Tij
∑m

j=1 Tij


.

(25)

Or by applying the IVDHFPOWA operator proposed in Definition 9, we have

r̃i = IVDHFPOWA(r̃i1, . . . , r̃is, . . . , r̃ij) =

m
∑

j=1
wj r̃i,ind(j) ∪[µL

i,ind(j),µ
U
i,ind(j) ]∈h̃i,ind(j),[ν

L
i,ind(j),ν

U
i,ind(j) ]∈g̃i,ind(j)

({[
1−

m
∏
j=1

(1− µL
i,ind(j))

wj , 1−
m
∏
j=1

(1− µU
i,ind(j))

wj

]}
,{[

m
∏
j=1

(νL
i,ind(j))

wj ,
m
∏
j=1

(νU
i,ind(j))

wj

]})
,

(26)

where

wj = f

∑
j
l=1 Ti,ind(l)

∑m
j=1 Tij

− f

∑
j−1
l=1 Ti,ind(l)

∑m
j=1 Tij

. (27)

Step II-5. Determine the ranking order of all alternatives.
For each alternative, according to Equations (2) and (3) respectively, we firstly calculate the

score value s(r̃i) and accuracy value v(r̃i) based on its r̃i. Then according to the comparative method
introduced by Ju, Liu and Yang [31], we can determine the ranking order of all alternatives.

For more clarity, following Figure 1 delineates the flowcharts of above-developed Approach I and
Approach II.
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6. Illustrative Example and Comparative Study

6.1. Illustrative Example

As pointed out formerly, environmental problems and resulting public health threats that
accompany economic development projects have been urging governments to include ERSE in
their governance of sustainable development [1,9,13–15]. Precedent AHP-based or ANP-based
methods [1,14,15] for ERSE generally needs multi-rounds consistency adjustments to derive criteria
weights while neglecting the fact that decision makers are usually able to quickly reach a consensus on
an rather accurate prioritization relation among assessment criteria. Regarding ERSE with decision
hesitancy resulting from problem complexity, the existing ideal solutions-based decision-making
methods [9] adopted the distance measure that grounds on subjectively supplementing mechanism for
IVDHFEs, thus restricted themselves to situations where decision makers are capable of or willing to
specify their pessimistic or optimistic attitudes. Therefore, aiming at the currently existing gap, we
have developed the above Approach I and Approach II.

Now, in this section, we conduct case study to demonstrate practicality and effectiveness of
our proposed approaches. Subsequently, we take the assessing criteria listed in Table 1 and the
first emergency event shown in Table 2. That is, suppose three emergency response solutions be
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under evaluation, i.e., xi(i = 1, 2, 3), according to eight criteria Cj(j = 1, 2, . . . , 8): (1) C1—Response
time to start the emergency response solution; (2) C2—Reasonable organizational structure and clear
awareness of responsibilities; (3) C3—Economic cost; (4) C4—Operability of the response solution;
(5) C5—Monitoring and forecasting potential hazards; (6) C6—Reconstruction ability; (7) C7—Social
impact; (8) C8—Environmental impact. A panel of decision makers, Ek(k = 1, 2, 3), have been already
organized, and the decision makers have made a consensus opinion on the prioritization relations
among the above eight criteria, that is, (C2) � (C5) � (C1) � (C8) � (C4) � (C6) � (C7) � (C3). Next,
all three decision makers Ek(k = 1, 2, 3) were invited to provide their preferences in the form of
interval-valued dual hesitant fuzzy elements. Then, three interval-valued dual hesitant fuzzy (IVDHF)
decision matrices, i.e., R̃(k) = (r̃(k)ij )

3×8
(k = 1, 2, 3), have been collected in Tables 4–6.

Table 4. The IVDHF decision matrix R̃(1) provided by decision maker E1.

C1 C2 C3 C4

x1
({[0.4, 0.5]},
{[0.4, 0.5]})

({[0.6, 0.7]},
{[0.1, 0.2]})

({[0.1, 0.4]},
{[0.2, 0.3], [0.3, 0.4]})

({[0.6, 0.8]},
{[0.1, 0.2]})

x2
({[0.2, 0.3]},

{[0.5, 0.6], [0.6, 0.7]})
({[0.4, 0.7]},
{[0.2, 0.3]})

({[0.5, 0.6]},
{[0.1, 0.2]})

({[0.4, 0.5]},
{[0.3, 0.4]})

x3
({[0.5, 0.6],

[0.7, 0.8]}, {[0.1, 0.2]})
({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.3, 0.4],
[0.4, 0.5]}, {[0.4, 0.5]})

({[0.7, 0.8]},
{[0.1, 0.2]})

C5 C6 C7 C8

x1
({[0.6, 0.7]},
{[0.2, 0.3]})

({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.4, 0.5]},
{[0.4, 0.5]})

({[0.1, 0.2],
[0.2, 0.3]}, {[0.5, 0.6]})

x2
({[0.4, 0.5]},
{[0.2, 0.4]})

({[0.3, 0.4],
[0.4, 0.5]}, {[0.4, 0.5]})

({[0.1, 0.3]},
{[0.6, 0.7]})

({[0.5, 0.6]},
{[0.2, 0.3]})

x3
({[0.5, 0.7]},

{[0.1, 0.2], [0.2, 0.3]})
({[0.1, 0.2]},
{[0.7, 0.8]})

({[0.3, 0.4]},
{[0.5, 0.6]})

({[0.3, 0.4]},
{[0.3, 0.4], [0.4, 0.5]})

Table 5. The IVDHF decision matrix R̃(2) provided by decision maker E2.

C1 C2 C3 C4

x1
({[0.3, 0.4], [0.4, 0.5]},

{[0.4, 0.5]})
({[0.1, 0.2], [0.2, 0.3]},

{[0.3, 0.4]})
({[0.6, 0.7]},
{[0.2, 0.3]})

({[0.7, 0.8]},
{[0.1, 0.2]})

x2
({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.2, 0.3]},
{[0.5, 0.6]})

({[0.6, 0.7]},
{[0.1, 0.3]})

x3
({[0.2, 0.5]},
{[0.3, 0.4]})

({[0.4, 0.5]},
{[0.3, 0.4], [0.4, 0.5]})

({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.3, 0.4]},
{[0.5, 0.6]})

C5 C6 C7 C8

x1
({[0.4, 0.7]},
{[0.2, 0.3]})

({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.2, 0.4]},
{[0.4, 0.6]})

({[0.4, 0.6]},
{[0.3, 0.4]})

x2
({[0.3, 0.5]},
{[0.3, 0.4]})

({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.3, 0.5]},
{[0.3, 0.5]})

({[0.4, 0.6]},
{[0.2, 0.3]})

x3
({[0.3, 0.4]},

{[0.2, 0.4], [0.4, 0.5]})
({[0.3, 0.4], [0.4, 0.5]},

{[0.2, 0.3]})
({[0.2, 0.4]},
{[0.5, 0.6]})

({[0.3, 0.4]},
{[0.4, 0.5]})
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Table 6. The IVDHF decision matrix R̃(3) provided by decision maker E3.

C1 C2 C3 C4

x1
({[0.1, 0.2] },

{[0.5, 0.6], [0.6, 0.7]})
({[0.2, 0.4]},

{[0.3, 0.4], [0.5, 0.6]})
({[0.6, 0.7]},

{[0.1, 0.2], [0.2, 0.3]})
({[0.5, 0.7]},
{[0.1, 0.2]})

x2
({[0.4, 0.6]},
{[0.3, 0.4]})

({[0.4, 0.6], [0.6, 0.7]},
{[0.1, 0.3]})

({[0.3, 0.5]},
{[0.1, 0.3], [0.4, 0.5]})

({[0.6, 0.7], [0.7, 0.8]},
{[0.1, 0.2]})

x3
({[0.6, 0.7]},

{[0.1, 0.2], [0.2, 0.3]})
({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.5, 0.6]},
{[0.3, 0.4]})

({[0.2, 0.3]},
{[0.5, 0.7]})

C5 C6 C7 C8

x1
({[0.1, 0.3], [0.3, 0.5]},

{[0.3, 0.5]})
({[0.5, 0.7]},
{[0.2, 0.3]})

({[0.6, 0.7]},
{[0.1, 0.2]})

({[0.5, 0.6]},
{[0.3, 0.4]})

x2
({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.3, 0.5]},
{[0.1, 0.3], [0.3, 0.4]})

({[0.5, 0.7]},
{[0.2, 0.3]})

({[0.6, 0.8]},
{[0.1, 0.2]})

x3
({[0.6, 0.7]},
{[0.1, 0.3]})

({[0.4, 0.5]},
{[0.4, 0.5]})

({[0.2, 0.4]},
{[0.5, 0.6]})

({[0.3, 0.4]},
{[0.4, 0.5]})

Now, by use of Matlab®-2009a software (The MathWorks, Inc., Natick, MA, USA), we apply our
proposed Approach I and Approach II to obtain the ranking order of the three emergency response
solutions under different decision making situations with or without weights of decision makers,
respectively. For Approach I, suppose the known weighting vector for all three decision makers is
λ = [0.3, 0.2, 0.5]. Decision making steps are detailed as follows.

6.1.1. Decision Making Steps of Approach I

Step I-1. Transform each individual IVDHF decision matrix R̃(k) = (r̃(k)ij )
3×8

= (h̃(k)ij , g̃(k)ij )
3×8

into the prioritized individual IVDHF decision matrix R̃
(k)

= (r̃
(k)
ij )

3×8
= (h̃

(k)
ij , g̃

(k)
ij )

3×8
(k = 1, 2, 3)

according to the different priority levels of criteria, as listed in Tables 7–9.

Table 7. The prioritized individual IVDHF decision matrix R̃
(1)

.

Cσ(1) Cσ(2) Cσ(3) Cσ(4)

x1
({[0.6, 0.7]},
{[0.1, 0.2]})

({[0.6, 0.7]},
{[0.2, 0.3]})

({[0.4, 0.5]},
{[0.4, 0.5]})

({[0.1, 0.2], [0.2, 0.3]},
{[0.5, 0.6]})

x2
({[0.4, 0.7]},
{[0.2, 0.3]})

({[0.4, 0.5]},
{[0.2, 0.4]})

({[0.2, 0.3]},
{[0.5, 0.6], [0.6, 0.7]})

({[0.5, 0.6]},
{[0.2, 0.3]})

x3
({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.5, 0.7]},
{[0.1, 0.2], [0.2, 0.3]})

({[0.5, 0.6], [0.7, 0.8]},
{[0.1, 0.2]})

({[0.3, 0.4]},
{[0.3, 0.4], [0.4, 0.5]})

Cσ(5) Cσ(6) Cσ(7) Cσ(8)

x1
({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.4, 0.5]},
{[0.4, 0.5]})

({[0.1, 0.4]},
{[0.2, 0.3], [0.3, 0.4]})

x2
({[0.4, 0.5]},
{[0.3, 0.4]})

({[0.3, 0.4], [0.4, 0.5]},
{[0.4, 0.5]})

({[0.1, 0.3]},
{[0.6, 0.7]})

({[0.5, 0.6]},
{[0.1, 0.2]})

x3
({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.1, 0.2]},
{[0.7, 0.8]})

({[0.3, 0.4]},
{[0.5, 0.6]})

({[0.3, 0.4], [0.4, 0.5]},
{[0.4, 0.5]})
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Table 8. The prioritized individual IVDHF decision matrix R̃
(2)

.

Cσ(1) Cσ(2) Cσ(3) Cσ(4)

x1
({[0.1, 0.2], [0.2, 0.3]},

{[0.3, 0.4]})
({[0.4, 0.7]},
{[0.2, 0.3]})

({[0.3, 0.4], [0.4, 0.5]},
{[0.4, 0.5]})

({[0.4, 0.6]},
{[0.3, 0.4]})

x2
({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.3, 0.5]},
{[0.3, 0.4]})

({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.4, 0.6]},
{[0.2, 0.3]})

x3
({[0.4, 0.5]},

{[0.3, 0.4], [0.4, 0.5]})
({[0.3, 0.4]},

{[0.2, 0.4], [0.4, 0.5]})
({[0.2, 0.5]},
{[0.3, 0.4]})

({[0.3, 0.4]},
{[0.4, 0.5]})

Cσ(5) Cσ(6) Cσ(7) Cσ(8)

x1
({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.2, 0.4]},
{[0.4, 0.6]})

({[0.6, 0.7]},
{[0.2, 0.3]})

x2
({[0.6, 0.7]},
{[0.1, 0.3]})

({[0.6, 0.8]},
{[0.1, 0.2]})

({[0.3, 0.5]},
{[0.3, 0.5]})

({[0.2, 0.3]},
{[0.5, 0.6]})

x3
({[0.3, 0.4]},
{[0.5, 0.6]})

({[0.3, 0.4], [0.4, 0.5]},
{[0.2, 0.3]})

({[0.2, 0.4]},
{[0.5, 0.6]})

({[0.7, 0.8]},
{[0.1, 0.2]})

Table 9. The prioritized individual IVDHF decision matrix R̃
(3)

.

Cσ(1) Cσ(2) Cσ(3) Cσ(4)

x1
({[0.2, 0.4]},

{[0.3, 0.4], [0.5, 0.6]})
({[0.1, 0.3], [0.3, 0.5]},

{[0.3, 0.5]})
({[0.1, 0.2] },

{[0.5, 0.6], [0.6, 0.7]})
({[0.5, 0.6]},
{[0.3, 0.4]})

x2
({[0.4, 0.6], [0.6, 0.7]},

{[0.1, 0.3]})
({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.4, 0.6]},
{[0.3, 0.4]})

({[0.6, 0.8]},
{[0.1, 0.2]})

x3
({[0.7, 0.8]},
{[0.1, 0.2]})

({[0.6, 0.7]},
{[0.1, 0.3]})

({[0.6, 0.7]},
{[0.1, 0.2], [0.2, 0.3]})

({[0.3, 0.4]},
{[0.4, 0.5]})

Cσ(5) Cσ(6) Cσ(7) Cσ(8)

x1
({[0.5, 0.7]},
{[0.1, 0.2]})

({[0.5, 0.7]},
{[0.2, 0.3]})

({[0.6, 0.7]},
{[0.1, 0.2]})

({[0.6, 0.7]},
{[0.1, 0.2], [0.2, 0.3]})

x2
({[0.6, 0.7], [0.7, 0.8]},

{[0.1, 0.2]})
({[0.3, 0.5]},

{[0.1, 0.3], [0.3, 0.4]})
({[0.5, 0.7]},
{[0.2, 0.3]})

({[0.3, 0.5]},
{[0.1, 0.3], [0.4, 0.5]})

x3
({[0.2, 0.3]},
{[0.5, 0.7]})

({[0.4, 0.5]},
{[0.4, 0.5]})

({[0.2, 0.4]},
{[0.5, 0.6]})

({[0.5, 0.6]},
{[0.3, 0.4]})

Step I-2. Calculate the e(r̃
(k)
ij ) by Equations (4) and (5), and then obtain the numerical prioritized

levels T(k)
ij (i = 1, 2, 3; j = 1, 2, . . . , 8; k = 1, 2, 3) by Equations (17) and (18) in each prioritized individual

decision matrix, where

T(1) =
[

T(1)
ij

]
=

 1 0.5 0.2 0.02 0.007 0.0038 0.0023 0.0002
1 0.4 0.1 0.035 0.0105 0.0021 0.000315 0.00014
1 0.55 0.22 0.11 0.0275 0.0165 0.0099 0.002

,

T(2) =
[

T(2)
ij

]
=

 1 0.45 0.18 0.027 0.0067 0.004 0.0022 0.00067
1 0.6 0.15 0.0825 0.0289 0.013 0.0071 0.0014
1 0.15 0.0412 0.0124 0.0025 0.000495 0.00017 0.00004

,

T(3) =
[

T(3)
ij

]
=

 1 0.3 0.09 0.0405 0.0081 0.0036 0.0013 0.00064
1 0.425 0.255 0.0637 0.0351 0.0193 0.0063 0.0022
1 0.6 0.27 0.1215 0.0243 0.0085 0.00085 0.00021

.

Step I-3. Utilize the IVDHFPWA operator to aggregate the r̃
(k)
ij (i = 1, 2, 3; j = 1, 2, . . . , 8;

k = 1, 2, 3), then we get the decision results r̃(k)i corresponding to the alternative xi, where

r̃(1)1 = ({[0.5769, 0.6787], [0.5775, 0.6792]}, {[0.1463, 0.2534], [0.1463, 0.2534]});
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r̃(1)2 = ({[0.3911, 0.6344], [0.3912, 0.6345]}, {[0.213, 0.3389], [0.2155, 0.3423]});

r̃(1)3 = ({[0.5459, 0.7367], [0.546, 0.7368], [0.5715, 0.7566], [0.5716, 0.7567]}, {[0.1093, 0.2119], [0.1111,
0.2146], [0.1331, 0.2378], [0.1352, 0.2408]});
r̃(2)1 = ({[0.2251, 0.4168], [0.2379, 0.4281], [0.2779, 0.4616], [0.2898, 0.4721]}, {[0.2755, 0.3777]});

r̃(2)2 = ({[0.5812, 0.721]}, {[0.1471, 0.2566]});

r̃(2)3 = ({[0.3811, 0.4874], [0.3812, 0.4874]}, {[0.2864, 0.4012], [0.3121, 0.4125], [0.3635, 0.4827], [0.3962,
0.4963]});
r̃(3)1 = ({[0.1888, 0.3805], [0.2301, 0.4223]}, {[0.307, 0.4273], [0.3071, 0.4274], [0.3105, 0.4315], [0.3106,
0.4315], [0.4373, 0.5658], [0.4375, 0.5659], [0.4423, 0.5713], [0.4425, 0.5714]});
r̃(3)2 = ({[0.5009, 0.6697], [0.5036, 0.6723], [0.6012, 0.7183], [0.6034, 0.7205]}, {[0.1171, 0.2778], [0.1173,
0.278], [0.1184, 0.2786], [0.1186, 0.2788]});
r̃(3)3 = ({[0.6372, 0.7407]}, {[0.1115, 0.2429], [0.1223, 0.2564]}).

Step I-4. Aggregate all the individual overall decision values r̃(k)i (k = 1, 2, 3) into the group
overall decision values r̃i(i = 1, 2, 3) by IVDHFWA operator, where λ = [0.3, 0.2, 0.5]. Take the r̃1 as an
example, we have

r̃1 = ({[0.2619, 0.4457], [0.2809, 0.4647], [0.2644, 0.4479], [0.2833, 0.4668], [0.2722, 0.4545], [0.291, 0.4732],
[0.2747, 0.4566], [0.2934, 0.4753], [0.2626, 0.4463], [0.2816, 0.4653], [0.265, 0.4485], [0.284, 0.4674], [0.2729,
0.4551], [0.2917, 0.4738], [0.2753, 0.4572], [0.294, 0.4759]}, {[0.2402, 0.3563], [0.2403, 0.3563], [0.2416,
0.358], [0.2416, 0.358], [0.2867, 0.41], [0.2868, 0.41], [0.2883, 0.412], [0.2884, 0.412], [0.2402, 0.3563],
[0.2403, 0.3563], [0.2416, 0.358], [0.2417, 0.3581], [0.2867, 0.41], [0.2868, 0.41], [0.2884, 0.412], [0.2884,
0.412]}).

Step I-5. Obtain the score values of s(r̃i) according to the overall decision values r̃i(i = 1, 2, 3),
we have

s(r̃1) = 0.0453, s(r̃2) = 0.381, s(r̃3) = 0.4292.

Then we can get the ranking order of emergency response solutions as

x3 � x2 � x1.

Therefore, Approach I indicates that solution x3 is the most desirable solution.

6.1.2. Decision Making Steps of Approach II

Step II-1. See Step I-1.
Step II-2. Combine each prioritized individual interval-valued dual hesitant fuzzy decision

matrix R̃
(k)

= (r̃
(k)
ij )

3×8
= (h̃

(k)
ij , g̃

(k)
ij )

3×8
(k = 1, 2, 3) into the prioritized group interval-valued dual

hesitant fuzzy decision matrix R̃ = (r̃ij)3×8 = (h̃ij, g̃ij)3×8
, as shown in Table 10.
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Table 10. The prioritized group IVDHF matrix R̃.

Cσ(1) Cσ(2) Cσ(3) Cσ(4)

x1

({[0.1, 0.2], [0.2, 0.3], [0.2, 0.4],
[0.6, 0.7]},

{[0.1, 0.2], [0.3, 0.4], [0.3, 0.4],
[0.5, 0.6]})

({[0.1, 0.3], [0.3, 0.5], [0.4, 0.7],
[0.6, 0.7]},

{[0.2, 0.3], [0.2, 0.3], [0.3, 0.5]})

({[0.1, 0.2], [0.3, 0.4], [0.4, 0.5],
[0.4, 0.5]},

{[0.4, 0.5], [0.4, 0.5], [0.5, 0.6],
[0.6, 0.7]})

({[0.1, 0.2], [0.2, 0.3], [0.4, 0.6],
[0.5, 0.6]},

{[0.3, 0.4], [0.3, 0.4], [0.5, 0.6]})

x2

({[0.4, 0.6], [0.4, 0.7], [0.6, 0.7],
[0.7, 0.8]},

{[0.1, 0.2], [0.1, 0.3], [0.2, 0.3]})

({[0.3, 0.5], [0.4, 0.5], [0.7, 0.8]},
{[0.1, 0, 2], [0.2, 0.4], [0.3, 0.4]})

({[0.2, 0.3], [0.4, 0.6],
[0.6, 0.8]},

{[0.1, 0.2], [0.3, 0.4], [0.5, 0.6],
[0.6, 0.7]})

({[0.4, 0.6], [0.5, 0.6], [0.6, 0.8]},
{[0.1, 0.2], [0.2, 0.3], [0.2, 0.3]})

x3

({[0.4, 0.5], [0.6, 0.8], [0.7, 0.8]},
{[0.1, 0.2], [0.1, 0.2], [0.3, 0.4],

[0.4, 0.5]})

({[0.3, 0.4], [0.5, 0.7], [0.6, 0.7]},
{[0.1, 0.2], [0.1, 0.3], [0.2, 0.3],

[0.2, 0.4], [0.4, 0.5]})

({[0.2, 0.5], [0.5, 0.6], [0.6, 0.7],
[0.7, 0.8]},

{[0.1, 0.2], [0.1, 0.2], [0.2, 0.3],
[0.3, 0.4]})

({[0.3, 0.4], [0.3, 0.4], [0.3, 0.4]},
{[0.3, 0.4], [0.4, 0.5], [0.4, 0.5],

[0.4, 0.5]})

Cσ(5) Cσ(6) Cσ(7) Cσ(8)

x1
({[0.5, 0.7], [0.6, 0.8], [0.7, 0.8]},
{[0.1, 0.2], [0.1, 0.2], [0.1, 0.2]})

({[0.5, 0.7], [0.6, 0.8], [0.7, 0.8]},
{[0.1, 0.2], [0.1, 0.2], [0.2, 0.3]})

({[0.2, 0.4], [0.4, 0.5], [0.6, 0.7]},
{[0.1, 0.2], [0.4, 0.5], [0.4, 0.6]})

({[0.1, 0.4], [0.6, 0.7], [0.6, 0.7]},
{[0.1, 0.2], [0.2, 0.3], [0.2, 0.3],

[0.2, 0.3], [0.3, 0.4]})

x2

({[0.4, 0.5], [0.6, 0.7], [0.6, 0.7],
[0.7, 0.8]},

{[0.1, 0.2], [0.1, 0.3], [0.3, 0.4]})

({[0.3, 0.4], [0.3, 0.5], [0.4, 0.5],
[0.6, 0.8]},

{[0.1, 0.2], [0.1, 0.3], [0.3, 0.4],
[0.4, 0.5]})

({[0.1, 0.3], [0.3, 0.5], [0.5, 0.7]},
{[0.2, 0.3], [0.3, 0.5], [0.6, 0.7]})

({[0.2, 0.3], [0.3, 0.5], [0.5, 0.6]},
{[0.1, 0.2], [0.1, 0.3], [0.4, 0.5],

[0.5, 0.6]})

x3
({[0.2, 0.3], [0.3, 0.4], [0.7, 0.8]},
{[0.1, 0.2], [0.5, 0.6], [0.5, 0.7]})

({[0.1, 0.2], [0.3, 0.4], [0.4, 0.5],
[0.4, 0.5]},

{[0.2, 0.3], [0.4, 0.5], [0.7, 0.8]})

({[0.2, 0.4], [0.2, 0.4], [0.3, 0.4]},
{[0.5, 0.6], [0.5, 0.6], [0.5, 0.6]})

({[0.3, 0.4], [0.4, 0.5], [0.5, 0.6],
[0.7, 0.8]},

{[0.1, 0.2], [0.3, 0.4], [0.4, 0.5]})

Step II-3. Calculate the e(r̃ij) by Equations (4) and (5), then determine the prioritized
levels Tij(i = 1, 2, 3; j = 1, 2, . . . , 8) according to Equations (23) and (24) in the prioritized group
interval-valued dual hesitant fuzzy decision matrix, where

T =
[
Tij
]
=

 1 0.4125 0.1547 0.0348 0.0106 0.0056 0.0028 0.0008
1 0.4625 0.1696 0.0608 0.0243 0.0101 0.0034 0.0011
1 0.3917 0.1423 0.0605 0.0136 0.0052 0.0017 0.0004

.

Step II-4. With help of the Matlab® software, utilize the IVDHFPWA operator to aggregate the r̃ij,
we can get the decision results r̃i corresponding to each alternative xi(i = 1, 2, 3).

Step II-5. Calculate the s(r̃i) of the alternative r̃i, where

s(r̃1) = 0.052, s(r̃2) = 0.3659, s(r̃3) = 0.3456.

Then we obtain ranking order of the three alternatives according to the s(r̃i):

x2 � x3 � x1.

That is, Approach II yields that solution x2 is the most desirable solution.
As can be seen from the ranking order results, both Approach I and Approach II are capable of

identifying solution x1 as the worst option, but the ranking relations between solution x2 and solution
x3 differs. In order to further show the impact of different weights of decision makers on ranking order
of solutions, we also ran the Approach I by setting the weights of decision makers as λ = [0.1, 0.4, 0.5].
For clarity, the ranking results which were derived from three configurations have been collected in
Table 11. As can be observed, when we set λ = [0.1, 0.4, 0.5] in Approach I, solution x2 remained as
the same most desirable one. Clearly, different relative importance among decision makers do affect
the ranking results of assessing alternatives. One may choose Approach I or Approach II to resolving
practical ERSE problems with or without weighting vector of decision makers, respectively.
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Table 11. Ranking orders obtained by Approach I and Approach II.

Methods Ranking Orders Obtained Scores of Alternatives

Approach I
(λ = [0.3, 0.2, 0.5]) x3 � x2 � x1 s(r̃1) = 0.0453, s(r̃2) = 0.381, s(r̃3) = 0.4292.

Approach I
(λ = [0.1, 0.4, 0.5]) x2 � x3 � x1 s(r̃1) = 0.0070, s(r̃2) = 0.4201, s(r̃3) = 0.3554.

Approach II x2 � x3 � x1 s(r̃1) = 0.052, s(r̃2) = 0.3659, s(r̃3) = 0.3456.

6.2. Comparative Study with Classic MCGDM Methodologies without Considering Prioritization Relations
among Assessing Criteria

To further demonstrate the validity our proposed prioritized operators-based approaches in
differentiating response solutions, in this section, we firstly design another two approaches of classic
MCGDM methodologies without considering prioritization relations among assessment criteria, that
is, Cσ(j) = Cj; then, based on the derived ranking results, comparative analyses are further presented
to show effectiveness.

6.2.1. TOPSIS-Based MCGDM Approach

In viewing of the wide acceptance and robustness of TOPSIS methodology, we here design a
TOPSIS-based MCGDM approach as shown in following Approach III to resolve the same example
adopted in Section 6.1, but without considering prioritization relations among assessing criteria.

Approach III. Interval-valued dual hesitant fuzzy MCGDM based on TOPSIS without considering
prioritization relations among assessing criteria

Step III-1. Combine each IVDHF decision matrix R̃(k) = (̃r(k)ij )
n×m

= (h̃(k)ij , g̃(k)ij )
n×m

(k = 1, 2, . . . , t)

listed in Tables 4–6 into the group decision matrix R̃ = (̃rij)n×m = (h̃ij, g̃ij)n×m, where h̃ij = ∪µ̃ij∈h̃ij

{
µ̃ij
}

and g̃ij = ∪ν̃ij∈g̃ij

{
ν̃ij
}

.
Step III-2. Calculate the separating measure from positive and negative ideal solutions.
Determine positive ideal solution (PIS) r+ = (r+1 , r+2 , . . . , r+j , . . . , r+m) and negative ideal solution

(NIS) r− = (r−1 , r−2 , . . . , r−j , . . . , r−m), where r+j = ({1}, {0}), r−j = ({0}, {1}).
Then calculate the separating measure from the PIS and NIS for each alternative according to the

distance measure introduced in Equation (5), we have

d
(

r̃ij, r̃+j
)
=

1
2l1

l1

∑
j=1

(∣∣∣µL
ij − 1

∣∣∣+ ∣∣∣µU
ij − 1

∣∣∣)+ 1
2l2

l2

∑
j=1

(∣∣∣νL
ij − 0

∣∣∣+ ∣∣∣νU
ij − 0

∣∣∣), (28)

d
(

r̃ij, r̃−j
)
=

1
2l1

l1

∑
j=1

(∣∣∣µL
ij − 0

∣∣∣+ ∣∣∣µU
ij − 0

∣∣∣)+ 1
2l2

l2

∑
j=1

(∣∣∣νL
ij − 1

∣∣∣+ ∣∣∣νU
ij − 1

∣∣∣), (29)

and we obtain:

d+i =
m

∑
j=1

d(r̃ij, r̃+j ) and d−i =
m

∑
j=1

d(r̃ij, r̃−j ).

Step III-3. Calculate the relative closeness to the ideal solution by:

ci =
d−i

d−i + d+i
. (30)

Step III-4. Obtain ranking order of emergency response solutions according to descending order
of ci.

Now, we apply the above Approach III to resolve the decision making problem adopted in
Section 6.1. Calculation steps are detailed as follows.
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Step III-1. Combine each IVDHF decision matrix R̃(k) = (̃r(k)ij )
n×m

= (h̃(k)ij , g̃(k)ij )
n×m

(k = 1, 2, . . . , t)

listed in Tables 4–6 into the group decision matrix R̃ = (̃rij)n×m = (h̃ij, g̃ij)n×m, as shown in following
Table 12.

Table 12. The group IVDHF decision matrix R̃.

Cσ(1) Cσ(2) Cσ(3) Cσ(4)

x1

({[0.1, 0.2], [0.3, 0.4],
[0.4, 0.5], [0.4, 0.5]},
{[0.4, 0.5], [0.4, 0.5],
[0.5, 0.6], [0.6, 0.7]})

({[0.1, 0.2], [0.2, 0.3],
[0.2, 0.4], [0.6, 0.7]},
{[0.1, 0.2], [0.3, 0.4],
[0.3, 0.4], [0.5, 0.6]})

({[0.1, 0.4], [0.6, 0.7],
[0.6, 0.7]},

{[0.1, 0.2], [0.2, 0.3],
[0.2, 0.3], [0.2, 0.3],

[0.3, 0.4]})

({[0.5, 0.7], [0.6, 0.8],
[0.7, 0.8]},

{[0.1, 0.2], [0.1, 0.2],
[0.1, 0.2]})

x2

({[0.2, 0.3], [0.4, 0.6],
[0.6, 0.8]},

{[0.1, 0.2], [0.3, 0.4],
[0.5, 0.6], [0.6, 0.7]})

({[0.4, 0.6], [0.4, 0.7],
[0.6, 0.7], [0.7, 0.8]},
{[0.1, 0.2], [0.1, 0.3],

[0.2, 0.3]})

({[0.2, 0.3], [0.3, 0.5],
[0.5, 0.6]},

{[0.1, 0.2], [0.1, 0.3],
[0.4, 0.5], [0.5, 0.6]})

({[0.4, 0.5], [0.6, 0.7],
[0.6, 0.7], [0.7, 0.8]},
{[0.1, 0.2], [0.1, 0.3],

[0.3, 0.4]})

x3

({[0.2, 0.5], [0.5, 0.6],
[0.6, 0.7], [0.7, 0.8]},
{[0.1, 0.2], [0.1, 0.2],
[0.2, 0.3], [0.3, 0.4]})

({[0.4, 0.5], [0.6, 0.8],
[0.7, 0.8]},

{[0.1, 0.2], [0.1, 0.2],
[0.3, 0.4], [0.4, 0.5]})

({[0.3, 0.4], [0.4, 0.5],
[0.5, 0.6], [0.7, 0.8]},
{[0.1, 0.2], [0.3, 0.4],

[0.4, 0.5]})

({[0.2, 0.3], [0.3, 0.4],
[0.7, 0.8]},

{[0.1, 0.2], [0.5, 0.6],
[0.5, 0.7]})

Cσ(5) Cσ(6) Cσ(7) Cσ(8)

x1

({[0.1, 0.3], [0.3, 0.5],
[0.4, 0.7], [0.6, 0.7]},
{[0.2, 0.3], [0.2, 0.3],

[0.3, 0.5]})

({[0.5, 0.7], [0.6, 0.8],
[0.7, 0.8]},

{[0.1, 0.2], [0.1, 0.2],
[0.2, 0.3]})

({[0.2, 0.4], [0.4, 0.5],
[0.6, 0.7]},

{[0.1, 0.2], [0.4, 0.5],
[0.4, 0.6]})

({[0.1, 0.2], [0.2, 0.3],
[0.4, 0.6], [0.5, 0.6]},
{[0.3, 0.4], [0.3, 0.4],

[0.5, 0.6]})

x2

({[0.3, 0.5], [0.4, 0.5],
[0.7, 0.8]},

{[0.1, 0, 2], [0.2, 0.4],
[0.3, 0.4]})

({[0.3, 0.4], [0.3, 0.5],
[0.4, 0.5], [0.6, 0.8]},
{[0.1, 0.2], [0.1, 0.3],
[0.3, 0.4], [0.4, 0.5]})

({[0.1, 0.3], [0.3, 0.5],
[0.5, 0.7]},

{[0.2, 0.3], [0.3, 0.5],
[0.6, 0.7]})

({[0.4, 0.6], [0.5, 0.6],
[0.6, 0.8]},

{[0.1, 0.2], [0.2, 0.3],
[0.2, 0.3]})

x3

({[0.3, 0.4], [0.5, 0.7],
[0.6, 0.7]},

{[0.1, 0.2], [0.1, 0.3],
[0.2, 0.3], [0.2, 0.4],

[0.4, 0.5]})

({[0.1, 0.2], [0.3, 0.4],
[0.4, 0.5], [0.4, 0.5]},
{[0.2, 0.3], [0.4, 0.5],

[0.7, 0.8]})

({[0.2, 0.4], [0.2, 0.4],
[0.3, 0.4]},

{[0.5, 0.6], [0.5, 0.6],
[0.5, 0.6]})

({[0.3, 0.4], [0.3, 0.4],
[0.3, 0.4]},

{[0.3, 0.4], [0.4, 0.5],
[0.4, 0.5], [0.4, 0.5]})

Step III-2. Calculate the separating measure from positive and negative ideal solutions. Based on
group decision matrix R̃, we have

d+1 = 6.7917, d−1 = 9.2083; d+2 = 6.2875, d−2 = 9.7125; d+3 = 7.245, d−3 = 8.755.

Step III-3. Calculate the relative closeness to the ideal solution, then we have

c1 = 0.5818, c2 = 0.607, c3 = 0.5472.

Step III-4. Rank the emergency alternatives according to descending order of ci. Thus the ranking
order can be derived as

x2 � x1 � x3.

6.2.2. MCGDM Approach Based on Simple Averaging Operator

In this subsection, we follow the aggregation operator-based methodology to devise another
MCGDM approach based on a simplified version of IVDHFWA operator [31] in Equation (6) to treat
all decision makers with equal importance, which is introduced in the following Approach IV.
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Approach IV. MCGDM based on Interval-valued dual hesitant fuzzy averaging operator
considering prioritization relations among assessing criteria

Step IV-1. Utilize the interval- valued dual hesitant fuzzy averaging (IVDHFA) operator, which
actually is a special case of IVDHFWA operator [31] in Equation (6) with equal input weights, to
aggregate the r̃(k)ij (i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , t), then we get the decision results r̃(k)i
corresponding to the alternative xi, where

r̃(k)i = IVDHFA(r̃(k)i1 , r̃(k)i2 , . . . , r̃(k)ij , . . . , r̃(k)im ) =

∪
[µLk

ij ,µUk
ij ]∈h̃(k)ij ,[νLk

ij ,νUk
ij ]∈g̃(k)ij

({[
1−

m
∏
j=1

(1− µLk
ij )

1
m , 1−

m
∏
j=1

(1− µUk
ij )

1
m

]}
,

{[
m
∏
j=1

(νLk
ij )

1
m ,

m
∏
j=1

(νUk
ij )

1
m

]})
.

Step IV-2. Aggregate all individual overall decision values r̃(k)i (k = 1, 2, . . . , t) into the group
overall decision values r̃i(i = 1, 2, . . . , n) by IVDHFA operator, where

r̃i = IVDHFA(r̃(1)i , r̃(2)i , . . . , r̃(k)i , . . . , r̃(t)i ) =

∪
[µLk

i ,µUk
i ]∈h̃(k)i ,[νLk

i ,νUk
i ]∈g̃(k)i

({[
1−

t
∏

k=1
(1− µLk

i )
1
t , 1−

t
∏

k=1
(1− µUk

i )
1
t

]}
,
{[

t
∏

k=1
(νLk

i )
1
t ,

t
∏

k=1
(νUk

i )
1
t

]})
.

Step IV-3. Calculate score values of overall decision values. By use of Equation (2), we get score
values s(r̃i) for the overall decision values r̃i, respectively.

Step IV-4. Rank alternative emergency response solutions according to descending order of score
values s(r̃i) (i = 1, 2, . . . , n).

Subsequently, we also apply above Approach IV to resolve the same problem in Section 6.1, but
not considering prioritization relations among assessing criteria. Decision steps are detailed as follows.

Step IV-1. Utilize the IVDHFA operator to aggregate r̃(k)ij (i = 1, 2, 3; j = 1, 2, . . . , 8; k = 1, 2, 3), into

r̃(k)i corresponding to alternative xi, then we have

r̃(1)1 = ({[0.477, 0.6203], [0.4846, 0.6266]}, {[0.2057, 0.3193], [0.2163, 0.331]});

r̃(1)2 = ({[0.3627, 0.5063], [0.3748, 0.5174]}, {[0.2707, 0.396], [0.2769, 0.4037]});

r̃(1)3 = ({[0.443, 0.588], [0.4537, 0.5973], [0.4775, 0.6222], [0.4875, 0.6307]}, {[0.2128, 0.3337], [0.2206, 0.3431],
[0.232, 0.351], [0.2405, 0.3609]});
r̃(2)1 = ({[0.4473, 0.6222], [0.4554, 0.6285], [0.4578, 0.6307], [0.4658, 0.6369]}, {[0.2213, 0.3386]});

r̃(2)2 = ({[0.4909, 0.6626]}, {[0.1755, 0.3105]});

r̃(2)3 = ({[0.3614, 0.5003], [0.3736, 0.5116]}, {[0.2783, 0.4027], [0.3035, 0.4141], [0.2885, 0.4141], [0.3146,
0.4258]});
r̃(3)1 = ({[0.4191, 0.5738], [0.4371, 0.5914]}, {[0.2013, 0.3219], [0.2196, 0.3386], [0.2146, 0.3386], [0.234,
0.3562], [0.206, 0.3281], [0.2246, 0.3452], [0.2196, 0.3452], [0.2394, 0.3631]});
r̃(3)2 = ({[0.4949, 0.669], [0.5128, 0.6854], [0.5199, 0.6807], [0.5369, 0.6965]}, {[0.1251, 0.2671], [0.1435,
0.2769], [0.1488, 0.2847], [0.1707, 0.2952]});
r̃(3)3 = ({[0.5228, 0.5834]}, {[0.2426, 0.3871], [0.2646, 0.4072]});

Step IV-2. Aggregate all the individual overall decision values r̃(k)i (k = 1, 2, 3) into group overall
decision values r̃i(i = 1, 2, 3) by IVDHFA operator. Taking r̃1 as example, we have

r̃1 = ({[0.4483, 0.6061], [0.4541, 0.6116], [0.451, 0.6083], [0.4567, 0.6137], [0.4518, 0.609], [0.4576, 0.6145],
[0.4545, 0.6112], [0.4602, 0.6166], [0.451, 0.6083], [0.4567, 0.6137], [0.4537, 0.6104], [0.4594, 0.6159],
[0.4545, 0.6112], [0.4602, 0.6166], [0.4572, 0.6134], [0.4629, 0.6188]}, {[0.2093, 0.3265], [0.2154, 0.332],
[0.2138, 0.332], [0.22, 0.3377], [0.2109, 0.3286], [0.217, 0.3342], [0.2154, 0.3342], [0.2217, 0.3399], [0.2128,
0.3304], [0.2191, 0.336], [0.2174, 0.336], [0.2238, 0.3418], [0.2145, 0.3325], [0.2207, 0.3382], [0.2191, 0.3382],
[0.2255, 0.344]}).
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Step IV-3. Obtain the score values of s(r̃i) according to the overall decision values
r̃i(i = 1, 2, 3), where

s(r̃1) = 0.2578, s(r̃2) = 0.2851, s(r̃3) = 0.1911.

Step IV-4. Then according to THE descending order of above s(r̃i) (i = 1, 2, 3), we get the ranking
order of emergency response solutions as

x2 � x1 � x3.

6.2.3. Comparative Analysis

Among the above-developed four approaches, Approach I and Approach II are capable
of including criteria prioritization in their decision-making processes, while Approach III and
Approach IV are only applicable to general problems without any need to consider prioritization
relations among assessment criteria.

For more clarity, we have collected all the results that were generated by the four approaches in
following Table 13. As can be seen from the ranking results, response solutions x1 and x2 always keep
their ranking relations as x2 � x1, but the response solution x3 holds various positions among ranking
results obtained by the four approaches. Regarding the decision situations without considering criteria
prioritization, both Approach III and Approach IV comprehensively identified solution x3 as the worst
one. However, with respect to other situations where there exist criteria prioritization as (C2) � (C5) �
(C1) � (C8) � (C4) � (C6) � (C7) � (C3), we find that solution x3 received better evaluations as listed
in Tables 4–6 than the other two solutions under criteria C2, C5 and C1, which were determined with
significantly higher relative importance than other criteria. As a result, Approach I and Approach II,
that are capable of exploiting prioritization relations among assessing criteria, both promote response
solution x3 in their output ranking orders.

As observed from the above comparative analysis, the proposed Approach I and Approach II
manage to reflect important group opinion on criteria prioritization in decision making processes,
thus are capable of deriving ranking results rationally when addressing our targeted special type of
ERSE problems.

Table 13. Ranking orders obtained by Approaches I–IV.

Methods Obtained Ranking Orders Scores of Solutions

Approach I
(considering weights for decision makers and

prioritization among criteria)
x3 � x2 � x1 s(r̃1) = 0.0453, s(r̃2) = 0.381, s(r̃3) = 0.4292.

Approach II
(considering prioritization among criteria) x2 � x3 � x1 s(r̃1) = 0.052, s(r̃2) = 0.3659, s(r̃3) = 0.3456.

Approach III
(not considering prioritization among criteria) x2 � x1 � x3 c1 = 0.5818, c2 = 0.607, c3 = 0.5472.

Approach IV
(not considering prioritization among criteria) x2 � x1 � x3 s(r̃1) = 0.2578, s(r̃2) = 0.2851, s(r̃3) = 0.1911.

6.3. Comparative Study with Other Methods under a Regressed Decision-Making Scenario

Thus far, to our best knowledge, there are no other MCGDM approaches that address the same
practical questions as targeted in this paper, that is, multiple criteria group decision-making problems
in which prioritization relations exist among assessment criteria and decision information takes the
form of interval-valued dual hesitant fuzzy elements.

Regarding most related parallel research under dual hesitant fuzzy environments, Ren and
Wei [57] developed another methodology based on dice similarity measure to cope with the multiple
criteria decision making problems with prioritization relations among criteria, but their method is only
applicable to the specific single-person decision-making scenarios with dual hesitant fuzzy information.
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Therefore, to further inspect the flexibility and effectiveness of our proposed approaches, we
here firstly regress them to the same special case: single-person dual hesitant fuzzy multiple criteria
decision making, then apply to the problem investigated in Ren and Wei [57]. The dual hesitant fuzzy
decision matrix given by Ren and Wei [57] is shown in the following Table 14.

Table 14. Dual hesitant fuzzy decision matrix of the comparative example adopted in Ren and Wei [57].

G1 G2 G3 G4

A1 {(0.5, 0.6), (0.3)} {(0.2), (0.7, 0.8)} {(0.3, 0.4), (0.5, 0.6)} {(0.5, 0.6, 0.7), (0.3)}
A2 {(0.8), (0.2)} {(0.6, 0.7, 0.8), (0.2)} {(0.1, 0.2), (0.3)} {(0.2), (0.6, 0.7, 0.8)}
A3 {(0.7, 0.8), (0.2)} {(0.2, 0.3, 0.4), (0.5)} {(0.4, 0.5), (0.2)} {(0.2, 0.4), (0.5, 0.6)}
A4 {(0.3, 0.4), (0.6)} {(0.4, 0.5), (0.3, 0.4)} {(0.3, 0.4), (0.6)} {(0.4, 0.5), (0.5)}
A5 {(0.7), (0.3)} {(0.4, 0.5), (0.3, 0.4)} {(0.3), (0.5, 0.6, 0.7)} {(0.5), ( 0.4, 0.5)}

According to the decision matrix shown in Table 14 and the method by Ren and Wei [57], the
un-normalized importance weight matrix T and the corresponding normalized importance weight
matrix W can be obtained as following

T =
[
Tij
]
=


1 0.6466 0.1361 0.053
1 0.8 0.622 0.2246
1 0.7894 0.2968 0.203
1 0.3648 0.2071 0.0763
1 0.7 0.3934 0.1312

 and W =
[
wij
]
=


0.5448 0.3522 0.0742 0.0289
0.3778 0.3023 0.235 0.0849
0.4368 0.3448 0.1297 0.0887
0.6054 0.2231 0.1254 0.0462
0.4495 0.3147 0.1768 0.0590

,

based on which, the dice similarity measure [57], correlation coefficient method [83] and the DHFWA
operator [84], respectively, have been applied to obtain the ranking orders of all the five solutions, as
shown in Table 15. Subsequently, for comparison, we apply our approaches to the same problem.

Firstly, we transform the original decision matrix in Table 14 into interval-valued dual hesitant
fuzzy decision matrix, as shown in following Table 16.

Table 15. Ranking results obtained by comparative methods *.

Methods Ranking Orders Obtained Scores of Alternatives

Method I:
Score function [57] + dice

similarity measure [57]
A2 � A5 � A3 � A1 � A4

PD(A∗, A1) = 0.7156; PD(A∗, A2) = 0.8477;
PD(A∗, A3) = 0.8287; PD(A∗, A4) = 0.7004;
PD(A∗, A5) = 0.8459.

Method II:
Score function [57] + correlation

coefficient method [83]
A2 � A5 � A3 � A1 � A4

ρDHFS(A∗, A1) = 0.6008; ρDHFS(A∗, A2) = 0.8073;
]ρDHFS(A∗, A3) = 0.7680; ρDHFS(A∗, A4) = 0.5625;
ρDHFS(A∗, A5) = 0.7841.

Method III:
Score function [57] + DHFWA

operator [84]
A2 � A3 � A5 � A1 � A4

s(A1) = 0.0039; s(A2) = 0.4012; s(A3) = 0.2707;
s(A4) = −0.1468; s(A5) = 0.2026.

Method IV:
Our Approaches A2 � A3 � A5 � A1 � A4

s(A1) = 0.1121; s(A2) = 0.458; s(A3) = 0.3514;
s(A4) = −0.1675; s(A5) = 0.303.

* We have programmed all the comparative methods by use of Matlab® and verified the results listed.
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Table 16. Interval-valued Dual hesitant fuzzy decision matrix of the comparative example adopted in
Ren and Wei [57].

G1 G2 G3 G4

A1
{([0.5, 0.5], [0.6, 0.6]),

([0.3, 0.3])}
{([0.2, 0.2]),

([0.7, 0.7], [0.8, 0.8])}
{([0.3, 0.3], [0.4, 0.4]),
([0.5, 0.5], [0.6, 0.6])}

{([0.5, 0.5], [0.6, 0.6],
[0.7, 0.7]), ([0.3, 0.3])}

A2
{([0.8, 0.8]),
([0.2, 0.2])}

{([0.6, 0.6], [0.7, 0.7],
[0.8, 0.8]), ([0.2, 0.2])}

{([0.1, 0.1], [0.2, 0.2]),
([0.3, 0.3])}

{([0.2, 0.2]), ([0.6, 0.6],
[0.7, 0.7], [0.8, 0.8])}

A3
{([0.7, 0.7], [0.8, 0.8]),

([0.2, 0.2])}
{([0.2, 0.2], [0.3, 0.3],

[0.4, 0.4]), ([0.5, 0.5])}
{([0.4, 0.4], [0.5, 0.5]),

([0.2, 0.2])}
{([0.2, 0.2], [0.4, 0.4]),
([0.5, 0.5], [0.6, 0.6])}

A4
{([0.3, 0.3], [0.4, 0.4]),

([0.6, 0.6])}
{([0.4, 0.4], [0.5, 0.5]),
([0.3, 0.3], [0.4, 0.4])}

{([0.3, 0.3], [0.4, 0.4]),
([0.6, 0.6])}

{([0.4, 0.4], [0.5, 0.5]),
([0.5, 0.5])}

A5
{([0.7, 0.7]),
([0.3, 0.3])}

{([0.4, 0.4], [0.5, 0.5]),
([0.3, 0.3], [0.4, 0.4])}

{([0.3, 0.3]), ([0.5, 0.5],
[0.6, 0.6], [0.7, 0.7])}

{([0.5, 0.5]),
([0.4, 0.4], [0.5, 0.5])}

Obviously, we can treat the comparative problem as degraded special case and apply our
approaches to resolve it. Moreover, please note that, under single-person decision making scenarios,
Approach I and Approach II share all the same decision steps.

Then, according decision steps described in Section 5, we can obtain the unnormalized importance
weight matrix T′ and the corresponding normalized importance weight matrix W ′ as follows:

T′ =
[

T′i,j
]
=


1 0.25 0.1375 0.0275
1 0.6 0.3 0.165
1 0.55 0.11 0.0385
1 0.25 0.05 0.0125
1 0.4 0.08 0.024

 and W ′ =
[
w′ij
]
=


0.7067 0.1767 0.0972 0.0194
0.4843 0.2906 0.1453 0.0799
0.5888 0.3238 0.0648 0.0227
0.7619 0.1905 0.0381 0.0095
0.6649 0.266 0.0532 0.016

,

based on which, we get the scores of all five alternatives as: s(A1) = 0.1121, s(A2) = 0.458, s(A3) = 0.3514,
s(A4) = −0.1675 and s(A5) = 0.303, which indicates the ranking result of A2 � A3 � A5 � A1 � A4.
For more clarity, all the comparative ranking results have been collected in Table 15.

As can be seen from Table 15, Method I and Method II output the exact same ranking order of all
five alternatives, i.e., A2 � A5 � A3 � A1 � A4; Method III and our approaches yield the exact same
ranking order A2 � A3 � A5 � A1 � A4. Although the ranking relation between alternative A3 and
alternative A5 differs above results, the four methods unanimously recognized the best solution A2

and the worst solution A4, respectively. Therefore, it can be observed that our proposed approaches
attain effectiveness and adaptability.

7. Conclusions

In the case of potential developmental risks, emergency response solutions evaluation (ERSE)
has become an indispensable regular activity of emergency departments in different levels of modern
sustainable governance.

Focusing on a special type of practical ERSE problems, where decision makers hesitate about
their uncertain assessments and prioritization relation exists among assessment criteria, we have
developed two effective MCGDM approaches by employing interval-valued dual hesitant fuzzy
set (IVDHFS) to help elicit hesitant fuzzy decision information more flexibly and comprehensively.
Differing from classic hesitant fuzzy distance measure-based methodologies, we firstly defined a fuzzy
entropy measure for IVDHFS so as to avoid information distortion that could be caused by subjective
supplementing mechanism. To rationally exploit decision information embedded in prioritization
relation among assessing criteria, we have integrated Yager’s prioritized average aggregation operators
with the defined IVDHFS fuzzy entropy to develop two prioritized average aggregation operators.
On the strength of the above components, we have further constructed two MCGDM approaches
to tackle complex ERSE problems with or without known weights of decision makers. Case study
and comparative studies have verified the effectiveness and flexibility of our proposed approaches.
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As can be seen, the methodology presented in this paper is of obvious practical significance in helping
emergency departments construct rational models of their decision support systems, thereby well
maintaining response repositories in case of evolving emergency events.

Due to the fast pace of economic development in many countries, new issues will be brought
about to ERSE activities by operational demands in emergency management, such as, the requirement
of appropriate decision making frameworks that accommodates large group of heterogeneous decision
makers (stakeholders), even in settings of distributed networks. Therefore, future research directions
should be conducted along following lines: firstly, cross-entropy measure and correlational coefficient
could be introduced to derive programming models in order to determine unknown weighting
information objectively; secondly, large-group uncertain decision making methods with heterogeneous
decision information should be developed in-depth to accommodate involved stakeholders; thirdly,
novel group decision making frameworks in the scenarios of distributed networks also should be
paid more attention. In addition, comprehensive evaluation of practices in collaborative emergency
response management deserves further efforts to identify critical factors so that governments can build
more effectiveness and resilience into emergency response solutions.
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