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Abstract: Random effect panel data hurdle models are established to research the daily crash
frequency on a mountainous section of highway I-70 in Colorado. Road Weather Information
System (RWIS) real-time traffic and weather and road surface conditions are merged into the models
incorporating road characteristics. The random effect hurdle negative binomial (REHNB) model is
developed to study the daily crash frequency along with three other competing models. The proposed
model considers the serial correlation of observations, the unbalanced panel-data structure,
and dominating zeroes. Based on several statistical tests, the REHNB model is identified as the
most appropriate one among four candidate models for a typical mountainous highway. The results
show that: (1) the presence of over-dispersion in the short-term crash frequency data is due to both
excess zeros and unobserved heterogeneity in the crash data; and (2) the REHNB model is suitable
for this type of data. Moreover, time-varying variables including weather conditions, road surface
conditions and traffic conditions are found to play importation roles in crash frequency. Besides the
methodological advancements, the proposed technology bears great potential for engineering
applications to develop short-term crash frequency models by utilizing detailed data from field
monitoring data such as RWIS, which is becoming more accessible around the world.

Keywords: daily crash frequency; short-term driving environment; panel data; hurdle negative
binomial; random effect

1. Introduction

Traffic crashes cause a lot of occupancy injury and serious congestion on the road systems around
the world. Knowledge about critical contributing factors and the prediction of crash risk are critical to
developing next-generation crash prevention technologies. In the recent review studies conducted by
Lord and Mannering [1] as well as Mannering and Bhat [2], some methodology challenges encountered
in current crash frequency studies were summarized, including temporal and spatial correlation,
time-varying explanatory variables, and omitted-variables bias. Most of the existing crash frequency
modeling methods use aggregated data in extended time scales (e.g., yearly or monthly), instead of
fine time scales (e.g., hourly, daily) containing detailed time-varying information. The extended scales
and aggregated variables lead to some limitations as summarized in references [1,2]. For example,
some important explanatory variables in crash frequency models sometimes change quickly over
time, such as weather, road surface conditions and traffic flow. By adopting extended time scales,
some critical information over time of those important influencing variables (e.g., weather condition,
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traffic speed) is inevitably missing [1]. The crash frequency prediction models derived from the
aggregated data may fail to capture important time-varying and/or space-varying information and
introduce errors into model results due to unobserved heterogeneity [3,4].

However, when data on smaller time scales (e.g., hours, days, rather than years) is adopted
in crash frequency models, two major associated methodological challenges arise: (1) time-specific
heterogeneity (e.g., micro-climates such as a snow storm, or temporal effects such as the weekend,
which may influence the crash risk of the road segments in the same area at the same time); and (2) the
preponderant portion of non-crash observations (more zero observations under fine time scales).
Specifically, when the scales get smaller, the same road segment and/or the same time period may
have multiple observations, which may be sharing unobserved effects because of the correlation over
time and/or space [1]. The second challenge associated with short-term data is excess zeros. Because of
the fine time scales, there may be tremendous observations with no crash which indicate a big portion
of zero counts. Consequently, excessive zeros need to be appropriately taken care of if a short-term
crash frequency model is to be developed.

With the wide applications of ITS (Intelligent Transport System) in recent years, real-time traffic
and weather monitoring data becomes more conveniently obtainable on many road systems
unprecedentedly. By taking advantage of these real-time data, many researchers have attempted
to develop short-term crash prediction models, which primarily studied crash risk or likelihood [5–18].
There is, so far, rarely reported studies on the direct prediction of short-term crash frequency
and, therefore, the associated technical challenges remain unsolved. In modern social science,
panel data models have been widely used when considering data with both spatial- and time-varying
characteristics, partly because they are capable of addressing the heterogeneity of the individuals.
Being applied in the traffic engineering field, fixed effect or random effect Poisson and negative
binomial models have been adopted for crash prediction studies recently [19–21]. Although they
shed light on dealing with the first challenge (i.e., time-specific heterogeneity) as summarized above,
these studies were mostly about extended time period modeling and only dealt with heterogeneity in
monthly or yearly repeated observations.

As extensions of the Poisson and negative binomial models, Zero-inflated Poisson and
Zero-inflated negative binomial (ZINB) models have sometimes been used to handle mass zero counts
in crash data [22–25]. A previous study by the authors examined hourly crash frequency using the
ZINB model and showed that ZINB is capable of addressing preponderance zeroes in crash data [26].
However, zero-inflated models used for crash prediction also received some criticisms because of
the structural-zero assumption [27,28]. As an alternative to zero-inflated models, hurdle models
have some inherent advantages on model assumptions. By relaxing the structural zero assumption,
hurdle models assume that all zeroes in the crash data are sampling zeroes [29–32]. In contrast to
the structural zero assumption presuming an inherently safe condition with no crashes, sampling
zero assumption implies that all segments have crash potential and the zero state does not remain
permanently on any road segment [29–32]. Existing crash studies using hurdle models [29–33] were
primarily developed based on cross-sectional data (as opposed to panel data) and did not consider
random effects. These studies ignore temporal and spatial correlations, which, however, are critical
to short-term panel data. In light of the above discussion, this study explores the development of
the random effect hurdle models for crash frequency prediction on fine time scales for the first time.
The proposed model considers the correlation of observations, the unbalanced panel-data structure,
and dominating zero observations.

2. Materials and Methods

In the following study, we select a mountainous portion of the interstate highway I-70 corridor
in Colorado for a demonstration. The I-70 mountain corridor is a typical mountainous highway that
features steep slopes and sharp curves. Moreover, due to high elevation, I-70 often experiences
inclement and fast changing weather conditions, such as snow, rain, and wind. In preparation for the
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following data analysis, an integrated crash database is first established, which contains information
on crash data, road geometry, real-time weather, road surface conditions and traffic flow information.
A portion of I-70 with a length of 56.06 miles (mile marker 195.26 to 251.32) is chosen for the study.
The portion of I-70 is first split into homogeneous roadway segments, which are based on splitting
criteria concerning the change of lane width, shoulder type, median type, speed limit and pavement
conditions. One hundred homogeneous roadway segments are generated with an average length
around one mile, including 52 eastbound and another 48 westbound segments. Because of the typical
mountainous terrain along with the fast-changing nature of adverse weather on I-70, detailed weather
factors in a short time period become very critical in terms of influencing road safety as compared
to many other time-constant ones. Four types of crash-related data from this 56.06 mile section
are included in this study: (1) traffic crash data; (2) highway geometry data (including pavement
characteristics); (3) real-time road surface and weather condition data; (4) real-time traffic data. The final
combined database contains daily distributions of crashes, traffic, road surface and weather condition
data for roadway segments on both driving directions. By combining short-term data from different
sources, we can perform a more insightful and comprehensive study on critical influencing factors.

The traffic crash data, provided by the Colorado State Patrol (CSP, Department of Public Safety,
Lakewood, CO, USA), spans from January 2010 to December 2010. Daily records of crash data are
generated for each segment according to the occurrence time of each crash and then the panel data
structure is established accordingly. The roadway geometry data is from the Roadway Characteristics
Inventory (RCI) operated by the Colorado Department of Transportation (CDOT, Denver, CO, USA).
The dataset from RCI provides detailed roadway design features and pavement characteristics,
including speed limit, segment length, number of lanes, lane width, horizontal curvature, grade,
shoulder width, median types, median width, international roughness index, rut depth, etc.
Temporal dummy variables for each day, such as month, day of the week, etc. represent the temporal
distribution of crash frequency. However, the temporal dummy variables were found to be not
significant in the models.

In addition to these roadway characteristics commonly used in accident modeling, this study also
incorporates short-term traffic and weather/surface data provided by the road weather information
system (RWIS). There are 24 traffic stations along the study area on the I-70 corridor providing
real-time monitoring data of traffic speed and volume. The real-time traffic data, which were
originally recorded in 2 min intervals, are processed into daily records to facilitate the following
study. For example, the daily average, standard deviation and minimum of traffic speed and the daily
average, standard deviation and maximum of traffic volume have been considered in the statistical
models as possible influence factors.

Seven weather stations are installed along the study area, providing motorists with real-time
weather conditions. Moreover, the detailed weather and road surface condition data were provided by
these weather stations in this study. In the CDOT database, precipitation status types include None,
Rain, Snow, Hail and Unknown type precipitation. The real-time weather and surface condition data
was collected every 20 min. In addition, the daily average and minimum value of the visibility have
also been considered as the candidates of the influence factors. In order to generate the daily records
for precipitation status or road surface condition, the ratio of precipitation status or road surface
condition in the day road surface condition is adopted. For example, the ratio of the wet road surface
in the day means the number of the road surface condition records as wet road divided by the number
of all the road surface condition records within that day. Other weather variables, such as temperature,
precipitation amount and humidity the average, minimum and maximum values of these variables
have been chosen as the candidates of influence factors. Time-varying data from the closest weather
and traffic stations are assigned to each roadway segment.

Due to sensor malfunctions, sometimes real-time data records leave “empty” windows
(i.e., no data for one or several sensors at some time). After discarding those data records with
missing values, a total of 29,462 records were generated. A total of 783 crashes occurred in these
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records. As a result, the panel data structure becomes unbalanced, posing additional challenges on
following model development. A summary statistics of the explanation variables are shown in Table 1.

Table 1. Summary statistics of the data for observations.

Variable Mean Standard Deviation Minimum Maximum

Daily crash frequency 0.0266 0.1908 0.0000 10.0000

Daily average speed gap (measured as the difference between the
speed limit and daily average traffic speed, in miles per hour) 59.3222 5.2399 30.7746 65.0000

Daily traffic volume (in 1000 vehicles per day) 15.4120 6.7411 0.7200 57.9568

Roadway segment length (in miles) 1.0725 0.7123 0.3680 3.6840

Inside shoulder width indicator
(one if inside shoulder width is larger than five feet, zero otherwise) 0.1551 0.3620 0.0000 1.0000

Long remaining service life of rut indicator
(one if the value of RUTI is higher than 99, zero otherwise) 0.2043 0.4032 0.0000 1.0000

The indexed value of the international roughness index
(lower values equal rougher roads) 93.9606 5.2653 80.0000 100.0000

Daily minimum visibility (in miles) 0.8243 0.3679 0.0000 1.1000

Ratio of snowing status in the day 0.0994 0.2183 0.0000 1.0000

Ratio of wet road surface in the day 0.0946 0.1916 0.0000 1.0000

Ratio of chemical wet road surface in the day 0.0589 0.1772 0.0000 1.0000

Ratio of icy warning road surface in the day 0.1055 0.2443 0.0000 1.0000

RUTI: ruti index.

In typical crash frequency models for a yearly or monthly data structure, observations are
typically assumed to be independent. This assumption is likely violated with repeated measures in
short-term time periods, such as crash counts during different time periods at the same site or those
between different road segments at the same time instant. Certain correlations among those repeated
observations may occur and random effect models are usually adopted to deal with this issue. In order
to identify the most appropriate model for the study, we compare some possible candidate models
including random effect Poisson (REP), random effect negative binomial (RENB), random effect hurdle
Poisson (REHP) and random effect hurdle negative binomial (REHNB).

The total number of observations is denoted as N,

N =
I

∑
i=1

ti =
T

∑
t=1

it (1)

where t = 1, . . . , T, and it is the number of different site observations in time period t; i = 1, . . . , I,
and ti is the number of repeated observations in site i. Under balanced panel data structure, ti is the
same for all sites or it is the same for all time periods. Since the short-term weather, road surface,
and traffic data was not all continuous, ti and it are different, and thus for this data the data structure
is actually unbalanced panel data.

We start with the random effect Poisson model as an example of random effect models, which are
applied to panel data. Letting nit be the crash frequency on roadway segment (i) during period (t),
the random effect Poisson model is shown as:

P(nit) =
exp(−λit)λ

nit
it

Γ(nit + 1)
(2)

where P (nit) is the probability of n crashes happening on the highway segment (i) in time period (t)
and λit is the Poisson parameter which equals to the expected mean value of nit (E (nit)):

λit = exp(βxit + σi) (3)
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where λit is the Poisson parameter, β is the vector of regression coefficients, and xit is the vector of
covariates defining crash frequency on roadway segment (i) during predetermined time period (t);
σi is the random effect parameter with independent normal distributions, i.e., σi ∼ N(0, ϕ2

σi
) (ϕσi is

the standard deviation of σi).
The main limitation of the Poisson model is that it restricts the mean and variance of the

distribution being equal [24]. The possibility of over-dispersion (having variance exceeding the mean)
will result in biased coefficient estimates. To relax this constraint facing by the Poisson model, a negative
binomial distribution is usually adopted [22,23,34,35]. The random effect negative binomial model is
derived from Equation (2) by adding a Gamma-distributed error term such that,

log(λit) = βxit + εit + σi (4)

where σi is the random effect parameter with independent normal distributions and εit is the
Gamma-distributed error term, and this addition allows the variance to differ from the mean [24]:

Var[nit] = E[nit][1 + αE[nit]] = E[nit] + αE[nit]
2 (5)

where α is an additional estimable coefficient.
The negative binomial distribution is shown as:

P(nit) =
Γ((1/α) + nit)

Γ(1/α)Γ(nit + 1)

(
1/α

(1/α) + λit

)1/α ( λit
(1/α) + λit

)nit

(6)

Considering the excess zeros issue, the hurdle Poisson model with random effects has two different
states (zero state and Poisson state), which are shown as:

nit = 0 (7a)

with probability
qit (7b)

nit = y (y = 1, 2, . . .) (8a)

with probability

(1− qit)
e−λit λit

nit

(1− e−λit)nit!
(8b)

where
λit = exp(βxit + σi) (8c)

logit(qit) = ln(
qit

1− qit
) = θAit + ψi (8d)

Ait and xit are the covariates with θ and β as their coefficient vectors; σ and ψ are the random effect
parameters for zero state and Poisson state with independent normal distributions, i.e., σ ∼ N(0, ϕ2

σ)

and ψ ∼ N(0, ϕ2
ψ) (ϕσ and ϕψ are the standard deviations of σ and ψ).

Moreover, the hurdle negative binomial model with random effects is shown as

nit = 0 (9a)

with probability
qit (9b)

nit = y (y = 1, 2, . . .) (10a)
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with probability

(1− qit)

(
1− 1

(1 + αµit)
(1/α)

)(
Γ((1/α) + nit)

Γ(1/α)nit!

)(
(αµit)

nit

(1 + αµit)
nit+(1/α)

)
(10b)

where
uit = (1/α)[(1/α) + λit] (10c)

All the parameters in Equations (7)–(10) share the same definitions as those defined above for
RENB and REHP models.

Several tests can be used to verify the presence of over-dispersion and the causation of zero counts
on over-dispersion, such as the dispersion parameter, Z-score and Lagrange multiplier (LM) tests,
Vuong’s test [30], among others. The over-dispersion parameter α of RENB is significant with
a t-statistic of 6.72, which indicates the appropriateness of the RENB model over the REP model
and the presence of over-dispersion. The corresponding p values for the Z-score and LM tests (for test
calculation details, please refer to [30]) are all less than 0.0001, which also imply the existence of
over-dispersion in the data.

With the short-term panel data structure, it is apparent that there are a high number of zero crash
observations; however, it is still not clear whether the random effect hurdle model is truly more
statistically appropriate than its counterparts (REP and RENB models). Vuong’s test has often been
used for comparing non-nested models and different count data models. Here it is used to compare
REHNB vs. REP models, and REHNB vs. RENB models. Vuong [36] proposed a t-statistic–based test
which first computes mit: as a transition parameter:

mit = ln
(

f1(yit|Xit)

f2(yit|Xit)

)
(11)

where f1(yit|xit) could be the probability density function of the REHNB or REHP model and
f2(yit|xit) could be the probability density function of the RENB or REP model.

Then Vuong’s statistic is tested as [23,36],

V =
m
√

N
Sm

(12)

where m and Sm are the mean and the standard deviation of mit; N is the sample size. The REHNB
model is statistically preferred because the absolute value of V is bigger than 1.96 (−26.4 vs. RENB
and −25.9 vs. REP).

In addition, the Akaike information criterion (AIC) has frequently been used for model selection
which is shown in Equation (13).

AIC = −2(lnL− p) (13)

where L is the likelihood value of the model; p is the number of parameters of the model.
Among different models developed with the same dataset, the one with the lower AIC value

is usually preferred. The AIC value of REHNB is smaller than those of the REHP, RENB and REP
models (6320.9 vs. 6342.7, 6320.9 vs. 6357.4 and 6320.9 vs. 6497.9), which means that the REHNB
model is favored over the RENB and REP models according to Hilbe’s AIC rule of thumb [30,37,38].
These results indicate that the presence of over-dispersion in the short-term crash data is due to both
excess zeroes and unobserved heterogeneity. Without considering the random effect, most of the
research [29–32] about crash frequency modeling using hurdle models found that hurdle negative
binomial models are not convergent or not preferred. For example, Hosseinpour et al. [30] have found
that the hurdle Poisson model instead of the hurdle negative binomial model was the best one among
different models being considered in terms of comparative measures.
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3. Results and Discussion

The REHNB model results are presented in Table 2. The variables in Table 2 for both the negative
binomial state and the zero state are statistically significant at a 90% confidence level. The results show
that many factors significantly influence the crash frequency on I-70, including time-varying variables
(e.g., daily minimum visibility and daily traffic volume) and site-varying variables (e.g., inside shoulder
width indicator and the indexed value of the international roughness index). These factors include
those of road, environmental, and traffic characteristics. Temporal characteristics, such as the weekend
indicator, holiday indicator and month indicators are found to be not significant. The reason why
month indicators are not significant is perhaps that we have already accounted for the road surface
and weather conditions in the model.

Table 2. Random effect hurdle negative binomial model estimation results.

Variable Estimate
Coefficients t-Statistic p Value

Count state as negative binomial model

Constant −9.681 −20.08 <0.0001

Roadway Characteristics

Segment length (in miles) 0.533 2.63 0.0099

Inside shoulder width indicator
(1 if inside shoulder width is larger than 5 feet, 0 otherwise) 1.099 2.50 0.0139

Long remaining service life of rut indicator
(1 if the value of RUTI is higher than 99, 0 otherwise) 1.599 3.79 0.0003

Weather/surface Characteristics

Ratio of snowing status in the day 1.253 2.98 0.0037

Zero state as logistic model

Roadway Characteristics

Segment length (in miles) −0.625 −4.98 <0.0001

The indexed value of the international roughness index
(lower values equal rougher roads) 0.063 23.71 <0.0001

Weather/surface Characteristics

Ratio of wet road surface in the day −0.951 −4.95 <0.0001

Ratio of chemical wet road surface in the day −0.973 −5.32 <0.0001

Ratio of icy warning road surface in the day −0.726 −4.46 <0.0001

Daily minimum visibility 0.231 1.81 0.0731

Traffic Characteristics

Daily average speed gap
(measured as the difference between the speed limit
and daily average traffic speed, in miles per hour)

−0.103 −12.11 <0.0001

Daily traffic volume (in 1000 vehicles per day) −0. 030 −4.58 <0.0001

σi 0.554 2.23 0.0281

ψi 0.763 8.89 <0.0001

α 662.87 912556 <0.0001

Summary Statistics

Number of observations 29462

Log-likelihood at convergence −3144.443

AIC 6320.9

σi and ψi : Random effect parameters; α: additional estimable coefficient; AIC: Akaike information criterion.

The random effect parameter ψi is significant at the 99.9% level and σi is significant at the
97.2% level, which indicates that it is reasonable to adopt random effect specification (the t-statistic for



Int. J. Environ. Res. Public Health 2016, 13, 1043 8 of 11

ψi is 8.89 and for σi is 2.23). The likelihood test between the REHNB and hurdle negative binomial
also shows the significance of the random effect with the p value of the likelihood test less than 0.001
(the detailed calculation and results are not included here to save space). The over-dispersion parameter
α is 662.87 for the REHNB model, which indicates that the REHNB model is preferred. Therefore,
for the present study, the REHNB model is found to be the most preferred one. To save space, only the
REHNB model estimation results are demonstrated in the following. If the parameter coefficient is
positive in the zero state, the probability in the zero state will increase while the mean value of the
predicted crash count will decrease when the parameter gets larger. Moreover, the predicted mean of
the crash count will increase if the parameter coefficient is positive in the negative binomial state.

3.1. Traffic Characteristics

With regard to traffic speed, the daily average speed gap (difference between the speed limit
and daily average traffic speed) is used to present the gap between the speed limit and the daily
average traffic speed. We find that crash frequency will increase with a bigger daily average speed
gap (a negative coefficient in the zero state). Because the raw speed data was truncated for any traffic
speed higher than the speed limits, the recorded traffic speed will not be higher than the speed
limit. Therefore, a larger daily average speed gap essentially presents that congestion perhaps occurs
during this day. These results show that the occurrence of congestion is positively related to the crash
frequency in the study area. Yu and Abdel-Aty [17] also made similar observations that an increase in
the multi-vehicle crashes likelihood is associated with congested conditions at the downstream.

As for daily traffic volume, higher ones decrease the possibility of road segment being in the
zero state (a negative coefficient), which means that the model may be pushed to the negative binomial
state with a higher daily traffic volume and the crash frequency will increase accordingly. Some other
studies have made similar conclusions (e.g., [39]).

3.2. Weather/Surface Characteristics

It is found that the ratio of wet road surface in the day brings a higher crash frequency
(negative coefficient in the zero state). In addition, some other inclement weather and road surface
conditions are also found to contribute to the increase of the crash frequency, including the ratio of the
chemical wet road surface in the day, the ratio of icy warning road surface in the day, and the ratio
of snowing status in the day. The above results on the typical mountainous highway I-70 highlight
the significant safety threats under adverse weather and road surface conditions on mountainous
highways as well as the need for further studies. Given the high crash risks of mountainous highways,
this finding may also shed some light on some potential mitigation efforts to reduce crash counts.
In addition, daily minimum visibility is chosen as a variable in the final model based on the best model
fit (compared with daily average visibility), and a higher daily minimum visibility is found to push
road segments to the zero state, which indicates that better visibility conditions lower the probability of
a higher daily crash frequency. This finding has been confirmed by some short-term crash probability
modeling work (e.g., [14,18,39]).

3.3. Road Characteristics

Turning to parameters of roadway geometric characteristics, the larger length of the highway
segment leads to a higher crash frequency in both the negative binomial state and the zero state along
I-70, which implies that road segments with a longer segment length will perhaps have more crashes.

The RUTI (rut index) variable represents the remaining service life for the rut in the CDOT
database. For example, the value of 100 indicates a 0.15 inch rut or less. By using different thresholds
of RUTI, and based on the best model fit, a dummy variable is adopted which is named as the long
remaining service life of the rut indicator (one if the value of RUTI is higher than 99, zero otherwise).
A longer remaining service life of the rut contributes to a higher crash frequency (with a positive
sign in the negative binomial state) according to the modeling results. This is possibly because the
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driver inclines to be more careful on deep, rutted road segments. Anastasopoulos and Mannering [40]
found that under excellent rut conditions, the majority of the road segments cause a decrease in
the crash occurrences condition while other road segments still show the opposite. In addition, it is
interesting to find that a higher international roughness index (lower values equal rougher roads)
results in a lower crash frequency. It is known that road surface roughness can considerably influence
vehicle performance and maneuverability. The results suggest that although rut may make drivers
more alert, road surface conditions still need to be maintained in order to promote traffic safety.
The inside shoulder width indicator is positive in the negative binomial state which indicates that
roadway segments with wider inside shoulders result in a higher crash frequency. Anastasopoulos and
Mannering [40] found that the same inside shoulder width indicator has a random distribution and it
has a mostly negative effect on crash frequency. The different phenomena observed in the two studies
may be attributable to different driving behaviors on mountainous and non-mountainous highways
and more insightful investigations are still needed in this regard.

4. Conclusions

Given the criticism against ZINB in safety studies, the present study develops random effect hurdle
negative binomial and Poisson models to study crash frequency on fine time scales as a complementary
study to our prior research [26]. Firstly, random effect models including REHNB, REHP, RENB and
REP are established to study the daily crash frequency with the panel data. Four candidate models are
developed and compared in order to identify the most appropriate model for the I-70 mountainous
highway. According to the author's knowledge, random effect hurdle models are used for short-term
crash frequency modeling for the first time. Secondly, in addition to the methodological contribution,
this study also demonstrates a promising engineering technique of developing short-term crash
frequency models based on field monitoring data. Detailed data with refined temporal and spatial
distributions, including crash record, road design, time-varying weather conditions, road surface
conditions and traffic conditions from I-70 in Colorado, are adopted in the study. Without significant
additional investments in data collection equipment, this method can potentially be applied to other
highways in the country or around the world. Last but not least, because of the rich information of
the datasets, this study can adopt short-term data with comprehensive coverage of various variables,
and therefore provides insights for crash frequency prediction in terms of traffic characteristics,
environmental characteristics, and road characteristics. Some key findings are summarized as follow.

1. In addition to site-varying factors (e.g., inside shoulder width indicator and the indexed value
of the international roughness index), time-varying factors (e.g., daily traffic volume and road
surface conditions) also have a significant influence on the crash frequency on interstate highway
I-70. It is worth noting that many different types of road surface conditions can considerably
influence the crash frequency.

2. The results of several different statistical tests show that over-dispersion exists in the short-term
data. In addition, the preference of the REHNB models indicated that the over-dispersion arises
because of both unobserved heterogeneity and excess zeroes. Vuong’s test is conducted for
two pairs of candidate models: REHNB versus REP and REHNB versus RENB. The test results
also confirm the above finding and the REHNB model is found to be the most suitable model for
I-70 according to Vuong’s test and AIC. These findings highlight the importance of handling both
unobserved heterogeneity and excess zero issues in short-term data, as well as the appropriateness
of the random effect hurdle negative binomial model for this type of data.

3. This paper explores developing new short-term crash frequency models (e.g., daily) using real-time
traffic flow, weather and road surface condition data. Such a study has some potential for further
traffic safety improvements. The models and the findings in this paper may open a door toward
consequence-based highway design, active traffic management strategies, and intelligence-based
law enforcement interventions in the future.
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