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Abstract: Water quality assessment is an important foundation of water resource protection 

and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to 

problems for proper assessment. This paper explores a method which is in accordance with 

the water quality changes. The proposed method is based on the variable fuzzy pattern 

recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with 

the entropy weight (EW) method. The proposed method was applied to dynamically assess 

the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water 

quality level is between levels 2 and 3 and worse in August or September, caused by the 

increasing water temperature and rainfall. Weights and methods are compared and random 

errors of the values of indicators are analyzed. It is concluded that the proposed method has 

advantages of dynamism, fuzzification and stability by considering the interval influence of 

multiple indicators and using the average level characteristic values of four models  

as results. 
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1. Introduction 

Water is essential for peoples’ health and socioeconomic development. With the improvement of 

living standards, people have not only put efforts into safeguarding sufficient quantities of water 

resources, but have also paid more attention to increasing water quality. Water quality assessment can 

synthetically quantify the water quality state by choosing an appropriate assessment method and is 

gradually becoming an important tool for scientific utilization and management of water resources [1]. 

In recent years, comprehensive assessment of water quality has attracted a lot of interest. Changes of 

water quality state or level are driven by the interacting influences of physical, chemical and 

microbiological indexes. Complex and various indicators lead to imprecise comprehensive evaluations 

of water quality [2–4]. In addition, variations of external circumstances also result in the dynamic 

change of water quality. Seasonal variations change the water temperature and water surface conditions, 

and further influence the distribution of dissolved oxygen in depth; rainstorms bring lots of pollutants 

into the water, which might increases the total phosphorus content, and also changes the hydraulic 

conditions [5–7]. In order to reasonably assess water quality, researchers have developed a series of 

methods to study the state of water quality. Nazeer et al. used the water quality index (WQI) method to 

determine the water quality of Soan River, and the method was better used during the pre-monsoon 

season [1]. Talalaj used a modified WQI method to study the change in groundwater quality, and the 

results showed that the highest WQI value was recorded in summer, while the lowest was in March [2]. 

Researchers found that WQI method can expediently transform lots of water quality data into a 

comprehensive number to represent the water quality level [3], but some parameters in the index 

equations could influence the final score dramatically and even lead to wrong estimates [4]. Ren et al. 

used the fuzzy comprehensive assessment (FCA) method to assess the water quality and analyze the 

influence of human activities [5]. Yang et al. used the FCA method to assess the groundwater status [6]. 

Although the FCA method can simply obtain the water levels and solve the problem of the fuzzy 

boundaries [3,6], it treats the indicators and standards as points which might miss the information 

contained in the original data [7]. Uddameri et al. used the principal component analysis (PCA) method 

to assess groundwater quality [8]. Kumarasamy et al. used the PCA method to assess the water quality of 

the Tamiraparani River basin [9]. The PCA method can produce a comprehensive index instead of 

multidimensional variables, which is convenient for the analysis of water quality, but the method has 

some drawbacks which limit its application, for example, the index values should be compliance with 

Kaiser-Meyer-Olkin and Bartlett’s test [10]. More than that, the support vector machine (SVM), 

probabilistic neural network (PNN), k-nearest neighbor (KNN) and artificial neural networks (ANN) 

methods were also used to classify water quality [11–15]. These methods have different characteristics 

and contribute to studying the water quality recognition and classification; yet, there are still some 

debates on the best methods for the assessment of water quality. 

The water quality state changes dynamically and is determined by indicators with imprecise  

levels [3]. Accurate assessment of water quality should be in accordance with the water characteristics 

including dynamic change and fuzzification, which causes more trouble for the assessment. There are 

methods for studying the the fuzzification and uncertainty of the water resources management, such as 

the Inexact Two-Stage Water Quality Management (ITWQM) Model, the Interval-Fuzzy De Novo 

Programming (IFDNP) method, FCA method and the Monte Carlo method [6,16–18], but few studies 
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have focused on the dynamic changes of the water quality assessment. Actually, dynamic assessment 

of water quality aims to recognize a comprehensive water quality state which considers the information 

of all relevant indicators under successive temporal and spatial conditions. Then it can be converted for 

calculating the generalized distance between indicators and standards. However, most water quality 

assessments are discontinuous and treat the indicators as points (either or no) [6], which neglects the fact 

that indicators continuously and imprecisely belong to some standards. This paper aims to explore a 

method which can dynamically and successively assess water quality and provide a tool for improving 

the utilization and management of water resources. 

2. Dynamic Water Quality Assessment Method  

2.1. Dynamic Change and Fuzzification of Water Quality Assessment 

Obviously, under the conditions of inflow of extraneous pollution and release of endogenous 

pollution, the change of water quality indicators is successive, which introduces dynamics and 

uncertainty into any comprehensive water quality assessment, so the dynamic changes of indicators and 

fuzzy membership degree for indexes belonging to each standard should be considered in the assessment 

of water quality. Fortunately, dynamic assessment makes the results more successive and accurate [19]. 

Typically, researchers have assessed water quality continuously to solve the temporal and spatial change 

of indicators’ continuities. An et al. used the fuzzy comprehensive assessment method to assess the 

water quality of Songhuajiang in 2010 from January to October, which showed that the water quality in 

June and October were better [20]. Kumarasamy et al. studied the water quality of the Tamiraparani 

River from July 2008 to June 2009, which indicated the change of water quality was mainly influenced 

by seasonal variation [9]. However, there are few studies on the fuzzy and successive relative 

membership degree for indexes belonging to standards. Firstly, considering the influence of a single 

indicator, this paper assumes the total nitrogen concentration of water is 0.9 mg/L and changes to  

0.6 mg/L after a period of time. Although the total nitrogen concentration of water varies during 

different periods, the level of water quality is level 3 by comparison with the water quality standard 

(Table 1). Actually, the level of the latter is closer to level 2 compared with the water quality standard. 

Thus one can perform inaccurate and fuzzy estimation on levels of water quality by simple comparison. 

In addition, considering the influence of multiple indicators, this paper assumes the total nitrogen 

concentration of water is 0.9 mg/L and the total phosphorus concentration is 0.012 mg/L. It is easily seen 

that the levels of indicators are different, one is level 2 and the other is level 3 compared with the water 

quality standard. Multiple indicators lead to more confusion for comprehensive assessment of water 

quality. As mentioned above, the indicators change dynamically and may imprecisely belong to a certain 

standard, which leads to the same characteristics in water quality assessment.  

2.2. Proposed Variable Fuzzy Pattern Recognition (VFPR) Model for Dynamic Assessment of  

Water Quality 

Various indicators describe different aspects of the water quality state, so the recognition of the 

comprehensive water quality is dynamic and fuzzy. The variable fuzzy set (VFS) theory extended 

Zadeh’s fuzzy set theory to provide a continuous way to ascertain the membership degree and function, 
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and also to effectively solve the problem of fuzzy boundaries [20–23]. This theory is in accordance with 

the dynamics and fuzzification of water quality assessment and provides an effective tool for 

complicated water quality evaluation issues [23,24], which is widely used in various kinds of 

assessments, such as agricultural drought risk assessment [21], water shortage risk assessment [7], and 

comprehensive risk evaluation for flood-control engineering systems [25]. It has been proved that the 

VFS theory can provide a stable method and make the results more reasonable due to the advantages of 

variable model parameters [7,24,25]. This paper explores a method to dynamically assess water quality 

based on the VFS theory. 

Table 1. Indicator system and water quality standard. 

Because the water quality standard (GB3838-2002) is determinate, the assessment of water quality is 

changed by recognizing the comprehensive level of indicators. This paper assumes the set of samples of 

water quality is expressed as X = (xij), where i = 1, 2, …, n, n is the total number of samples; j = 1, 2, .., m, 

m is the total number of indicators; and the set of standards of water quality is expressed as Y = (yhj) 

where h = 1, 2, .., c, c is the highest level of standard of the corresponding indicator j. In order to 

calculate a comprehensive level of indicators, a uniform format of the data set is necessary. Then the 

indicators (xij) and standards (yhj) are normalized (rij, shj) to remove the influences of inverse indices and 

different dimensions by choosing different equations. The positive indices are ones that are positively 

correlated with water quality such as dissolved oxygen; oppositely, the inverse indices are those which 

are negatively correlated with water quality such as total nitrogen, total phosphorus, and biochemical 

oxygen demand: 
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Number Indicators 
Level 

1 2 3 4 5 

1 Dissolved oxygen (mg/L, X1) 7.5 6 5 3 2 

2 Total nitrogen (mg/L, X2) 0.2 0.5 1 1.5 2 

3 Total phosphorus (mg/L, X3) 0.01 0.025 0.05 0.1 0.2 

4 Ammonia nitrogen (mg/L, X4) 0.15 0.5 1 1.5 2 

5 Coli bacillus (/L, X5) 200 2000 10,000 20,000 40,000 

6 Biochemical oxygen demand (BOD5) (mg/L, X6) 15 15 20 30 40 

7 Chemical oxygen demand (CODMn) (mg/L, X7) 2 4 6 10 15 

8 Mercury ion (mg/L, X8) 0.00005 0.00005 0.0001 0.001 0.001 
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where xij is the value of indicator j of the sample i, i is the number of samples and j is the number of 

indicators; yhj is the value that defines standard h of indicator j, where h = 1, 2 …, c, c represents the highest 

level of standard; rij and shj are the results of normalization of the indicators (xij) and standards (yhj). 

This paper assumes sample i has m indicators, and the triangle, circle and rhombus respectively 

represent locations of indicator, standard and sample, which can be seen in Figure 1. It is easily found 

that the indicator 1 (triangle location) belongs to the interval between levels 1 and 2; the indicator j 

belongs to the interval between level c-1 and level c. 

This scene results in fuzzification in the recognition of the level of sample i which may belong to 

arbitrary level from 1 (minimum level of sample i) to c (maximum level of sample i). Actually, there are 

differences between indicators and each standard (from level 1 to c), which can be expressed as  
△hj = rij − shj, where △hj is the difference between indicator j of sample i and standard h of indicator j 

 

Figure 1. The recognition of the water quality level of sample i (△hj is the difference between 

indicator j of sample i and standard h of indicator j, i = 1, 2, …, n, j = 1, 2, …, m; uhi is the 

synthetic relative membership degree for sample i belonging to standard h, h = 1, 2, …, c). 

These differences should be considered during the analysis of the level of sample i and can be 

converted to calculating the generalized distance by the Equation (3): 
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where 0dhi is the generalized distance between sample i and standard h, h is level of the standard; h = 1, 2, …, 

c; p is model parameter, p = 1 represents Hamming distance and p = 2 represents the Euclidean distance. 
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The term 0dhi considers the successive differences between indicators of sample i and standards (from 

minimum level of sample i to maximum level of sample i) including information of the original data, and 

also can simulate different relationships between indicators with standards by changing the model 

parameter p. In addition, the indicators of water quality are playing different roles which can be 

expressed by different weights. Then, the weighted differences between sample i and each standard can 

be calculated by Equation (4): 
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where dhi is the weighted generalized distance of indicator between sample i and corresponding standard 

h, wj is the weight of indicator j.  

Next, Dhi is established to solve the optimal synthetic relative membership u*
hi , the weights w* and 

center of clusters s*
hj, which are based on dhi and weighted by uhi. Considering the general case, the 

weights w* and center of clusters s*
hi are assumed to be unknown: 

hihihi duD =  (5) 

where Dhi is weighted generalized distance of sample including three variables (u, s, w), u is the synthetic 

relative membership degree, s is the center of the cluster, w is the weight of indicators. 

Then, the objective function is as follows: 
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where a is the optimization criteria parameter to describe the relationship between indicator and 

standard, a = 1 (linear), a = 2 (nonlinear). Constraint conditions of Equation (6) are as follows: 
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Lagrange function is established to solve the extremes of u, s and w: 
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where uλ  and wλ are Lagrangian multipliers of uhi and wj respectively. 

Actually, for the water quality assessment, the center of clusters shj is the water quality standard. The 

weight of indicator wj can be determined by lots of methods, such as the AHP model and the EW 

method. Then, uhi is solved as follows: 
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where uhi is the synthetic relative membership degree for sample i belonging to standard h; k is the 

interval (ai, bi) to which sample i belongs; the ai and bi are obtained by comparing rij with shj (Figure 1), 

where ai is the minimum level of sample i, and bi is the maximum level of sample i; m is the total number 

of indicators; wj is the weight of the indicator j; a is the optimization criteria parameter, a = 1 (linear),  

a = 2 (nonlinear); p is the distance parameter, p =1 (Hamming distance), p =2 (Euclidean distance). a = 1, 

p = 1 expresses that the distance between indicator and standard is Hamming distance and the relation is 

linear; a = 2, p = 1 expresses that the distance between indicator and standard is Hamming distance and 

the relation is nonlinear; a = 2, p = 2, expresses that the distance between indicator and standard is 

Euclidean distance and the relation is nonlinear; a = 1, p = 2, expresses that the distance between indicator 

and standard is Euclidean distance and the relation is linear. The parameters (a, p) are changed to simulate 

unknown and different relationships between indicator and standard, which leads to stable results.  

The traditional fuzzy assessment model often uses the maximum membership degree to determine the 

final level of sample, which neglects the information of other membership degrees. Fortunately, the 

VFPR model uses level characteristic values to determine the final level of sample, which contains 

successive information of relevant membership degrees and making the results more in line with the 

change of water quality: 
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c
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where h is the level of standard, h = 1, 2… c, and c is the highest level of standard; H is level 

characteristic value of sample i. 

2.3. Application Steps 

The proposed model is a continuous way to dynamically and successively assess water quality, and 

the steps are as follows: 

In the first step, the indicator system of water quality assessment should be developed following the 

principles of systematicness, causality and sustainability [26]. 

In the second step, Equations (1) and (2) are used to normalize (rij, shj) the indicators (xij) and 

standards (yhj) so as to eliminate the influence of inverse indices and different dimensions respectively. 

In the third step, the appropriate method for weighting indicators is selected. Generally, subjective 

weight can well reflect the opinions of researchers on the issue; oppositely, objective weight can better 

reserve the original data information adequately. This paper uses the AHP and EW method to determine 

subjective weight w1 (j) and objective weight w2(j) of indicator respectively, which have been successfully 
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and widely used in a lot of assessments [27–29]. Then Equation (12) is used to determine the synthetic 

weight based on the two types of weights: 
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where wj is the synthetic weight of the indicator j, w1(j) is the subjective weight of the indicator, w2(j) is the 

objective weight of the indicator. 

In the fourth step, the results of normalization rij, shj, synthetic weight wj, and interval (ai, bi) of 

sample i are put into Equation (10). Thus four results of uhi are calculated by changing the model 

parameters (a = 1, p = 1; a = 1, p = 2; a = 2, p = 1; a = 2, p = 2). 

In the fifth step, Equation (11) is used to calculate the characteristic value H of the sample i based on 

the fourth step, then the average value is used as the assessment result. 

2.4. Method Verification 

Water quality assessment is a quantitative method for studying water quality state and changes. The 

assessment method and indicator system should reflect these characteristics reasonably. At present, 

eutrophication, heavy metals, microorganisms, and comprehensive pollution are the major pollution 

types in water [30]. In order to reflect comprehensive water quality reasonably, the indicators should 

represent all those aspects. The indicator system that doesn’t include all types of pollution would not 

realize that. This paper selects dissolved oxygen (DO), total nitrogen, total phosphorus, ammonia 

nitrogen, coli bacillus, biochemical oxygen demand (BOD5), chemical oxygen demand (CODMn), and 

mercury ion to assess water quality. The indicator system covers aspects of eutrophication, heavy metal, 

microorganism, and comprehensive pollution which can describe water quality state overall. And the 

majority indicators are also used in the literature [3,20]. The water quality standard refers to the 

National Surface Water Quality Standard of China (GB3838-2002). The indicator system and standard 

are as follows. 

As seen in Table 1, the five levels of water quality are: good (1), fine (2), ordinary (3), poor (4), and 

bad (5), while the water quality surpassing level 3 is considered suitable for drinking water supplies. 

Based on the water quality standard, 10 virtual water quality samples are created to verify the correctness 

of the proposed method. The samples and evaluation results can be seen in Table 2. The indicator values 
of Sample 1 are all better than level 1. Conversely，those of Sample 10 are worse than level 5. The 

indicator values of Sample 3 are just the average values of levels 1 and 2. Similarly, those of Samples 6, 

8 and 9 are the average values of levels 2 and 3, leve1s 3 and 4, leve1s 4 and 5 respectively. Samples 2 

and 4 are the same as Sample 3 except the dissolved oxygen (X1), of which the values are respectively 

closer to levels 1 and 2. Similarly, Samples 5 and 7 are the same as Sample 6 except the total nitrogen 

(X2). The total nitrogen value of Sample 5 is closer to level 2, while that of Sample 7 is closer to level 3. 

The proposed method is used to assess the 10 virtual samples and the results can be seen in Table 2. 

The results are consistent with the original data information. Samples 2, 3 and 4 verify that the method 

can describe well changes of dissolved oxygen. Moreover, Samples 5, 6 and 7 show that the method can 

also describe well the changes of total nitrogen. Therefore, the proposed method can correctly assess 

water quality state and describe well changes of different indicators. 
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Table 2. Samples and results of assessment. 

Samples 
Indicators 

Results (level) 
X1 X2 X3 X4 X5 X6 X7 X8 

1 8 0.1 0.005 0.075 100 7.5 1 0.000025 1 

2 7.4 0.35 0.0175 0.325 1100 15 3 0.00005 1.19 

3 6.75 0.35 0.0175 0.325 1100 15 3 0.00005 1.5 

4 6.1 0.35 0.0175 0.325 1100 15 3 0.00005 1.81 

5 5.5 0.51 0.0375 0.75 6000 17.5 5 0.000075 2.28 

6 5.5 0.75 0.0375 0.75 6000 17.5 5 0.000075 2.5 

7 5.5 0.9 0.0375 0.75 6000 17.5 5 0.000075 2.65 

8 4 1.25 0.075 1.25 15,000 25 8 0.00055 3.5 

9 2.5 1.75 0.15 1.75 30,000 35 12.5 0.001 4.5 

10 1 3 0.3 3 50,000 50 20 0.002 5 

3. Case study 

This paper uses the proposed method to dynamically assess water quality of Biliuhe Reservoir, the 

important water source of Dalian city. The data sets are provided by the Biliuhe Reservoir Management 

Bureau of Dalian. In the first step, we develop the indicator system as mentioned in Section 1.4. In the 

second step, the Equations (1) and (2) are used to normalize the indicators (xij) and standards (yhj), while 

dissolved oxygen is positive index which is positively correlated with water quality, the others are 

inverse indices negatively correlated with water quality. The results are as follows. 

It is easy to observe in Table 3 the dynamic changes of the indicators. The majority of the indicators 

of water quality are better than level 2, but total nitrogen (X2) exceeds the standard of level 4 and 

dissolved oxygen (X1) in August and September is lower than the others. In the third step, the AHP 

model and EW method are combined to calculate the synthetic weights of the indicators. The subjective 

weight is determined by the AHP model, and the judgment matrix and weights are seen in Table 4, 

which refer to [17,20,21,25]. The objective weight is determined by the EW method and the detailed 

calculation process refers to [6,28]. Then two types of weights are used to calculate the synthetic weight 

by Equation (12). 

Table 3. Results of normalization. 

Time X1 X2 X3 X4 X5 X6 X7 X8 

Samples 

200504 1 0.171 0.966 1 1 1 0.905 1 

200505 1 0 0.966 1 1 1 0.985 1 

200506 1 0 0.97 1 1 1 0.973 1 

200507 0.949 0 1 1 1 1 0.98 1 

200508 0.653 0 0.989 1 1 1 0.98 1 

200509 0.719 0 0.981 1 1 1 0.956 1 

200510 0.96 0 1 0.998 1 1 0.965 1 

200604 1 0 0.959 1 1 1 0.996 1 

200605 1 0 0.97 1 1 1 0.982 1 

200606 1 0 0.962 1 1 1 0.993 1 

200607 0.951 0 1 1 1 1 0.968 1 

200608 0.788 0 0.996 1 1 1 0.962 1 

200609 0.784 0 1 1 1 1 0.976 1 
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Table 3. Cont. 

Time X1 X2 X3 X4 X5 X6 X7 X8 

Samples 

200610 0.995 0 1 1 1 1 0.969 1 

200704 1 0.11 1 1 1 1 0.955 1 

200705 1 0 1 0.997 1 1 0.974 1 

200706 1 0 1 1 1 1 0.947 1 

200707 1 0 0.951 1 1 1 0.953 1 

200708 0.853 0 0.951 1 1 1 0.935 1 

200709 0.799 0 0.974 1 1 1 0.945 1 

200710 0.945 0 0.985 1 1 1 0.954 1 

Level X1 X2 X3 X4 X5 X6 X7 X8 

Standard 

1 1 1 1 1 1 1 1 1 

2 0.727 0.833 0.921 0.811 0.955 1 0.846 1 

3 0.545 0.556 0.789 0.541 0.754 0.8 0.692 0.947 

4 0.182 0.278 0.526 0.27 0.503 0.4 0.385 0 

5 0 0 0 0 0 0 0 0 

Notes: 200504 means April of 2005 and the others are similarly defined. 

Table 4. Judgment matrix. 

Indicator X1 X2 X3 X4 X5 X6 X7 X8 
X1 1 0.5 1 3 2 3 3 2 
X2 2 1 2 5 4 5 5 4 
X3 1 0.5 1 3 2 3 3 2 
X4 0.33 0.2 0.33 1 0.5 1 1 0.5 
X5 0.5 0.25 0.5 2 1 2 2 1 
X6 0.33 0.2 0.33 1 0.5 1 1 0.5 
X7 0.33 0.2 0.33 1 0.5 1 1 0.5 
X8 0.5 0.25 0.5 2 1 2 2 1 

The largest eigenvalue of the matrix (Criteria) is 8.03; the consistency ratio is 0.003 < 0.1. 

The synthetic weight (wj) includes the subjective weight and objective weight, which covers the 

opinion of researchers on the issue and the original data information (Table 5). In the fourth step, 

variables and parameters are put into Equation (10) and four results (uhi) are calculated by changing the 

model parameters (a, p). In the fifth step, Equation (11) is used to calculate the characteristic value H of 

sample i based on the fourth step, then use the average value as the assessment result. The results are  

shown below. 

Table 5. The synthetic weight of indicator. 

Weight X1 X2 X3 X4 X5 X6 X7 X8 
Subjective weight  

(AHP model) 
0.168 0.316 0.168 0.053 0.094 0.053 0.053 0.094 

Objective weight  
(EW method) 

0.185 0.079 0.189 0.127 0.119 0.102 0.084 0.116 

Synthetic weight  
(Equation (12)) 

0.246 0.197 0.251 0.053 0.088 0.043 0.035 0.086 
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As shown in Table 6, the water quality of Biliuhe Reservoir is between levels 2 and 3 and is suitable 

for drinking water supply during the study period. Moreover, the results are more stable by considering 

linear and nonlinear influences among the indicators. The rationality and dynamics of the proposed 

method are discussed in the next section. 

Table 6. Results of dynamic assessment. 

Sample a = 1; p = 1 a = 2; p = 1 a = 2; p = 2 a = 1; p = 2 Average Level 

200504 2.30 1.85 2.40 2.63 2.29 
200505 2.36 1.92 2.53 2.72 2.38 
200506 2.36 1.92 2.53 2.72 2.38 
200507 2.38 1.95 2.55 2.72 2.40 
200508 2.56 2.31 2.75 2.83 2.61 
200509 2.51 2.23 2.71 2.81 2.57 
200510 2.37 1.93 2.54 2.72 2.39 
200604 2.37 1.93 2.53 2.72 2.39 
200605 2.36 1.92 2.53 2.72 2.38 
200606 2.37 1.93 2.53 2.72 2.39 
200607 2.38 1.95 2.55 2.72 2.40 
200608 2.47 2.15 2.65 2.78 2.51 
200609 2.47 2.15 2.65 2.78 2.51 
200610 2.35 1.88 2.52 2.71 2.36 
200704 2.29 1.81 2.44 2.65 2.30 
200705 2.34 1.87 2.52 2.71 2.36 
200706 2.34 1.88 2.52 2.71 2.36 
200707 2.38 1.95 2.54 2.72 2.40 
200708 2.46 2.14 2.63 2.77 2.50 
200709 2.48 2.17 2.66 2.78 2.52 
200710 2.39 1.98 2.56 2.73 2.41 

4. Results and Discussion 

The results of the assessment should be in correspondence with the actual change process of water 

quality. This paper verifies the applicability of the proposed method by comparing with actual change of 

water and other assessment methods. 

4.1. Analysis of Assessment Results 

Firstly, the results are compared with the actual status of water of the reservoir. Table 6, Figure 2 and 

Table A1 show that the overall, comprehensive water quality of Biliuhe Reservoir is suitable for 

drinking water supply. The levels of water quality are between levels 2 and 3 and have small changes 

monthly from April to October during the study period. The assessment results are consistent with the 

evolution of the reservoir environment and changes of the water quality indicators. Pollutant emissions 

have been controlled in the reservoir region and the forest coverage rate is 72.3% in the watershed, 

which further reduces the inflow of pollutants. In addition, most of the indicators are better than level 2. 

Only total nitrogen is worse than level 4, even level 5. Therefore, the levels of water quality of Biliuhe 

Reservoir assessed by the proposed method are reasonable under these conditions.  
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Figure 2 shows that although the change of the levels of water quality of the reservoir are small, the 

change trend in each year is similar. The level of comprehensive water quality of the reservoir decreases 

slightly from April, and reaches the minimum during August or September, and then it gradually 

improves from October. The annual monthly average water temperature of Biliuhe Reservoir is 24.1 °C 

in August and 22 °C in September, which are both higher than the others. Previous studies indicate that 

the water temperature is negatively correlated with dissolved oxygen content [31]. The higher water 

temperature in August and September impedes oxygen exchange between the atmosphere and water 

which leads to lower dissolved oxygen content (5.5–6.7 mg/L) compared with the other months (greater 

than 7.5 mg/L). Besides, the nonpoint pollutants are discharged into the reservoir during the summer, 

which has a negative effect on water quality. Thus, the water quality in August or September is the 

lowest under the dual pressures of high water temperature and heavy rainfall. The water temperature 

decreases continuously in October; accordingly, the dissolved oxygen content increases. The pollutants 

discharged into the reservoir are reduced after the flood season. External condition changes improve the 

water quality. Biliuhe Reservoir is ice-covered from November to next March. Winter processes 

increase dissolved oxygen content and conduce to deposition of internal pollutants, which improves the 

water quality in April. Similarly, the water quality declines gradually due to the increasing water 

temperature and rainfall from May to July, so the results and the trend are reasonable.  

4.2. Comparison of Weights and Methods 

Furthermore, the influence of different weights and methods is analyzed. First, the proposed method 

uses AHP weights, EW weights and the synthetic weight, respectively, to assess the same sample to 

compare the influence of weights. The results can be seen in Figure 2 and Table A1. It is easily found 

that the results of the synthetic weight version are between the AHP weight version and the EW weight 

version, and the results of three versions have the same trend. The results of AHP weight and EW 

weight versions are closer to levels 3 and 2, respectively. As mentioned in Section 4.1, most of the 

indicators are better than level 2 and only total nitrogen is worse than level 4, even level 5 in the Biliuhe 

Reservoir. The AHP weight considers the status of the serious total nitrogen pollution, which enhances 

the weight of total nitrogen and leads to worse water quality level. The EW weight is affected by the 

differences of the original data, which decreases the influences of those indicators with minor 

differences. Although the total nitrogen exceeds levels 4 or 5, its coefficient of variability (CV) is 

19.8% and is lower than the average value (CV, 62%) of the eight indicators, which decreases the 

weight of total nitrogen and leads to better water quality level. The synthetic weight combines the two 

types of weight, which considers the subjective and objective influences and improves the drawbacks 

of using a single weight (subjective weight or objective weight). In the above section, we proved that 

the synthetic weight version is more reasonable to reflect the actual water quality in this case. Choices 

about how to weight the indicators can significantly influence the results of assessment. A situationally 

appropriate method should be used to determine the weights for different issues. 
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Figure 2. Results of water quality dynamic assessment. 

Then, the WQI method, the FCA method and their improved methods, which are widely used in the 

literature to analyze the influence of methods on the assessment results, are calculated [5,32]. As can 

be seen in Figure 2 and Table A1, the results of the proposed method are between levels 2 and 3 and have 

dynamic changes. The results in August and September are closer to level 3 and those in other seasons 

are closer to level 2. The results of the WQI method are between levels 2 and 3 too, which are level 2 

under equal weight conditions and are level 3 under synthetic weight conditions (the improved WQI 

method). The equal weight way neglects the differences of indicators and reduces the impact of some 

important indicators, such as total nitrogen, which increases the water quality management risk. For this 

reason, the synthetic weight is more suitable for water quality assessment. The results of the FCA 

method are level 1. Then, the level characteristic value calculated by Equation (11) is used to substitute 

the maximum membership of the FCA method, and the results change and fluctuate around level 2 (the 

improved FCA method). The trend is similar to the proposed method. The results show that the WQI 

method and the traditional FCA method are defective when describing dynamic changes of water 

quality. Actually, the traditional FCA method treats the criteria or reference standards as points and only 

considers the influence of the adjacent-level of a single indicator, which misses information from the 

original data and might reflect the real water quality state imperfectly. Taking sample of 200708 as an 

example, while dissolved oxygen content is 6.69 mg/L, and total nitrogen content is 2.39 mg/L.  

The traditional FCA method considers dissolved oxygen belonging to levels 1 or 2; and total nitrogen 

content belonging to level 5 in the calculation process, but the differences between dissolved oxygen and 

levels 3, 4, 5; total nitrogen and levels 1, 2, 3, 4 are neglected in the traditional FCA method. Fortunately, 

the proposed method considers the interval influence of indicators, which calculates the differences 

between indicators and the continuous standard interval from the level 1 (minimum level of the sample) 

to 5 (maximum level of the sample). More than that, it is imperfect to use the maximum membership 

degree to determine the level of samples with the traditional fuzzy assessment model. Also taking the 

sample of 200708 as an example, the membership degrees of the sample in the five levels are 0.501, 

0.303, 0, 0 and 0.197, respectively. According to the maximum membership degree principle (0.501), 

the sample is level 1. This produces confusion due to the fact the total nitrogen content is 2.39 mg/L, 
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worse than level 5 (>2 mg/L). Actually, the total membership degree of other levels is 0.499 and has only 

a slight distinction with 0.501. Thus the missing information of other membership degrees may bring 

doubtful results. Then, Equation (11) is used to improve the FCA method, and gets the similar trend as 

the proposed method, so the proposed method can assess the water quality state reasonably and reflect its 

dynamic changes. 

4.3. Uncertainty Analysis 

Many uncertainties exist in the assessment of water quality. In the above section, this paper compares 

the influences of different methods and weights, but there is another uncertainty in the water quality 

assessment, which is from the original data. The variables inevitably have some random errors in the 

processes of monitoring and quantification [18,33–37]. The Monte Carlo method, the probabilistic point 

estimate methods (PEMs) and the perturbance moments method (PMM) are widely used in uncertainty 

analysis [18,38]. The Monte Carlo method is most suitable for unknown real-valued distributions and  

has been successfully used in [18,35]. Actually, the actual probability distribution of the index values  

is unknown.  

This paper uses the Monte Carlo method to analyze the uncertainty of indicators, and the model 

parameters are as follows: the average μ is xij; standard deviations σ are 0.1·xij, 0.5·xij, 0.9·xij and 1.5·xij 

respectively to analyze the influences of different degrees of deviation ; running times N is 1000. Then, 

the mean and 95% confidence interval of the xij from Monte Carlo simulation are obtained.  

The results of the assessment can be seen in Figure 3 and Table A1. In general, the results of the 

actual and simulated samples are similar and both are located in the 95% confidence interval. The results 

of the simulation samples are similar to the actual samples (σ is 0.1 xij), and there are small differences 

between the simulation samples and actual samples when σ is 0.5·xij and 0.9·xij. Until σ increases to  

1.5·xij, the lowest results of the simulation samples (Figure 3 and Table A1) change to level 3 which are 

different from the actual samples (between levels 2 and 3), so the proposed method has stable 

performance against random errors of indicator values. Furthermore, there are large uncertainties and 

deviations, and the higher the variance is, the more significant the deviation becomes. 

5. Conclusions 

This paper explores a method based on the VFPR model, and the proposed method is used to 

dynamically assess water quality. It considers the interval influence of multi-indicator and uses the 

average level characteristic value of four models as results, which is in accordance with the 

characteristics of fuzzification and dynamics of water quality. The synthetic weights of indicators are 

determined by the AHP model and EW method, which combine the advantages of subjective and 

objective weights. Then, the proposed method is used to assess the water quality of Biliuhe Reservoir. 

The results show that the water quality is between levels 2 and 3, and the water quality during August or 

September is worse than other months, which is in agreement with the changes of water temperature and 

rainfall. Comparison of the proposed method and other methods verifies that the proposed method is 

reasonable and is adept at describing dynamic change of water quality. The random errors of indicator 

value are analyzed using the Monte Carlo method; this shows that the random errors have impact on the 

results and the proposed method is stable. In addition, the flexible choice of the model parameters (a, p) 
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for the assessment of water quality under different conditions is very important, and it will be discussed 

in a future study. Different uncertainty methods and probability distributions of indicator value should be 

further discussed to analyze the influence of the uncertainty of indicator values on assessment results. 

The authors believe that the proposed method contributes to the study of the dynamic changes of water 

quality, and could also provide a reference for water resource protection and similar studies. 

 

Figure 3. Uncertainty analysis showing the method results calculated using the proposed 

method (triangular gray dots), the mean from the Monte Carlo simulation (gray bars), 95% 

confidence interval (error bars). μ, σ and N are parameters of Monte Carlo model. 
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Appendix 

Table A1. Detail results of different assessment methods and assessment of Monte Carlo simulation. 

Samples 
Methods 

Assessment of Monte Carlo Simulation by the Proposed Method 

u = xij;σ = 0.1·xij u = xij;σ = 0.5·xij u = xij;σ = 0.9·xij u = xij;σ = 1.5·xij 

① ② ③ ④ ⑤ ⑥ ⑦ mean confidence interval mean confidence interval mean confidence interval mean confidence interval 

200504 2 3 1 1.80 2.70 1.83 2.29 2.30 2.30 2.30 2.30 2.28 2.31 2.30 2.25  2.66  2.31 2.02 3.02 

200505 2 3 1 1.90 2.81 1.88 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.39 2.38  2.60  2.38 2.29 3.01 

200506 2 3 1 1.89 2.81 1.88 2.38 2.38 2.38 2.38 2.38 2.38 2.44 2.38 2.38  2.76  2.38 2.33 3.01 

200507 2 3 1 1.84 2.82 1.90 2.40 2.40 2.39 2.40 2.40 2.36 2.50 2.39 2.36  2.74  2.40 2.29 3.00 

200508 2 3 1 2.17 2.93 2.18 2.61 2.62 2.61 2.62 2.60 2.53 2.68 2.63 2.42  2.82  2.57 2.32 3.00 

200509 2 3 1 2.11 2.90 2.13 2.56 2.57 2.57 2.57 2.57 2.51 2.65 2.56 2.37  2.79  2.52 2.28 3.01 

200510 2 3 1 1.83 2.81 1.89 2.39 2.39 2.39 2.40 2.43 2.36 2.53 2.40 2.36  2.76  2.36 2.30 3.00 

200604 2 3 1 1.92 2.81 1.88 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39  2.73  2.39 2.29 3.02 

200605 2 3 1 1.89 2.81 1.88 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.38  2.75  2.38 2.22 3.02 

200606 2 3 1 1.91 2.81 1.88 2.39 2.38 2.38 2.38 2.39 2.39 2.39 2.38 2.38  2.75  2.39 2.32 3.02 

200607 2 3 1 1.84 2.82 1.90 2.40 2.39 2.39 2.40 2.40 2.36 2.50 2.41 2.36  2.72  2.48 2.00 3.00 

200608 2 3 1 2.00 2.88 2.06 2.51 2.52 2.51 2.52 2.52 2.44 2.60 2.52 2.36  2.79  2.53 2.33 3.00 

200609 2 3 1 1.99 2.87 2.06 2.51 2.51 2.51 2.52 2.51 2.43 2.59 2.47 2.36  2.73  2.53 2.30 3.00 

200610 2 3 1 1.80 2.80 1.86 2.36 2.36 2.36 2.37 2.37 2.36 2.48 2.36 2.36  2.70  2.36 2.26 3.00 

200704 2 3 1 1.72 2.73 1.81 2.30 2.30 2.30 2.30 2.31 2.30 2.33 2.30 2.24  2.64  2.33 2.01 3.00 

200705 2 3 1 1.79 2.80 1.85 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36  2.71  2.36 2.28 3.00 

200706 2 3 1 1.80 2.80 1.86 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36  2.61  2.36 2.33 3.00 

200707 2 3 1 1.95 2.82 1.90 2.40 2.40 2.40 2.40 2.40 2.40 2.49 2.39 2.39  2.76  2.44 2.24 3.03 

200708 2 3 1 2.09 2.87 2.04 2.50 2.50 2.50 2.50 2.49 2.40 2.57 2.50 2.40  2.77  2.51 2.26 3.03 

200709 2 3 1 2.06 2.88 2.07 2.52 2.52 2.52 2.52 2.51 2.43 2.59 2.53 2.38  2.78  2.51 2.05 3.02 

200710 2 3 1 1.89 2.79 1.98 2.41 2.41 2.41 2.42 2.41 2.37 2.51 2.42 2.34  2.76  2.41 2.23 3.01 

Notes: ① are results of the WQI method, ② are results of the improved WQI method,③ are results of the FCA  method., ④ are results of the improved FCA  method, ⑤ are results of the 

proposed method (AHP weight), . ⑥are results of the proposed method (EW weight), ⑦are results of the proposed method (Synthetic weight). 
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