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Abstract: Pollutants deposited on road surfaces and distributed in the environment are a 

source of nonpoint pollution. Field data are traditionally hard to collect from roads because 

of constant traffic. In this study, in cooperation with the traffic administration, the dry 

deposition on and road runoff from urban roads was measured in Taipei City and New 

Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 

78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry 

deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 

1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal 

concentrations. Not only the number of vehicles, but also the speed of the traffic should be 

considered as factors that influence road pollution, as high speeds may accelerate vehicle 

wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff 

and water quality was analyzed every five minutes during the first two hours of storm 

events to capture the properties of the first flush road runoff. The sample mean 

concentration (SMC) from three roads demonstrated that the first flush runoff had a high 

pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and 

grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to 

minimize the pollution from urban roads. 
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1. Introduction 

Maintaining an extensive traffic network is a characteristic feature of modern urbanization. Dense 

roads allow for fast and convenient transportation. However, expanding roads increase the amount of 

impervious surfaces and the possibility of nonpoint source pollution as a result. Road surface runoff 

contains substantial concentrations of pollutants that accumulate on road surfaces will be carried by 

storm runoff to rivers or lakes [1,2] and is regarded as a critical nonpoint pollution source for receiving 

waterbodies and therefore is an issue of concern in watershed management and urban environment 

maintenance [3,4].  

Urban road runoff contains sediment, nutrients, bacteria, heavy metals, and toxic substances [5–7]. 

Chang et al. [8] reported that the pollutants that settle on road surfaces will be flushed during initial 

storm events and potentially contaminate receiving waters. The pollutants accumulated on road 

surfaces usually result from a wide variety of sources, e.g., atmospheric depositions, vehicle emissions, 

cars, and oils [5,9–11]. Because of these diverse sources, traffic pollutants are present in the gaseous, 

liquid, and solid forms. This study investigates liquid and solid pollutants. The wear and corrosion of 

vehicle parts and fuel combustion are two potential sources of heavy metals [12,13]. These heavy 

metals, including copper, chrome, nickel, wolfram, titanium, manganese, and zinc, are therefore 

potential road contaminants [14]. Eriksson et al. [15] stated that urban road runoff contains Cd, Cu, Zn, 

TN, TP, and PAHs. Kayhanian et al. [11] reviewed the characteristics of highway runoff and found 

Cd, Cr, Cu, Fe, Pb, Ni, Zn, and other nutrients to be common. Pollution stemming from road runoff 

that contains heavy metals is a direct risk to biological health. Dorchin and Shanas [15] used biological 

assays and confirmed that road runoff is a major cause of the observed deceasing aquatic habitat 

quality in Israel. 

The level of road pollution varies and is influenced by the local environment and artificial 

management practices. For example, strong winds prevent dust from depositing and frequent roadway 

sweeping reduces dust accumulation on the road surface. Kim et al. [16] suggested that land use and 

surface activities will produce different types of pollutants. Zhao et al. [7] and Zhao and Li [17] 

investigated the sediment deposited on roads and the runoff along urban-suburban-rural gradients and 

revealed differences in their composition. Variability has been observed among studies [11]. Thus, it is 

necessary to understand the quantity and quality of onsite road pollution to develop effective control 

practices. The relationship between the buildup and wash-off of road pollution needs to be clarified 

under different local environmental conditions.  

Field sampling from heavily trafficked roads is a difficult procedure, so field data for road pollution is 

therefore scarce. Mahbub et al. [10] and Zhao and Li [17] performed investigations on both road-deposited 

sediment and runoff in Australia and China, respectively. Both groups discussed the relationships 

between particle size and heavy metal concentrations, but they used simulated rainfall, not real events. 

In Taiwan, Teng [18] performed preliminary field experiments on road runoff and showed that 

elevated express roads inside cities produced higher SS, NH3-N, TP, COD, and Zn, Fe, Cu, Cr, Ni, and 
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Pb than general roads. Thus, there is an urgent need to collect more data to confirm the potential risk in 

the urban cities of Taiwan. In this study, we cooperated with the traffic administration agency to 

collect onsite dry deposition and runoff from urban roads. Six road sites in Taipei City and New Taipei 

City were tested. In this study, we focus on road-deposited dust and the properties of runoff. A particular 

focus was placed on heavy metal concentrations in the deposited dust and in road runoff. The regional 

differences caused by land use and effects of storm variability are not discussed.  

2. Materials and Methods 

2.1. Site Description and Collection Method for Dry Deposition Analysis 

Three urban roads designated as A, B and C were selected as the study sites. Their surfaces are all 

asphalt and concrete. Road C is an elevated expressway. On road A, five plots 5 m in length and 3.5 m 

in width were collected individually from day one to day seven to estimate the continuous dry 

deposition accumulations. The Day 1 plot was collected on the first day, the Day 2 plot on the second 

day, the Day 3 on the third day, and so on (Figure 1). For roads B and C, the dimensions of the 

collection area were 100 m in length and 0.3 m in width. Because of heavy and fast traffic on roads B 

and C, the width of sampling area was reduced to 0.3 m for safety while sampling, but the length of the 

collection area was extended to 100 m. The sampling schedule was different from that for the road A. 

We collected a daily dry deposition sample from the B and C roads over 7 days. The site design and 

photos are shown in Figures 1 and 2. Site location is shown in Figure 3. Site sampling was completed 

during seven consecutive sunny days. The dry deposition is mainly from vertical transport and the 

effects of lateral wind-blowing and roadside barriers are assumed to be ignored. A vacuum cleaner was 

used as the sampling instrument. The collected dust was tested by a Laser Diffraction Submicron 

Particle Size Analyzer to determine the particle distribution. The heavy metal concentration, including 

Pb, Cu, Zn, Fe, Na, and Ni, was estimated by Inductive Coupled Plasma-Mass Spectrometry (Optima 

2000 DV, PerkinElmer Inc., USA).  

Figure 1. Dry deposition collection sites. (a) The Road A site was divided into five plots, 

which were utilized for the accumulations on days 1, 2, 3, 5, and 7. (b) The Road B and C 

had a 30 m2 collection area, and were sampled daily over 7 consecutive days. 
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Figure 1. Cont. 

(b) 

Figure 2. Photos of dry deposition collection. (a) Road A; (b) Road B; (c) Road C. 
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Figure 2. Cont. 

(c) 

Figure 3. Site locations of the dry deposition and runoff sampling sites. 

 

2.2. Site Description and Collection Methods for the Runoff Water Quality Analysis  

Road runoff usually flows into collection drainage pipes and converges into the rainwater sewage 

system. We sampled runoff before it flowed into the sewage system. Sampling occurred when the 

accumulation of rain water was larger than 3 mm with at least three successive sunny days before the 

rainfall event. One sample was taken every five minutes, and a total of 24 samples were taken for each 

event. Thus, the first two hours of runoff were measured and to obtain the first flush pollution graph. 

However, because of the high cost, the heavy metal concentration was tested for a single mixed sample, 

not for each of the 24 samples. Flow weighted method was used to obtain the composite sample. 

The sample volume is 2,000 mL, therefore, water volume of (Qi/ΣQi) × 2,000 mL was taken from each 

sample, where Qi is the flow rate of the ith sample. Thirteen water quality parameters were analyzed, 
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including suspended solid (SS), ammonia-nitrogen (NH3-N), chemical oxygen demand (COD), total 

phosphorous (TP), oil and grease, Cu, Zn, Pb, Cr, Hg, As, Cd, and Ni. The heavy metals were analyzed 

by ICP (Optima 2000 DV, PerkinElmer Inc., USA). The remaining parameters were measured 

following the national standard methods (the analysis standard methods are found at [19]). To ensure 

the quality of the runoff samples, the onsite collection drainage pipes were cleaned before sampling. 

We used clean water to wash the pipes. Figure 4 shows the road runoff sampling sites, and the site 

details are listed in Table 1.  

The data for the first two hours of rainfall illustrate the first flush, however, because of the 

fluctuations, a mimic event mean concentration (EMC) was used, which is called sample mean 

concentration (SMC) to present the average water quality. An EMC is expected to monitor an 

entire rainfall event and obtain a mean value for the event; however, this study monitored the first 

two hours of runoff and did not cover the entire event period. As a result, the alternative SMC is 

applied. The calculation is provided in Equation (1):  

SMC ൌ
∑ ܳ௜ܥ௜
௡
௜ୀଵ

∑ ܳ௜௡
௜ୀଵ

 (1)

where Qi is the runoff volume of the i sample (m3), Ci is the pollution concentration of the i sample (mg/L), 

and n is the total number of samples.  

Figure 4. Site photos for runoff collection. (a) Pipe cleaning before sampling, Road F.  

(b) Runoff sampling sites. The left is Road D, and the right is Road E. 
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Table 1. Basic information of the road sampling sites. 

Analysis 

Type 
Site Time Area (m2) Road Type 

Traffic 

Volume 

(ADT) 

Dry  

deposition 

A 2012/07/11–07/17 87.5 Surface road 11,667 

B 2012/09/30–10/06 30 Bridge road 37,354 

C * 2012/09/30–10/06 30 Elevated expressway 42,738 

Runoff 

 analysis 

D 
2012/04/05 

2012/08/17 
363.6 Surface road 82,625 

E 2012/12/18 1,022.25 Surface road 56,335 

F * 2013/02/27 685.85 Elevated expressway 42,738 
* Site F is the location for runoff sample collection in which directly related to site C, but the collection areas 

for the dry deposition and runoff were different. The dry deposition area was established by our design and 

the runoff collection area was determined by the existing drainage system.  

3. Results and Discussion 

3.1. Dry Deposition Mass and Particle Size Analysis 

Dry deposition samples were collected from three roads. Before the first sampling, the roads were 

swept and cleaned. For the daily experiment, the routine road cleaning task was performed after dry 

deposition collection. For the accumulation experiment of road A, the designed studied plots were 

not cleaned until the experiment ended. The total of five samples was collected from road A and 

seven samples from roads B and C. The results of the dry deposition analysis are detailed in Table 2. 

The total dry deposition mass is divided by the collection area to obtain the unit surface loading. 

The daily dry depositions for roads A, B, and C were 2.17–11.77 g/m2·day, 0.83–3.68 g/m2·day, 

and 3.53–6.62 g/m2·day, respectively. The average dry deposition loading for the three roads was 

2.01–5.14 g/m2·day. To compare with reference data, Zhao et al. [7] reported the road-deposited 

sediment mass in a central urban area was 21 ± 24 g/m2 and Kim et al. [20] evaluated 15.6 ± 0.7 g/m2 of 

total solid loads on roads. The lesser amount of dry deposition in this study might be attributed to daily 

street sweeping. Without cleaning, the dry deposition mass can accumulate to 15–35 g/m2 in 7 days. 

Although the average loading of road A was the highest, its cumulative rate was flat. When considering 

the total accumulative loadings of the three roads, the 7 day dry deposition for road C was the highest 

(35 g/m2 versus approximately 15 g/m2 for the other two roads, Figure 5). This significant difference 

might be because road C is an elevated expressway, and the traffic volume is higher than those for the 

other two roads.  

The particle sizes of the collected sediments were determined by a laser particle analyzer, and the 

results are summarized in Table 2 and Figure 6. The analyzer measured particle sizes ranging from 

4,750 to 75 μm. The results showed that most dust (70.7–85.7%) ranged from 75 to 300 μm at the three 

sampling sites. The mass percentage for the particle sizes less than 75 μm ranged from 12.9% to 23.2%. 

Fine to medium particle sizes were dominant. The three sampling roads are important roadways and 

are cleaned every day, therefore, the collected dust resulted solely from atmospheric deposition. Over 90% 
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of the dry deposition from the road A and C was less than 600 μm, and 83% of the deposition was less 

than 600 μm for the road B. Very fine particles, those less than 75 μm, are easily blown by the wind and 

re-suspended; thus, the deposition for particles in this range is low [20–22].  

Table 2. Dry deposition results. 

Road 

Loads and size  

A 

(n = 5) * 

B 

(n = 7) 

C 

(n = 7) 

Average mass loads (g/m2·day) 

Particle loads 

(g/m2·day) 
5.14 2.01 4.78 

Average percentages for the particle sizes (%) 

<75 μm 23.2 17.4 12.9 

75–150 μm 21.5 13.9 20.5 

150–300 μm 21.4 16.5 26.1 

300–600 μm 20.0 16.8 22.5 

600–1,180 μm 8.5 6.9 10.6 

1,180–2,360 μm 2.9 5.8 4.3 

2,360–4,750 μm 2.0 11.1 2.4 

>4,750 μm 0.4 0.0 0.0 

* Dry deposition analysis was performed for each sample. The number of samples (n) is 5 for road A and 7 

for road B and C.  

Figure 5. Accumulative dry deposition of the studied roads. 
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Figure 6. Particle size distribution of dry deposition. 

 

In addition, we further analyzed the particles with sizes less than 10 μm (PM10), which is usually 

regarded as a potential air pollutant affecting human health. The percentage of PM10 in the dry 

deposition experiments ranged from 1.25% to 1.46%, and these particles might result from vehicle 

emissions, dust re-suspensions, local burning, and construction. The understanding of dry deposition 

loads and size distributions would be beneficial for designing adequate control policies for road 

nonpoint pollution. Mahbub et al. [10] found that heavy metal concentrations in particulate sizes 

ranging from 75–>300 μm were influenced by high traffic activities, so that Ni, Cu, Pb, Cd, Cr, and Zn 

can be removed from the build-up control practices.  

3.2. Heavy Metal Concentration of Dry Deposition Material  

Ten gram samples from the seven day collections of the three road sites were randomly taken and 

measured using ICP to investigate the heavy metal concentrations. The results are shown in Table 3. 

Fe, Na, and Zn were the predominant heavy metals in the collected dust. The average Fe concentration 

was 34,978 ppm, and the average Na and Zn contents were approximately 1,500 ppm. According to 

Drapper et al. [5], the common sources of these road pollutants are as follows: Fe most likely results 

from vehicle corrosion, steel used in road construction, and car engine rust. Na results from ice-removal 

equipment and machine lubricants. Zn originates from wheel surface damage and machine lubricants. 

USEPA [12] also indicated that highway surfaces contained high levels of heavy metals, resulting 

primarily from wheel wear, engine and vehicle corrosion, machine lubricants, and fuel 

combustion. In addition to Fe, Na, and Zn, the dry deposition also contained Pb , Cu, and Ni. Notably, 

Ni was not present in the samples from roads A and B, and only road C, the elevated expressway, 
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showed any Ni in the collected dust. This may result because the road C is an elevated expressway that 

is subject to car speeds that are higher than the other two roads. This could result in frequent braking.  

The dry deposition experiments showed that the heavy metal concentration of the settled dust is 

higher on the elevated expressway than on surface roads. Because the test roads are located in an 

urban environment, the traffic volume is high with no significant differences among the three 

roads. The primary difference is the speed limit, which is 70 km/h on the elevated expressway and 50 km/h 

on the surface roads. This might be the reason for the high heavy metal concentration on the Road C, 

where the Pb, Zn, Fe, and Ni concentrations were the highest.  

Table 3. Heavy metal concentrations for the dry deposition experiments. 

Metal 

Site 

Pb  

(ppm) 

Cu  

(ppm) 

Zn  

(ppm) 

Fe 

(ppm) 

Na 

(ppm) 

Ni 

(ppm) 

Road A 72 153 845 22,000 3,507 N.D * 

Road B 74 296 1,799 35,733 633 N.D 

Road C 120 207 1,912 47,200 366 42 

Average 89 219 1,519 34,978 1,502 14 

* N.D. refers to non-detected value and the detection limit is 0.02 ppm. 

3.3. Road Runoff Quality 

The road surface runoff samples were collected every 5 min during a 2 h period, and 24 sample 

bottles were collected for one storm event. A total of four rainfall events and 96 samples were 

collected. For road D, two rainfall events were sampled, which were on 5 April and 17 August 2012. 

The April event had a total accumulative rainfall of 21.6 mm, and the rainfall duration was 10 h. For the 

August event, the accumulative rainfall was 12.6 mm, and the duration was 5 h. The rainfall event for 

road E was a relatively small storm with 8 mm accumulative rainfall and a duration of 1 h. This is a 

typical rainfall pattern for winter in Taipei. The event was on 18 December 2012. The rainfall event for 

road F occurred on 27 February 2013. The accumulative rainfall was 23 mm, and the rainfall duration 

was 8 h. The runoff water quality is significantly affected by storm patterns for most nonpoint source 

pollution. However, the studied roads are swept every day, so that it is assumed that no pollutants were 

previously accumulated on the road surface. Pavement properties are assumed to not change during storms, 

so the effect of storm variability is not considered in this study.  

Table 4 displays the runoff SMC results. The average SS concentration was 360 mg/L. The second 

sampling of road D showed the highest SS concentration, 801.2 mg/L. This is 10 times higher than the 

first sampling of the same road. This high SS concentration might be related to nearby construction 

activity during that sampling time, thus resulting in high SS concentrations in the runoff. Regardless of 

the unusual disturbance, the elevated expressway, road F, showed a higher SS concentration than the 

other roads. This is consistent with its higher dry deposition loadings. Factors such as the total event 

rainfall, runoff, antecedent dry period, and daily traffic volume could affect the runoff EMC [23,24]. 

Among the factors, the higher traffic volume will result in a high SS concentration in the runoff [25–27]. 

In addition to SS, the COD concentration of road F was also the highest. However, the TP and NH3-N 

concentration was the highest for road E, 0.65 mg/L and 3.24 mg/L, respectively. These results are 
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significantly different from those at the other sampling sites. Ideally, the nutrient concentrations should be 

similar for the urban road runoff because there is no obvious nutrient emission source. Source possibilities 

include atmospheric deposition and roadside sediment [5]. Because the sampling are for road E was 

the largest (Table 1), this site may collect the largest amount of dry deposition, resulting in high TP 

and NH3-N in the runoff. Figure 7 shows the discharge and SS graphs for the three road sites. 

Table 4. Sample mean concentration (SMC) for runoff analysis (mg/L, ppm). 

Sites D E F 
Average

Date 2012/04/05 2012/08/17 2012/12/18 2013/02/27 

SS 73.5 801.2 148.4 416.9 360 

NH3-N 1.8 1.0 3.24 1.06 1.77 

TP 0.15 0.26 0.65 0.35 0.35 

COD 160 200 104 192 164 

Oil and Grease - 10.8 2.5 1.8 5.03 

Cu 0.009 0.009 0.009 0.05 0.02 

Zn 0.46 0.21 0.22 0.72 0.40 

Pb 0.07 <0.05 0.14 <0.05 0.08 

Cr <0.02 <0.02 <0.02 <0.02 <0.02 

Hg <0.0005 0.0007 <0.0005 0.0007 0.001 

As 0.0036 0.0006 <0.0005 0.0005 0.001 

Cd <0.002 <0.002 <0.002 <0.002 0.002 

Ni <0.02 <0.02 <0.02 0.05 0.028 

-: not test.  

Figure 7. The runoff quality graphs for the road sampling sites. (a) Road D; (b) Road E; (c) Road F. 
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Figure 7. Cont. 
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The results for the heavy metal analysis of the runoff showed that the Pb, Zn, and Cu concentrations 

were higher than those of the other metals. The average concentrations of Pb, Zn, and Cu were 0.08, 

0.40 and 0.02 ppm, respectively. The Ni concentration was under the detection limit, <0.02 ppm; 

however, the road F runoff contained 0.05 ppm Ni. This is consistent with the dry deposition 

results, in which only the collected dry deposition samples of the elevated express road contained Ni. 

Basically, the heavy metal concentration in runoff agreed with the dry deposition analysis results. 

High metal deposition results in high metal concentrations in the runoff, so that the Pb, Zn, and Cu 

contents are higher than those for other metals. Unfortunately, the Fe and Na levels in the runoff samples 

were not examined. High Fe and Na concentrations would have been expected in the runoffs well. 

The Cr and Cd concentrations were below the detection limits in all runoff samples. Barbosa and 

Hvitved-Jacobsen [28] reported similar results in that the Cr and Cd concentrations are low in road runoff 

and are not a threat to biological systems. The average oil and grease concentration was 5.03 mg/L, 

with the highest concentration of 10.8 mg/L for road D. Berman et al. [29] stated that surface oils 

result from street vehicles, car engine leakage in parking lots, and oil leakage at gas stations and 

restaurants. The leaked grease consists of nitrides and hydrides and is toxic to aquatic habitats [30], 

thus contaminated urban road runoff must be treated before flowing to the receiving water bodies.  

3.4. Comparison of This Study to International Experiences 

Comparing the runoff quality results of this study with international studies, the SS, COD, and 

NH3-N are higher in Taipei than in other countries (Table 5).  
 

Table 5. Comparison of international road runoff quality and the results from this study (mg/L, ppm). 

Reference 
Legret and 

Pagotto 
 [31] 

Huang, C.C. 
 [1] 

Kayhanian et al. 
 [24,32] 

Kim et al. 
[33] 

Flint and 
Davis [34] 

This study 
(2012–2013) 

Site 
Nantes, 
France 

Tainan 
Taiwan 

California, 
USA 

California, 
USA 

Korea 
Maryland, 

USA 
Taipei, Taiwan 

ADT 12,000 10,000 - - - - 42,738–82,625 

SS 77 59 148.1 112.7 155 420 360 

COD - 70 123.8 - 43 - 164 

NH3-N - 1.6 1.1 1.07 1.66 1 1.78 

TP - 2.47 0.3 0.29 0.22 0.56 0.35 

Cu 0.045 0.05 0.051 0.015 - 0.11 0.019 

Zn 0.356 0.06 0.203 0.069 - 1.18 0.402 

Pb 0.058 - 0.080 0.008 - 0.22 0.078 

Cr - - - - - - 0.020 

Hg - - - - - - 0.001 

As - - - - - - 0.001 

Cd 0.001 - 0.001 0.002 - 0.035 0.002 

Ni - - -  - - 0.028 

This could be caused by the higher number of vehicles and nearby construction activities. Because of 

the high SS, high COD and NH3-N values will result. The TP concentration, 0.35 mg/L, fell in the 

reference range, implying that the urban road is not the main nonpoint source for phosphorus. In regards to 

heavy metal concentrations, the Cu, Pb, and Zn concentrations in this study were within the 

reference ranges, but Cr, Hg, As, and Ni was not detected in the references and cannot be compared. 
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Kayhanian et al. [11] found exponentially decreased Pb concentrations in highway runoff, attributed to 

the lead-free gasoline policy. The average Cd concentration, 0.002 mg/L, was lower than in previous 

studies. It should be noted that the even Pb and Zn concentration was within reference ranges, they are 

higher than the others, except for the study of Flint and Davis [34] in the US. These high 

concentrations should be related to the high vehicle volume for the studied roads. The results confirm 

the need of pollution control in crowded urban roads.  

4. Conclusions 

As a city with one of the highest population densities in the World, the roads in Taipei City and 

New Taipei City have high traffic volumes. The dry deposition and runoff quality of the urban roads 

must be monitored and understood to avoid potential urban nonpoint pollution. We collected a total of 

19 samples from three roads for dry deposition analysis and the total of 96 samples from four rainfall 

events to determine the road runoff quality. Heavy metal concentration of deposited sediment and 

runoff was analyzed for composite samples. The effect of storm variability is not considered in this study 

because that daily street-sweeping results in no differences in road prior conditions and the four events are 

not sufficient to assess inter-storm effects. The dry deposition analysis shows that 2.01–5.14 g/m2 of solids 

remain on the road each day and that 78–87% of these solids are distributed in the 75–300 µm size 

range. The PM10 accounted for 1.25–1.46% of the particles. When determining the characteristics of 

the deposited solids, we found that the Fe, Zn, and Na concentrations were high, and the highest 

concentrations were found at ab elevated expressway site. Only the samples from the elevated 

expressway contained Ni, implying that the deposited solids from the roads with high car speeds might 

contain more residues from vehicle body corrosion, engine corrosion, or wheel wear, thus resulting 

high metal concentrations. Identical results were found in the runoff quality analysis, as the SS and 

COD from the elevated express road runoff were higher than those from the other roads. In addition to 

the vehicle numbers, car speeds should be considered to be one of the factors influencing urban road 

pollution, which is mentioned infrequently in previous studies. 

Comparing these study results with previous reports, the runoff SS, COD, and NH3-N concentration 

in the studied roads in Taipei were higher than those for other countries. This might be because the 

volume of vehicles on the studied roads was higher. Pb, Zn, and Cu were the predominant metals in the 

urban road runoff in Taipei and sites in other countries. The results of this study confirmed that even 

after implementing daily street-sweeping, the fine dry deposition contains pollutants that might be 

released as nonpoint source pollution. In summary, the SS, COD, NH3-N, Pb, Zn, and Cu in road 

runoff were at levels sufficient to cause concern. At high pollution sites, regular sweeping and best 

management practices (BMP) are necessary. 
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