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Abstract: Indole is a versatile pharmacophore widely distributed in bioactive natural products. This
privileged scaffold has been found in a variety of molecules isolated from marine organisms such
as algae and sponges. Among these, indole alkaloids represent one of the biggest, most promising
family of compounds, having shown a wide range of pharmacological properties including anti-
inflammatory, antiviral, and anticancer activities. The aim of this review is to show the current
scenario of marine indole alkaloid derivatives, covering not only the most common chemical struc-
tures but also their promising therapeutic applications as well as the new general synthetic routes
developed during the last years.
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1. Introduction

Marine organisms constitute an important source of natural products with tremendous
biological and chemical diversity. Sponges, algae, corals, marine bacteria, and fungi were
shown to produce new secondary metabolites that may be the key to the production of new
drugs to treat various diseases [1,2]. In this regard, marine natural products have important
advantages over those of terrestrial origin, including chemical novelty, new mechanisms
of action, and greater biological activity. These valuable pharmacological properties can
be explained due to the fact that many marine compounds have evolved to fight for
their organism survival, becoming very powerful inhibitors of biological processes in the
predators of the marine organisms that utilize them for survival. [3]. The anticancer drugs
Trabectedin (Yondelis®; Figure 1) and Eribulin mesylate (Halaven®; Figure 1) are examples
of marine drugs accepted by the FDA that proceed by a novel mechanism of action [4,5].
On the other hand, the cyclic depsipeptide Largazole, isolated from a cyanobacterium, is
one of the most potent class I histone deacetylase inhibitors, and the first cyanobacterial
secondary metabolite containing a thioester (Figure 1) [6,7].

As stated before, marine organisms have proven to be an outstanding source of
active molecules, with indole derivatives being one of the most promising [8]. Chemically,
indole (2,3-benzopyrrole) consists of benzene and pyrrole rings fused together. Indole is an
important industrial product widely used in the production of fragrances [9], medicines [10],
exogenous auxins [11], and colorants like indigo. The indolyl group is an important
fragment present in a wide variety of natural products, such as the amino acid Tryptophan
(Trp), which is involved in the synthesis and release of the neurotransmitter serotonin
(related to mood), the hormone melatonin (which regulates sleep), indole alkaloids, and the
plant hormone auxin. Therefore, this moiety has also received much attention in the fields

Mar. Drugs 2024, 22, 126. https://doi.org/10.3390/md22030126 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md22030126
https://doi.org/10.3390/md22030126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0002-2955-6550
https://orcid.org/0009-0006-0409-2071
https://orcid.org/0009-0000-5998-6749
https://orcid.org/0000-0002-5136-9110
https://doi.org/10.3390/md22030126
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md22030126?type=check_update&version=2


Mar. Drugs 2024, 22, 126 2 of 54

of synthetic organic chemistry and medicinal chemistry [8]. Importantly, recent research
has shown clear evidence of the relationship between the chemical structure of the indole
bicyclic skeleton and the biological activity it presents. In this sense, anticancer [12–14],
anti-coronavirus [15,16], and anti-diabetic [17–20] activities are observed when there are
amide or chalcone groups at the C2 and/or C3 positions of the indolyl group. Anti-
Alzheimer’s disease activity [21] is observed when seven-membered nitrogen-containing
heterocycles are present at the C2 and/or C3 positions. Anti-inflammatory [22,23] and
antifungal activities [24,25] are observed when different functional groups are placed at
the N1 position. Finally, inhibition against osteoporosis [26] is observed when a thiophene
group is installed at the C7 position (Figure 2).
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Figure 2. Structure/activity relationships of indole derivatives.

Recently, Martinez et al. described several marine natural products as Breast Can-
cer Resistance Protein (BCRP) inhibitors [27]. Among them, three examples stand out:
Fumitremorgin C (FTC), a prenylated indole alkaloid derived from the amino acids L-
tryptophan and L-proline; Tryprostatin A, a natural analog of FTC formed by the conden-
sation of a proline unit and an isoprenyl tryptophan residue into a diketopiperazine unit;
and the β-carboline alkaloid Harmine (Figure 3). It is noteworthy to mention that all these
compounds are indole alkaloids.
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Undoubtedly, many compounds derived from marine sources have marked milestones
in the treatment of diseases. In particular, indole-containing alkaloids, one of the largest,
most abundant, and most chemically diverse family of natural compounds, have been
shown to have outstanding potential in the development of new drug leads. However,
there are still many obstacles to overcome, in particular the devastating side effects and
the fact that many cancers develop resistance to several important pharmaceuticals. For
these reasons, it is necessary to continue searching for new, safer, and more efficient drugs.
Within this context, the structural and functional versatility of indole alkaloid derivatives
spots them as privileged scaffolds that could streamline the discovery of chemical analogs
with potential applications in drug discovery. Therefore, the purpose of this review is
to exclusively cover indole alkaloid derivatives from marine sources with a therapeutic
interest, as well as the novel synthetic routes described to obtain these versatile compounds.
The relationship between their chemical structure and bioactivity is also addressed in those
cases that are described in the literature.

2. Marine Indole Alkaloids

Marine Indole Alkaloids (MIAs) present many different structural features and exhibit
wide biological activities such as anti-inflammatory, anticancer, anti-HIV, antibacterial,
antifungal, and anti-diabetes activity, among many others. Both aspects require being
organized and ordered. In this section, the origin and therapeutic applications of MIAs are
presented. Furthermore, synthetic routes from a large number of MIA families have also
been included. Based on chemical structures, indole alkaloids can be classified into three
groups: simple indole alkaloids, prenylated indoles, and annelated indoles.

2.1. Simple Indole Alkaloids, (SIAs)

Simple indole alkaloids consist of an indole nucleus with distinct substitution patterns
at the N1, C3, C4, C5, C6, C7, and C8 positions [28,29]. In this section, the compounds of
this group are ordered according to the complexity of the substituents of the indole moiety,
starting from acyclic to cyclic ones.

2.1.1. C3-Acyclic Substituted Simple Indole Alkaloids

The most common substitution in simple indole alkaloids occurs at the C3 position, a
characteristic observed in many families of simple alkaloids [8,30]. Various examples show-
case the biological activities of these compounds (Figure 4). For instance, tryptophol (2-(1H-
Indol-3-yl)ethan-1-ol, 1) isolated from the marine sponge Ircinia spiculosa, showed sleep-
inducing activity [31]. On the other hand, 2-(1H-indol-3-yl)ethyl 2-hydroxypropanoate (2),
isolated from the yeast strain (USF-HO25) of a marine sponge identified as Pichia membrani-
faciens, exhibits a mild response as a radical scavenger of 2,2-diphenyl-1-picrylhydrazyl
(DPPH) [32]. Another example is methyl 1H-indole-3-carboxylate (3), obtained from Spon-
gosorites sp., a marine sponge, demonstrating cytotoxic attributes against several human
cancer cell lines [33]. Additionally, Hainanerectamine B (4), isolated from Hyrtios erecta, a
marine sponge from Hainan, has shown the ability to inhibit Aurora A, a serine/threonine
kinase involved in the regulation of cell division [34]. Finally, Tryptamine (5), was obtained
from Fascaplysinopsis reticulata, a lyophilized sponge, and demonstrated antibacterial and
growth inhibition activity towards Vibriocarchariae (MIC = 1 µM) [35].

The presence of carbonyl or carboxyl groups in the indole ring has demonstrated
different and interesting biological activities [28,36,37]. Compound 6, an indole carbalde-
hyde obtained from E. chevaleri KUFA 0006, a culture of an endophytic fungus, exhibited
inhibitory activity against S. aureus ATCC 2592 biofilm settlement [38]. Hytiodoline (7) an in-
dole amino acid obtained from the Hyrtios sponge, demonstrated potent anti-trypanosomal
activity [39]. Becillamide A (8), a thiazole indole derivative obtained from Bacillus sp.
marine bacterium, showed antibiotic activity against Archangium gephyra, immunosup-
pressing the myxobacterium [40]. Anthranoside (9), containing a carboxylated aniline, was
obtained from the sponge-originated actinomycete, Streptomyces sp. CMN-62, and exhibited
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anti-influenza activity against the H1N1 virus and inhibited the reaction to NFκB [41]. Her-
manine D (10), isolated from ascidian Herdmania momus, could inhibit the mRNA expression
of iNOS, consequently provoking an anti-inflammatory effect [37] (Figure 5).
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Quia Che and coworkers developed a biogenetic route to obtain Anthranoside C (11),
starting with anthranilic acid (12) and D-glucose (13). The process involves linking two
12 molecules to a 13 molecule, to create a benzenaminium salt; the subsequent cyclization
creates the indole ring and, in one further step, the Anthranoside C (11) [41] (Figure 6).

The prenylated simple indoles have also demonstrated diverse and fascinating biolog-
ical activities [28,36,37]. In this sense, the prenylated indole carbaldehyde (14), obtained
from E. chevaleri KUFA 0006, exhibited inhibitory activity against S. aureus ATCC 2592
biofilm settlement [37]. Eurotiumin (15), an amide indole derived from Eurotium sp. SCSIO
F452, a sediment-derived fungus from the South China Sea [42], showed antioxidant prop-
erties in a DPPH assay [43]. Misszrtine A (16), an unusual N-substituted prenylated indole
obtained from Aspergillus sp. SCSIO XWS03F03, a sponge-derived fungus, exhibited strong
activity against HL60 and LNCaP cell lines [44]. Terpetin (17), a polyamide indole obtained
from Aspergillus sp. SpD081030G1f1, acted as a protector against L-glutamate toxicity in
cells [45] (Figure 7).
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May Zin et al. proposed the biogenesis of isomer compounds 18 and 19, starting
with L-tryptophan (20). Isomer 17 was obtained in five steps, and isomer 19 required one
additional isomerization step (Figure 8) [38].
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The compounds described above have underscored the potential of indole alkaloids in
both organic and medicinal chemistry, emphasizing the importance of exploring synthetic
pathways to obtain simple indole alkaloids. Some straightforward methods for obtain-
ing functionalized simple indole alkaloids include the Bartoli reaction, which involves
nitrobenzene (21) and vinylmagnesium bromides (22) [46]. Another reaction involves the
intramolecular Rh-catalyzed decomposition of ortho-azydostyrenes (23), followed by C–H
activation [47]. Additionally, two novel and high-yielding Au(I)-catalyzed reactions have
been reported: one involving the intramolecular cyclization reaction of ortho-alkynylanilines
(24) [48] and the other involving the reaction between alkynyl-hydroxycyclohexadienones
(25) and primary amines [49] (Figure 9).
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2.1.2. C3 (Iminoimidazolidin and Pyrazin)-Substituted Simple Indole Alkaloids

Usually, simple indole alkaloids are categorized into families based on similar struc-
tures, activities, or origins [36]. Some examples of this classification include Trachycladin-
doles and Aplysinopsin, both of which feature an iminoimidazolidine ring in the above
position (Figure 10). Trachycladindoles A (26), C (27), G (28), B (29), D (30), E (31), and
F (32), isolated from the marine sponge Trachycladus laevispirulifer, have demonstrated
cytotoxicity against human cancer cells (HT-29, A549, and MDA-MB-231) [50]. Addition-
ally, Aplysinopsin (33) and its derivatives 34–40 were obtained from Thorectidae sponges
(Thorectandra and Smenospongia) [51]. They demonstrated activity against Staphylococcus
epidermidis, with derivative 38 exhibiting the highest antimicrobial activity (MIC = 33 µM).
Following this, derivatives 36 (MIC = 36.5 µM), 35 (MIC = 74.6 µM), 34 (MIC = 98.3 µM), and
37 (MIC = 273.8 µM) showed decreasing levels of antimicrobial activity [36]. Derivative 34
was discovered in the Jamaican sponge Smenospongia aurea, and it exhibited a high affinity
for two receptors, 5-HT2A and 5-HT2C [52]. The latest derivatives, 39–40, were discovered
in the marine sponge Fascaplysinopsis reticulata. They exhibited remarkable activity against
the bacterium Vibrio natrigens.; derivative 39 demonstrated potent activity with a MIC of
0.03 µM, while derivative 40 exhibited significant activity (MIC = 2.4 µM) [35].
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A hypothetical method for the biosynthesis of trachycladindoles has been described
by A. Hentz. The route starts with tryptophan (20), and trachycladindole A–G (26–32) is
obtained in 5 steps [53] (Figure 11).
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Figure 11. Trachycladindole hypothetical biosynthesis by A. Hentz.

The synthesis of the Aplysinopsin derivate 39 is shown in Figure 12 and was described
by Stanovnik and Svete [54]. The key step for the formation of the iminoimidazolinone core
was achieved by the addition of methylamine to a carbodiimide intermediate, followed by
an intramolecular amidation reaction.
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Figure 12. Stanovnik and Svete’s synthesis of Aplysinopsin derivate 39.

Meridianins A–G (41–47) are a family of SIAs characterized by having pyrazine rings
at the C3 position (Figure 13). Meridianins are obtained from several sources, but mainly
tunicates. Thus, the first was Aplidium meridianum, from which Meridianins A–E were
isolated, [55] but other examples include Aplidium falklandicum and Synoicum sp. [56].
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Meridianins B–E (42–45) are notable for their demonstrated cytotoxic effects against
adenocarcinoma and murine mammary tumor cell lines (IC50 = 11.4, 9.3, 33.9, and 11.1 µM,
respectively) [55]. Moreover, 44 exhibited antibiofilm potential against methicillin-resistant
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Staphylococcus aureus (MRSA) [36]. In general, the Meridianin family demonstrated wide
biological activities which are summarized in Table 1 [56,57].

Table 1. Bioactivity of Meridianins A–G (41–47).

Meridianin Anticancer
Effects

Prevention of
Alzheimer’s

Disease

Antimalarial
Effects

Antitubercular
Effects

A (41) Hela

GSK-3β, CK1δ,
Dyrk1A and CLK1 2

P. falciparum nd 1

B (42) PTP, Hep2, U937, LMM3 nd nd

C (43) PTP, Hep2, HT29, RD, U937, LMM3,
Hela, MDA-MB-231, A549 P. falciparum M. tuberculosis

D (44) PTP, Hep2, HT29, RD, U937, LMM3,
Hela, A549 nd M. smegatis 3

E (45) PTP, Hep2, U937, LMM3 nd nd nd

F (46) Hep2, U937, LMM3 nd nd nd

G (47) Hela Dyrk1A P. falciparum M. tuberculosis
1 nd: not determined, 2 Inhived kinases, 3 Antibiofilm activity.

Meridianins can be formed through several synthetic routes, the first one developed by
Jiang and Yang from a 7-bromoindolylboronic acid (48) and a 4-chloro-pyrimidinyl-2-amine
(49). In only two steps, 44 was obtained with a high yield [58] (Figure 14).
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However, Fresneda and Molina’s methodology to obtain Meridianins 43 and 44 is the
most used route to date. Starting from the corresponding brominated indoles, this four-step
route presents high yields in all reactions [59] (Figure 15).
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It is noteworthy to mention that most methodologies focus on the synthesis of 43 and
44 [58]. For example, Karpov et al. improved a three-component palladium-catalyzed car-
bonylated alkylation [60], while Müller and coworkers achieved it in a one-pot procedure
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based on Suzuki coupling following a Masuda borylation with a palladium catalyst [61].
Zhou and Chen developed a route to 43 and its derivatives [57], and Penoni employed the
indolization of nitrosoarenes to obtain 43 derivatives with the indole moiety functional-
ized [62]. Remarkably, Stanovnik and Svete described the synthesis of Meridianins 41–47
and the Aplysinopsins derivatives 33–40 [54].

2.1.3. Bis-/Tri-Indole Alkaloids

Bis- and tris-indole alkaloids are characterized by the linkage of the indole moieties
through (hetero)carbonated chains, typically between the C3 positions [36]. Usually, when
indole alkaloids are bridged by an imidazole ring, they exhibit interesting biological
activity. Examples of such cases are bis-indoles Dihydrospongotine C (50), Spongotine
C (52), and the tris-indole Tulongicin (54), isolated from the sponge Topsentia. They have
demonstrated antiviral activity against HIV, HxB2, and YU2, with IC50 values ranging
from 2.7 to 12 µM and 3.5 to 9.5 µM, respectively, as well as antimicrobial and antibacterial
properties, particularly against S. aureus (MIC = 1.8 to 7.6 µM) [63] (Figure 7). Furthermore,
Rhopaladin C (53), isolated from a marine tunicate, demonstrated antimicrobial efficacy
against Sarcina lutea and Corynebacterium xerosis (IC50 = 36.9 µM) [64]. Lastly, Spongotine A
(51) was isolated from the Topsentia pachastrelloides sponge and showed antibacterial effects
against both the susceptible and methicillin-resistant strains of S. aureus [65] (Figure 16).
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Bromodeoxytopsentin (55) and dibromodeoxytopsentin (56) feature an unsaturated
imidazole bridging the indole moiety (Figure 17). Compound 55, isolated from the Topsentia
pachastrelloides sponge, demonstrated antibacterial effects against both the susceptible
and methicillin-resistant strains of S. aureus [65]. Compound 56, obtained from a genus
of the marine sponge Topsentia, also exhibited antibacterial properties against S. aureus
(MIC = 22.7 µM) and showed additional potential as an antiviral agent against HIV (YU2,
IC50 = 57 µM) [63].
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Eusynstelamides A–B (57–58) and D–F (59–61) are brominated bis-indoles bridged
by a γ-lactam ring obtained from ascidians [66] and bryozoans [67] (Figure 18). Com-
pounds 57 and 58 displayed only weak effectiveness against S. aureus [66]. However,
compounds 59–61 proved stronger antibacterial properties, showing activity against S. au-
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reus and Corynebacterium glutamicum (MIC = 7.8–17.4 µM), as well as E. coli and P. aeruginosa
(MIC = 16.4–34.7 µM) [67].
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Hamacanthins A–B (62–63) are bis-indole isomers linked by a pyrazinone ring, isolated
from a marine sponge belonging to the genus Hamacantha (Figure 19). Both exhibited antimi-
crobial properties and efficacy against B. subtilis (MIC = 6.4 and 3.3 µM respectively) [68].
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Regarding the synthesis of bis- and tris-indole species, an illustrative example could
be the synthesis of Rhopaladin C (53), developed by Janosik et al. [64]. Starting from
1H-indole-3-carbonyl cyanide, the desired product could be obtained by condensation of
the nitrile group with the amino group from the L-Tryptophan methyl ester to generate
the imidazolone core. This transformation yields 53 in two steps with a moderate yield
(Figure 20).

Mar. Drugs 2024, 22, x FOR PEER REVIEW 11 of 56 
 

 

imidazolone core. This transformation yields 53 in two steps with a moderate yield (Fig-
ure 20).  

 
Figure 20. Janosik et al. [64] synthesis of Rhopaladin C (53). 

2.2. Prenylated Indole Alcaloids (PIAs) 
Prenylated indoles include several different families of compounds. For better insight 

for the readers, the PIAs are arranged in ascending order of complexity, ranging from an 
indole core with a cyclic prenyl substituent to an indole moiety fused with a variable num-
ber of prenyl-derived ring systems. PIAs containing the indole core with acyclic prenyl 
substituents are included in Section 2.1. 

2.2.1. Diketopiperazine (DKP) Indole Alkaloids 

Simple Diketopiperazines 
Simple 2,5-diketopiperazines (2,5-DKPs) are cyclodipeptides formed through the 

condensation of two α-amino acids, establishing two amide linkages to form the six-mem-
bered ring [69,70]. This kind of compound demonstrated a good catalytic performance in 
the asymmetric synthesis of the Reformatsky reaction [71]. Furthermore, they have been 
used as structural fragments in the design of novel drugs [53].  

Based on their chemical structure, simple indole diketopiperazines include a wide 
variety of families of compounds [71]. Then, DKPs, that have been found to have biologi-
cal activities, have been ordered by increasing structural complexity into two main 
groups: monoindole and bisindole DKPs. Further, monoindole DKPs differ in how the 
indole is attached to the diketopiperazine, being ultimately divided by the attachment at 
C3 with a methylene or ethylidene bridge (Figure 21).  

 
Figure 21. Basic structures of Simple Diketopiperazines. 

Attached at C3 with a Methylene Bridge 
This classification has been organized according to the monoindole diketopipera-

zines containing a diketopiperazine ring attached at the C3 indol core with a methylene 
bridge (Figures 22 and 23). These indole DKPs are commonly isolated from fungi, such as 
Aspergillus, and Penicillium, among others [72]. An example of a marine bioactive indole 
diketopiperazine alkaloid is Brevianamides, which originated from tryptophan and pro-
line.  

The simplest member of this family of compounds is the (S)-Brevianamide F (64), 
derived from the hexahydropyrrolopyrazine and is a precursor of a variety of more com-
plex prenylated alkaloids. Compound 64, isolated from the marine-derived Penicillium 
vinaceum, showed antibacterial activities against Bacille Calmette-Guérin (BCGs) (IC50 = 
44.1 µM) and S. aureus, with antifungal activity against C. albicans [73,74]. (R)-Cyclo(D-
Trp–L-Pro) (65), the enantiomer of Brevianamide F (64) isolated from the fungi, showed 
antimicrobial activities [75]. Compound 66, derived from the fungus Aspergillus 

Figure 20. Janosik et al. [64] synthesis of Rhopaladin C (53).

2.2. Prenylated Indole Alcaloids (PIAs)

Prenylated indoles include several different families of compounds. For better insight
for the readers, the PIAs are arranged in ascending order of complexity, ranging from
an indole core with a cyclic prenyl substituent to an indole moiety fused with a variable
number of prenyl-derived ring systems. PIAs containing the indole core with acyclic prenyl
substituents are included in Section 2.1.

2.2.1. Diketopiperazine (DKP) Indole Alkaloids
Simple Diketopiperazines

Simple 2,5-diketopiperazines (2,5-DKPs) are cyclodipeptides formed through the
condensation of two α-amino acids, establishing two amide linkages to form the six-
membered ring [69,70]. This kind of compound demonstrated a good catalytic performance
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in the asymmetric synthesis of the Reformatsky reaction [71]. Furthermore, they have been
used as structural fragments in the design of novel drugs [53].

Based on their chemical structure, simple indole diketopiperazines include a wide
variety of families of compounds [71]. Then, DKPs, that have been found to have biological
activities, have been ordered by increasing structural complexity into two main groups:
monoindole and bisindole DKPs. Further, monoindole DKPs differ in how the indole is
attached to the diketopiperazine, being ultimately divided by the attachment at C3 with a
methylene or ethylidene bridge (Figure 21).
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Attached at C3 with a Methylene Bridge

This classification has been organized according to the monoindole diketopiperazines
containing a diketopiperazine ring attached at the C3 indol core with a methylene bridge
(Figures 22 and 23). These indole DKPs are commonly isolated from fungi, such as As-
pergillus, and Penicillium, among others [72]. An example of a marine bioactive indole
diketopiperazine alkaloid is Brevianamides, which originated from tryptophan and proline.
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The simplest member of this family of compounds is the (S)-Brevianamide F (64),
derived from the hexahydropyrrolopyrazine and is a precursor of a variety of more complex
prenylated alkaloids. Compound 64, isolated from the marine-derived Penicillium vinaceum,
showed antibacterial activities against Bacille Calmette-Guérin (BCGs) (IC50 = 44.1 µM)
and S. aureus, with antifungal activity against C. albicans [73,74]. (R)-Cyclo(D-Trp–L-Pro)
(65), the enantiomer of Brevianamide F (64) isolated from the fungi, showed antimicrobial
activities [75]. Compound 66, derived from the fungus Aspergillus fumigatus, bears an
N-tert-butoxycarbonyl protecting group which increases its antimicrobial activity against
S. aureus and B. subtilis (IC50 = 2.1–3.3 µg/mL) [76].

Another two examples, whose structures derived from the hexahydropyrrolopyrazine,
are 18-Oxotryprostatin A (67) and compound 68, both isolated from the marine-derived
fungus Aspergillus sydowi. 18-Oxotryprostatin A (67) exhibited weak cytotoxic activity
against A-549 cells (IC50 =1.28 µM) [77]. Compound 68 showcased antimicrobial activity
against S. aureus and B. subtilis (IC50 = 2.1–3.3 µg/mL). This activity was strongly enhanced
due to the C2-isoprene and N-tert-butoxycarbonyl units [76].

8,9-Dihydrobarettin (69), a brominated cyclodipeptide found in the boreal sponge
Geodia barretti, exerted inhibitory activity against AChE and BChE, and potent antifouling,
antioxidant, and anti-inflammatory activities, making it a potential lead compound in the
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prevention of chronic inflammatory diseases [78,79]. Further, it displayed a high affinity
for the 5-HT receptor [79,80].
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Cyclo(L-Trp–L-Ala) (70), Rubrumlines F (71), G (72), J (73), M (74), N (75), and O
(76), 5-Piperazinedione 77, 2,5-piperazinedione 78, and Preechinulin (79), found in the
marine-derived fungus Eurotium rubrum, demonstrate an effect against the influenza virus
strain A/WSN/33 (H1N1) [81]. Echinulin (80), extracted from the marine-derived fungus
Eurotium rubrum MPUC136, presents two isoprene units in the indole core and showed
inhibitory activity against B16 melanoma cells [81,82].

The diketopiperazine 78, obtained from the M-3 strain belonging to the Ascomycota
phylum, exhibited strong and selective antifungal activity against Pyricularia oryzae.

14-Hydroxyterezine D (81) was derived from Aspergillus sydowi PFW1-13 and showed
weak cytotoxic activity towards A549 (IC50 = 7.31 µM). Further, it was active against HL-60
cells (IC50 = 9.71 µM) [77]. Didehydroechinulin (82) was isolated from Eurotium cristatum
EN-220 and showed potent lethal activity against brine shrimp and a weak nematicidal
effect against Panagrellus redivivus (IC50 = 27.1 µg/mL) [83]. Both have one and two isoprene
units in the indole core respectively.

Attached at C3 with an Ethylidene Bridge

Isoechinulin B (83), Cryptoechinuline G (84), and alkaloid E-7 (85) have been iso-
lated from the marine-derived fungus Eurotium rubrum MPUC136 [84], and feature several
isoprene units in the indole core. They exhibited inhibitory activity against melanin syn-
thesis using B16 melanoma cells [81,82]. Demethyl-12-oxo-eurotechinulin B (86), obtained
from the same fungal strain, showed cytotoxic activity against the SMMC-7721 cell line
(IC50 = 30 µg/mL) [43] (Figure 24).

Cristatumin A (87), isolated from Eurotium cristatum EN-220, showed antibacterial
activity against S. aureus and E. coli (IC50 = 64 and 8 µg/mL). As far as we can ascertain, its
synthesis has not been reported yet [85]. Aspechinulins C (88), isolated from the fungus
Aspergillus sp. FS445, exhibited the most potent inhibitory activities against nitric oxide
(NO) production in comparison to other Aspechinulins compounds (IC50 = 20–90 mM) [86].

Barettin (89) is a brominated cyclodipeptide isolated from the boreal sponge Geodia
barrette. Like its reduced analog 8,9-dihydrobarettin (69), it exhibited inhibitory activities,
such as potent antifouling, antioxidant, and anti-inflammatory activities, and reduced the
DC secretion of IL-12p40 and IL-10 (IC50 = 21.0 and 11.8 µM, respectively) [78–80].
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Neoechinulin A (90), isolated from the marine-derived fungus Aspergillus sp., and
Variecolorin O (91), extracted and characterized from the Eurotium sp. SCSIO F452 fungus,
exhibited significant radical scavenging activity against DPPH [42]; compound 90 also
showed UV-A protecting activity (IC50 = 24 µM) [87]. Isoechinulin A (92), isolated from
the Eurotium rubrum MPUC136 fungus, showed inhibitory activity against the influenza
A/WSN/33 virus (IC50 = 42.7 µM) [81,82].

Compound 93 was isolated from Eurotium cristatum EN-220 and showed potent lethal
activity against brine shrimp and a weak nematicidal effect against Panagrellus redivivus
(LD50 = 110.3 µg/mL) [83].

Neoechinulin B (94), Neoechinulin C (95), Rubrumline D (96), and Rubrumline E (97),
obtained from the Eurotium rubrum fungus, had weak antiviral effects against the influenza
virus strain A/WSN/33 (H1N1) that was propagated in MDCK cells [81].

Eurotiumin C (98), isolated and characterized from the Eurotium sp. SCSIO F452
fungus, showed significant radical scavenging activities against DPPH (IC50 = 13 µM) [42].

Photopiperazines A–D (99–102), unsaturated diketopiperazine derivatives, were iso-
lated from the Actinomycete bacterium strain AJS-327 and exhibited selective toxicity toward
U87 and SKOV3 lines (IC50 = 4.1 × 10−4 µM and 7.5 × 10−4 µM) [88] (Figure 24).
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Bis-Indole Diketopiperazine

In this subsection, naturally occurring DKPs with biological activity that contain two
indole units are been summarized (Figure 25) [89]. Aspergilazine A (103), isolated from the
marine-derived fungus Aspergillus taichungensis ZHN-7-07, contains a rare N1 to C6 linkage
between two DKPs. Compound 103 has weak activity against the influenza A (H1N1) virus
with an inhibition of 34.1% at a concentration of 50 µg/mL [90,91].
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Brevianamide S (104), extracted from the marine-derived fungus Aspergillus versicolor,
showed antibacterial activity against BCGs (IC50 = 9.0 µM) [73,74].

Dinotoamide J (105), obtained from a marine-derived fungus called Aspergillus aus-
troafricanus Y32-2, demonstrated angiogenesis-promoting activity and exhibited proangio-
genic activity in a PTK787-induced vascular injury zebrafish model [92].

Synthetic Routes of DKPs

To obtain indole DKP derivatives, there are two key steps in every synthetic route: the
synthesis of the DKP core, and the coupling of the DKP and the indole unit. Regarding the
construction of the DKP ring, three immediate disconnections of a 2,5-diketopiperazine
ring can be envisioned: the amide bond at N1–C2 (A), the N1–C6 bond (B), and the C5−C6
bond (C). Additionally, two other possible disconnections involving two bonds can be
devised: tandem cyclization via N1−C2/C3−N4 (D) and via C2−N1− C6 (E) (Figure 26).
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Figure 26. Possible disconnections of a 2,5-diketopiperazine ring.

The amide bond formation (A) can be carried out through four different methods:
dipeptide formation followed by cyclization, Ugi chemistry, amino acid condensation,
and Aza-Wittig cyclization. The N-alkylation synthesis (B) can be approached in three
different ways: using α-haloacyl derivatives of amino acids, the aza-Michael reaction, and
the Diels−Alder reaction. The approach C can occur via C–C cyclization radical-mediated
or enolate acylation [71]. The tandem cyclization synthesis (D and E) can be regarded as
extensions of (A–C), and they share some common processes in tandem fashion.

Given the straightforward character of the procedure and the huge chiral pool of
commercially available α-amino acids, there are several synthetic examples of the dipeptide
route using different coupling reagents.
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A representative case of an intramolecular aza-Wittig reaction forming the 2,5-DKP ring
is provided in Figure 27. The acylation between amino acids esters (106) and chloroacetyl chlo-
ride, followed by treatment with sodium azide (NaN3) and Ph3P, creates 2,5-diketopiperazine
107 via iminophosphorane intermediates [93].
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Considering the obtention of indole DKPs, many methods of synthesis and biosynthe-
sis have been described over decades, but surprisingly very few of them were employed to
create biologically active compounds. As illustrative examples, the reported synthesis and
biosynthesis of Brevianamide F (64) are depicted in Figure 28. Nicolás et al. carried out a
solid phase methodology following the Ashnagar synthesis, which furnished 63 in very
good yields but required the installation–removal of protecting groups (Figure 28a) [94,95].
On the contrary, the biosynthesis approach of 64 uses directly unprotected L-Trp (20) and
L-Pro (108) as precursors. This way, using FtmPS (a nonribosomal peptide synthetase) from
Aspergillus fumigatus as a catalyst, Brevianamide F (64) can be obtained (Figure 28b) [69].
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The synthesis of Neochenulin A (94) is an example of a diketopiperazine attached at
C3 with an ethylidene bridge. The reaction of the aldehyde 109 and diketopiperazine 110
promoted t-BuOK in DMF and created the C3-ethylidene-bridged indole DKP core in one
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step. The subsequent deacetylation and elimination of the methoxymethyl group (MOM)
created target compound 94 (Figure 29) [96].
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An example of the synthesis of a dimer of the natural product brevianamide F (64),
aspergilazine A, involves a selective palladium-catalyzed indole N-arylation with bre-
vianamide F (64) and N-Boc bromo derivative 111. It had an excellent yield of the product
112, which, upon facile deprotection, formed Aspergilazine A (103) (Figure 30) [75].
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DKPs Featuring Dimethylpyranoindole

Firstly, DKPs containing a hydropyran[3,2-f ]indole nucleus were described. In this
sense, Asperversamides (113–116) (Figure 31) were extracted from the filamentous fungus
Aspergillus versicolor, collected from the mud in the South China Sea [97]. All of them
contain a rare, linearly-fused dimethylpyranoindole. All these DKP alkaloids exhibited
potential iNOS inhibitory activities, related to anti-inflammatory activity. The best IC50
value was for compound 114 (5.39 µM), whose planarity was found to be important for
its binding capacity to form strong hydrogen bonds with the HEME [97]. Studies of
structural elucidation showed that compound 113 is a C17 epimer of Dihydrocarneamide
A (117). This carneamide derivative, and Iso-notoamide B (118), came from the marine-
derived endophytic fungus Paecilomyces variotii EN-291 and exhibited weak cytotoxic
activity against NCI-H460 (IC50 = 69.3 and 55.9 µM, respectively) [98].

Notoamides are a large family containing a hydropyran[3,2-e]indole, isolated from
the Aspergillus species of fungi. Biosynthetically, they are related to breviamides, para-
herquamides, marcfortines, sclerotiamides, asperalines, avrainvillamides, and
stephacidins [99,100]. The presence of a bicyclo[2.2.2]diazaoctane (Figure 32) in their
structures causes many of these alkaloids to display a variety of biological activities [101].
Thus, Notoamides (119–122) showed moderate cytotoxicity against HeLa and L1210 cell
lines (IC50 = 22–52 µM). Furthermore, Notoamide C (121) and 5-Chlorosclerotiamide (123)
had potent anti-fouling and antilarval settlement activities against Bugula neritina [102].
Likewise, 17-O-ethylnotoamide M (124) did not display cytotoxicity against non-malignant
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HEK 293 T9 and MRC-9 cell lines and inhibited the colony formation of 22Rv1 cells, related
to resistance against hormone therapy for prostate cancer [103].
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6-epi-Avrainvillamide (125) and 6-epi-Stephacidin A (126) were isolated from As-
pergillus taichungensis and exhibited significant activities against HL-60 (IC50 = 4.45 and 1.88)
and A549 (3.02 and 1.92) cell lines [104]. Asperthins A,F (127,128), extracted from a culture
of Aspergillus sp. YJ191021, displayed moderate anti-inflammatory activity by measuring
the secretion of the inflammatory factor 1L-1β by THP-1 cells [105]. Versicamide H (129),
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containing an eight-membered hexahydroazocine ring, was obtained from A. versicolor
HDN08-60 and showed moderate activity against HeLa, HCT-116, HL-60, and K-562 cell
lines and PTK inhibitory activities [106].

Synthesis of Brevianamides Bicyclo[2.2.2]diazaoctano Alkaloids

The synthetic approach to brevianamides, from 1998 to 2017, has been reviewed by
Lawrence et al. [107]. Recently these authors have developed a unified biomimetic syn-
thetic strategy for preparing many of the known bicyclo[2.2.2]diazaoctane brevianamides
(Figure 33).
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Figure 33. Example of synthesis of breviamides 132–135.

The synthesis starts with the preparation of (+)-Dehydro-deoxybreviamide E (130)
from L-tryptophan (20), in a five-step gram-scale procedure. Subsequent treatment with
mCPBA, followed by exposure of the obtained dehydrobrevianamides E (131) to LiOH/H2O
in water at room temperature, created the natural (+) enantiomers of Breviamide A (132)
and B (133). The treatment of 130 with NCS, and then LiOH/H2O, produced Brevianamide
X (134) and Z (135).

Synthesis General of Hydropyranoindole Alkaloids

The synthesis of natural products bearing a pyranoindole nucleus has been reviewed
by Catalano et al. [108]. As seen, some marine indole alkaloids have a hydropyrano ring
fused to the pyrrole in a linear or angular manner. In Figure 34, the last step of both
synthetic procedures is shown [109,110].
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Spirocyclic DKP Alkaloids

These prenylated indoles contain a spirocycle in their structures, linked at the indole
or at diketopiperazine rings (Figure 35).
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Eurotinoids A–C (136–138) were characterized from the sediment-derived fungus Eu-
rotium dp. SCSIO F452. All the spirocyclic alkaloids showed significant radical scavenging
activities against DPPH (IC50 = 3.7–24.9 µM) [111].

Spirotryprostatin E (139) was isolated from the holothurian-derived fungus Aspergillus
fumigatus and showed cytotoxicity against MOLT-4, A549, HL-60, and BEL-7420 [112].

Dihydrocriptoechinulin D (140) was isolated from a mangrove-derived fungus, As-
pergillus effuses H1-1, and showed activity against P388 and HL-60 cell lines and inhibitory
activity against topoisomerase I [113].

Variecolorins A–C (141–143) were characterized by the sediment-derived fungus
Eurotium sp. SCSIO F452. (+)-141 exhibited stronger antioxidative activity than (−)-141
against DPPH (IC50 = 58.4 µM and 159.2 µM respectively), while (+)-142 and (+)-143
showed more potent cytotoxicity against SF-268 (IC50 = 12.5 and 30.1 µM) and HepG2 cell
lines (IC50 = 15.0 and 37.3 µM). (−)-142 and (−)-143 were inactive (IC50 > 100 µM), which
indicated that different enantiomers might result in different biological activities [114].

Variecolortides A–C (144–146) were obtained from a halotolerant fungus, Aspergillus
variocolor B17, and displayed weak cytotoxicity towards the K562 human leukemia cell
line [19]. They also showed an interesting caspase-3 inhibitory activity (associated with
cellular apoptosis) [115].

Other Polycyclic DKP Alkaloids

These prenylated indoles contain a variable number of cycles in their structures. They
are presented below in increasing order of complexity (Figure 36).
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Two Fumitremorgin B (147,148) derivatives were isolated from the holothurian-derived
fungus Aspergillus fumigatus and showed similar bioactivity to Spirotryprostatin E, pre-
viously described [112]. A structural analog, 13-O-Prenylverruculogen (149), containing
a dioxolane cycle, exhibited potent insecticidal activity against brine shrimp (artemia
salina) [116]. On the other hand, Prenylcycloprostratin (150) and 9-Hydroxifumitremorgin
C (151), obtained from A. fumigatus YK-7, displayed activities towards U937 cell lines [117].

Drimentine G (152), isolated from marine-sediment actinomycete Streptomyces p. CHQ-
64, showed cytotoxic activities against HCT-8, Bel-7402, A549, and A2780 cell lines [118].

Brevicompanins (153–158) were isolated from the fungus Penicillium brevicompactum
and exhibited anti-inflammatory activity associated with BV2 microglial cell lines [119].
Compound 153 also showed antiplasmodial activity. A structural analog, Shornephine
A (159), with a diketomorpholine ring, was isolated from the marine sediment-derived
Aspergillus sp. (CMB-M081F) and was identified as a non-cytotoxic inhibitor of the P-
glycoprotein associated with MDR cancer cells [120].

Okaramine S (160) was produced by Aspergillus taichungensis ZHN-7-07, isolated
from the rhizosphere soil of the mangrove plant Acrostichum aureum. It exhibited cy-
totoxic activity against HL-60 and K562 cell lines with IC50 values of 0.78 and 22.4 µM,
respectively [121].

Deoxyisoaustamide derivatives (161,162), containing an eight-membered hexahydroa-
zocine ring, were extracted from the fungus Penicillium dimorphosphorum KMM 4689 from
soft coral samples. These compounds showed neuroprotective activity against the acute
toxicity of paraquat (PQ) murine neuroblastoma Neuro-2a cells [103], with no cytotoxicity
towards these neuro-cells.
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Raistrickindole A (163), containing an oxindole ring, was extracted from Penicillium
raistrickii IMB17-034 and showed activity against the hepatitis C virus (HCV) with an EC50
value of 5.7 µM [122].

Indotertine B (164) was isolated from the marine sediment-derived actinomycete Strep-
tomyces sp. CHQ-64 [123] and exhibited cytotoxic activities against HCT-8, Bel-7402, A549,
and A2780 cell lines with IC50 values of 2.81, 1.38, 1.01, and 2.54 µM, respectively [124].

Nocardioazine A (165), isolated from a marine sediment-derived bacterium, Nocardiop-
sis sp. (CMB-M0232) is an effective and noncytotoxic inhibitor of the multidrug resistance
factor P-glycoprotein and is able to reverse resistance in SW620 Ad300 cells [125].

General Synthesis of Indole DKP Alkaloids

A general strategy for the synthesis of indole DKP alkaloids (Figure 37) has been
described by Jia et al. [126]. Three types of analogs of indole DKP alkaloids were synthe-
sized: fused pentacyclic indole DKPs (166), trypostatin open-ring indole DKPs (167), and
spiropentacyclic indol DKPs (168 and 169).
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Figure 37. Synthesis of Indole diketopiperazine alkaloids.

The Pictet–Spengler reaction of methyl L-tryptophan hydrochloride 170 with sev-
eral aldehydes leads to the corresponding chiral cyclic intermediate 171. The subsequent
reaction of 171 with F-moc-L-Pro-Cl created 172, which, by treatment with morpholine,
produced the fused pentacyclic indole DKP (166). When compound 172 is treated with NBS,
it undergoes a spiro rearrangement providing the corresponding spiro-pentacyclic indoles,
which, upon treatment with morpholine, generates the DKP derivative, 168 (R = alkyl).
When the substituents are aromatic, open-ring indoles (167) are formed. Another approach
for the preparation of the spiro-pentacyclic scaffold (169, R = aryl) used a 1,3 dipolar cy-
cloaddition of 2-oxoindolin-3-ylidenes with azomethine ylides, followed by the previously
described procedure (treatment with F-moc-L-Pro-Cl and morpholine).
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2.2.2. Hexahydropyrrolo[2,3-b]indol (HPI) Derivatives

In this kind of alkaloid, the indole group from tryptophan is fused with an additional
pyrrole ring (Figure 38), highlighted by a group of Flustramines isolated from the marine
bryozoan Flustra foliacea [127]. The simple Flustramine C (173) showed activity to inhibit
biofilm formation in A. baumannii, a human pathogen associated with hospital-acquired
infections. A structural modification by adding a triazole amide moiety with a large
hydrophobic chain at pyrrroloindole (174) increased the antibiofilm activity, from IC50
values of 174 µM to 3.4 µM, respectively [117].
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Synthesis of Hexahydropyrrolo[2,3-b]indol (HPI) Derivatives

Several procedures have been described for the synthesis of a pyrroloindole scaffold.
Below, the focus is on the synthetic routes for the preparation of Flustramines (Figures 39
and 40) and on the known routes to build the HPI tricycle skeleton (Figure 41).
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Synthesis of Flustramines

The general approach to Flustramines consists of tandem olefination, isomerization,
and Claisen rearrangement to provide the intermediate 175. The successive deacetylation,
and selective reduction of the nitrile group of compound 176 with subsequent cyclization,
leads to pyrroloindole 177. A final methylation step creates Flustramine C (178) [35].

Bunders et al. [117] described an effective method to obtain Flustramine analogs
179 with a general scaffold. As indicated in Figure 40, a Fischer indolization reaction of
hemiaminal 180 created the tricyclic core 181. The corresponding functionalization of 181
and final deprotection created the aforementioned product 179.

Synthesis of HPI Tricyclic Skeleton

The synthesis of HPIs has been quite extensively reviewed by Albericio et al. [128].
Figure 41 shows the most significant synthetic routes to obtain a wide variety of HPI
alkaloid derivatives, using functionalized indoles, oxidized indoles, and tryptamines as
starting materials. The usually described procedures involve classic approaches by cy-
clization, including acid-catalyzed, oxidative, reductive, and alkylative, with nucleophiles.
Other procedures take place by [3,3]-sigmatropic rearrangement and Fischer indolization.
On the other hand, complex structures were obtained by modern procedures, including
Pd-catalyzed reactions such as Larock heteroannulations or aza-Pauson–Khand cyclocar-
bonylation.

2.2.3. Indolactam Alkaloids

Teleocidin analogs 182 and 183 were isolated from different Streptomyces sp., obtained
from marine sponges. The first compound, 182, had neurological activity via the protein
kinase C (PKC) pathway [37], while the second compound, 183, exhibited cytotoxicity
against HeLa and ACC-MESO-1 cell lines (Figure 42).

Pendolmycin analogs 184 and 185 were isolated from actinomycete Marinactinospora
thermotolerans SCSIO 00652. They showed antiplasmodial activities against the Plasmodium
falciparum strains 3D7 and Dd2 [129].
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2.2.4. Other Polycyclic Indole Alkaloids

Pentacyclic carbazole derivatives Xiamicyn A (186) and B (187) were isolated from
different endophytic Streptomyces sp. Compound 186 was an anti-HIV agent [39], while
compound 187 exhibited potent antibacterial properties (Figure 43) [122].

Fusaindoterpenes A (188) and B (189), extracted from a culture of Fusarium sp. L1,
showed interesting antiviral activity against the Zika virus with EC50 values of 12 and
7.5 µM, respectively. The structure–activity relationship study of these compounds revealed
that the cyclopentane-pyrrole fused ring is essential for higher antiviral activity [130].

Penerpenes A–B (190,191) are two indole diterpenoids obtained from Penicillium sp.
KFD28, isolated from a bivalve mollusk. Both compounds displayed inhibitory activities
against PTPs, becoming a promising target for drug discovery against diabetes [131,132].

Shearinines D and E (192,193) were isolated from the marine-derived strain of the
fungus Penicillium janthinellulm Biourge [131]. Both compounds exhibited varied bioactivity,
such as the induction of apoptosis in the human leukemia cell line HL-60 [131], as well as
inhibition against Candida albicans biofilm formation [132].

Spirocyclic Citrinadin B (194) was extracted from Penicillium citrinum, obtained from a
red alga, and showed cytotoxic activity against murine leukemia L1210 cells [133].

Triaza-spirocyclic Meleagrins B–E (195–198) were isolated from the fungus Penicillium
sp. and showed cytotoxicity against HL-60, MOLT-4, A549, and Bel-7402 cell lines. The
bioactivity increases with the complexity of the Meleagrins, being lower for D and E than
for B and C [134,135].

Penitrem derivatives (199–201) were isolated from the marine-derived fungus Peni-
cillium commune and Aspergillus nidulans EN-330. Compound 199 showed significant
anti-invasive and antiproliferative activity against MCF-7 and MDA-MB-231 tumor cell
lines [136]. The other two Penitrems exhibited antimicrobial activity [137].

Asperindoles A (202) and Ascandinine D (203) are indolediterpenes with the same
structural scaffold obtained from the culture of two different Aspergillus sp. Compound 202
exhibited toxicity against 22Rv1 (induction of cellular apoptosis), PC-3, and LnCaP prostate
cancer cell lines [138], while 203 was active against the HL-60 (promyelocytic leukemia)
cell lines [139].



Mar. Drugs 2024, 22, 126 25 of 54

Mar. Drugs 2024, 22, x FOR PEER REVIEW 25 of 56 
 

 

μM, respectively. The structure–activity relationship study of these compounds revealed 
that the cyclopentane-pyrrole fused ring is essential for higher antiviral activity [130].  

Penerpenes A–B (190,191) are two indole diterpenoids obtained from Penicillium sp. 
KFD28, isolated from a bivalve mollusk. Both compounds displayed inhibitory activities 
against PTPs, becoming a promising target for drug discovery against diabetes [131,132].  

Shearinines D and E (192,193) were isolated from the marine-derived strain of the 
fungus Penicillium janthinellulm Biourge [131]. Both compounds exhibited varied bioactiv-
ity, such as the induction of apoptosis in the human leukemia cell line HL-60 [131], as well 
as inhibition against Candida albicans biofilm formation [132].  

Spirocyclic Citrinadin B (194) was extracted from Penicillium citrinum, obtained from 
a red alga, and showed cytotoxic activity against murine leukemia L1210 cells [133]. 

Triaza-spirocyclic Meleagrins B–E (195–198) were isolated from the fungus Penicil-
lium sp. and showed cytotoxicity against HL-60, MOLT-4, A549, and Bel-7402 cell lines. 
The bioactivity increases with the complexity of the Meleagrins, being lower for D and E 
than for B and C [134,135]. 

Penitrem derivatives (199–201) were isolated from the marine-derived fungus Peni-
cillium commune and Aspergillus nidulans EN-330. Compound 199 showed significant anti-
invasive and antiproliferative activity against MCF-7 and MDA-MB-231 tumor cell lines 
[136]. The other two Penitrems exhibited antimicrobial activity [137]. 

Asperindoles A (202) and Ascandinine D (203) are indolediterpenes with the same 
structural scaffold obtained from the culture of two different Aspergillus sp. Compound 
202 exhibited toxicity against 22Rv1 (induction of cellular apoptosis), PC-3, and LnCaP 
prostate cancer cell lines [138], while 203 was active against the HL-60 (promyelocytic leu-
kemia) cell lines[139].  

 
Figure 43. Structures of compounds 186–203. Figure 43. Structures of compounds 186–203.

2.2.5. Ergot Alkaloids

Pibocins A and B (204–205) and Fumigaclavine A (206) are examples of Ergot alkaloids
with interesting bioactivity (Figure 44). Pibocins were isolated from ascidian Eudistoma
sp. [140] and were found to have antimicrobial and cytotoxic effects against mouse Ehrlich
carcinoma cells [140,141]. Compound 206 was extracted from the fungus Aspergillus fumiga-
tus [142] and induced apoptosis in MCF-7 breast cancer cells [143].
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2.3. Annelated Indole Alkaloids

Within this subsection, alkaloids containing a single indole core fused with no prenyl-
derived (hetero)cyclic ring systems are disclosed (Figure 45).
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2.3.1. Quinazoline(inone)-Containing Annelated Indole

Aspertoryadins F and G (207–208) contain a 2-indolone moiety linked to a quinazoli-
none ring through a five-membered spiro lactone. Both compounds were extracted from
Aspergillus sp. from a bivalve mollusk. They exhibited quorum sensing (QS) inhibitory ac-
tivity against Chromobacterium violaceum CV026, causing skin infections. These compounds
prohibited bacterial pathogenicity [142].

Fumigatoside E (209) was obtained from Aspergillus fumigatus SCSIO 41012 and
showed moderate to strong antibacterial and antifungal activity, with LC50 values of
6.25 µM, against A. baumannii 15,122 and S. aureus ATCC 16,339, and 12.5 µM against A. Bau-
mannii ATCC 19,606 and K. pneumoniae ATCC 14,578. Strong activity against F. oxyosporum
f. sp. (LC50 = 1.56 µM) was also observed [144].

Fumiquinazoline J (210) was isolated from the fungal strain Aspergillus fumigatus
H1-04 and exhibited cytotoxicity against the cell lines ts FT210, P388, HL-60, A549, and
Bel-7402 [143].

Cottoquinazoline D (211), obtained from the marine-derived fungus Aspergillus versi-
color, was reported to show antifungal activity against C. albicans [145,146].

Scequinadoline A (212) and Scedapin C (213) contain an imidazoindolone ring and
were isolated from an extract of the soft coral-associated fungus S. apiospermum F41-1. Both
compounds displayed significant anti-HCV activity against the J8CC recombinant [147].

2.3.2. Imidazolone-Containing Pyrrolidinone

Securamines H and I (214–216) are hexacyclic annelated indole alkaloids isolated from
the bryozoan Securiflustra securifrons that showed potent cytotoxicity against A2058, HT-29,
and MCF-7 lines (Figure 46) [148].
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2.3.3. β-Carbolines

β-Carboline alkaloids (βCs) are a tryptophan-derived family of natural products
whose basic structure derives from the tricyclic 9H-pyrido[3,4-b]indole (Figure 47). Al-
though initially discovered in plants, a wide range of these compounds have been iso-
lated over decades from marine sources, such as tunicates [149], sponges [150], and bry-
ozoans [151]. βCs display a wide range of outstanding biological activities and, to the



Mar. Drugs 2024, 22, 126 27 of 54

best of our knowledge, several plant-isolated and synthetic representative examples, de-
picted in Figure 47, have been approved by the FDA and commercialized as drugs at
some point, including Taladafil [152] and Yohimbine [153] for treating erectile dysfunc-
tion, Reserpine [154], Deserpidine [155] and Rescinnamine [156] for treating hypertension,
Abecarnil [157] as an anxiolytic, and Cipargamin [158] as an antimalarial.
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However, no example of a marine-derived βC has been approved by the FDA, to
the best of our knowledge. This is quite surprising since, as will be showcased in the
next subsections, they can exert a wide variety of biological activities, such as anticancer,
antibiotic, antiplasmodial, anti-inflammatory, and antifungal, among others.

βCs can be found in nature in a monomeric or dimeric fashion [159]. However, some
of them are hybrid structures with two different βC cores. Therefore, monomers and dimers
will be disclosed in separate subsections and, attending to the absence or presence of extra
fused rings in the basic βC skeleton, monomers will be subsequently grouped as ‘simple’-
and annelated-βCs.

β-Carboline Monomers

‘Simple’ β-Carbolines

Regarding the saturation of the indole-fused pyridine ring, these compounds can
be classified as β-carbolines (βCs), dihydro-β-carbolines (DHβCs), and tetrahydro-β-
carbolines (THβCs). It is worth mentioning that the N-methyl quaternary salt of β-carboline
alkaloids also occurs in nature.

The simplest β-carboline, Norharmane (217), first isolated from a higher plant, can be
found in different marine sponges (Figure 48). In 2007, Herraiz et al. showed that 217 has
possible applications against PD [160].
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The presence of substituents in the basic structure of βC, and the level of reduction of
the ring, lead to enhanced or new properties in comparison with 217. The rest of the section
has been structured according to the substituted position in the βC, which is responsible
for the therapeutic activity, trying to group them in their corresponding families and
making a comparison with their reduced analogs when possible. Therefore, the following
subsections will be presented: C1-substituted-βCs, Manzamines, N2-substituted-βCs, and
C3-substituted-βCs. It is important to remark that, although manzamines belong to C1-
substituted-βCs, their specific structure and bioactivities require a separate discussion from
their simpler analogs.

C1-Substituted (DH/TH)β-Carbolines

βCs in which the C1-substitution is responsible for their therapeutic activity represent
the largest family of these scaffolds. The variety of functional groups that can be found at
C1 is pretty wide, ranging from simple alkyl chains or aryl groups to complex glycosides
or polycycles.

Harmane (218) was isolated from the culture of the marine-sponge-associated fungus
Neosartorya tsunodae KUFC 9213 [161]. Compound 218 exhibited stronger AChE and BuChE
inhibition (IC50 > 10 µM) compared to 217 and weak in vitro antileishmanial activity against
Leishmani infantum [162]. 1-Ethyl-β-carboline (219), isolated from the marine bryozoan
Orthoscuticella ventricosa, exhibited moderate antiplasmodial activity (IC50 = 18 µM) against
the P. falciparum K1 strain [151]. The addition of a C4-OMe to the pyridine ring (220) exerted
a detrimental effect on the activity [163]. Other βCs from the same bryozoan, such as
1-ethyl-4-methylsulfone-β-carboline (222), Orthoscuticelline C (223), and Orthoscuticelline
D (224), had lower efficiency, indicating that the addition of C4–sulfone to the ring, or
hydroxy, amino, or sulfonic acid groups to the alkyl chain, were not beneficial [150,164]
(Figure 49).
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However, Harmine (221), a C7-OMe analog of 217, first isolated from plants but widely
found in marine species, exhibited a wide range of bioactivities, including antitumor, an-
tibiotic, antifungal, antioxidant, antiplasmodial, antimutagenic, and antigenotoxic activity.
Further, it acts on gamma-aminobutyric acid type A and the monoamine oxidase A or
B receptor, improves insulin sensitivity, exerts vasorelaxant effect, and suppresses osteo-
clastogenesis, among others. These properties have been well documented by Patel and
coworkers [164].

Eudistalbin A (225), isolated from a tunicate Eudistoma album, presented in vitro
cytotoxicity (IC50 = 3.2 µg/mL) against KB cells [149]. Plakortamine A (226), isolated
from the sponge Plakortis nigra, showed antitumor activity against the HCT-116 cell line
(IC50 = 3.2 µM) [150]. Both Eudistomidin C (227) and J (228), obtained from tunicate Eudis-
toma glaucus [165], have potent cytotoxicity against murine leukemia L1210 cells (IC50 = 0.36
and 0.047 µg/mL, respectively) [165,166], while only 228 is active against P388 and KB
cancer cells (IC50 = 0.043 and 0.063 µg/mL, respectively) [166]. 14-Methyleudistomidin C
(229), from the ascidian Eudistoma gilboverde, demonstrated significant cytotoxicity against
four different human tumor cell lines (IC50 < 1.0 µg/mL) [167]. Ingenine E (230), isolated
from the sponge Acanthostrongylophora ingens, is strongly cytotoxic against MCF-7, HCT-116,
and A549 lines [168]. It is worth mentioning that, although Orthoscuticelline C (222) is
chemically similar to 215–228, its anticancer biological activity has not been tested so far.

Opacalines A (231) and B (232), found in the ascidian Pseudodistoma opacum, exhibited
antiplasmodial activity due to alkyl guanidine-substituted chains (IC50 = 2.5 and 4.5 µM,
respectively) [169]. As observed, the N9-hydroxylation reacts negatively to this activity.
Other synthetic debromo- or THβCs derivatives of 231 and 232 were less active than the
parent compounds, indicating that the Br atom plays an important role in the activity.

Eudistomins W (233) and X (234), isolated from tunicate Eudistoma sp., have antifungal
activity against C. albicans and B. subtilis, S. aureus, and E. coli, respectively, as well as some
antibiotic properties [170].

Imidazolium-containing Gesashidine A (235), first isolated from a Thorectidae sponge,
showed antibacterial activity against Micrococcus luteus but no cytotoxicity against the
cell line L5178Y [171]. Interestingly, the presence of a C3-carboxylate shuts down the
antibacterial activity of Dragmacidonamine A (236), isolated from the same sponge, and its
sulfoxide Hyrtimomine H (237), obtained from Hyrtios sponge. However, it enhances their
cytotoxicity when compared to 235 (Figure 49).

Reduced DHβC and THβC analogs of compounds 217–237 (Figure 50) have sim-
ilar therapeutic activity compared to their unsaturated counterparts. Eudistomidins B
(238), G (239), H (240), and I (241), isolated from Eudistoma glaucus, exhibited cytotoxicity
against L1210, L5178Y, P388, and KB cancer cells, although weaker than related compounds
223–237. Ingenine F (242), obtained from Acanthostrongylophora ingens, showed similar
levels of cytotoxic activity against MCF-7, HCT-116, and A549 lines compared to compound
230 [172]. (+)-7-Bromotrypargine (243), isolated from the marine sponge Ancorina, exerts
antimalarial activity similar to 231, but also weak cytotoxicity against HEK293 cells [173].
Haploscleridamine (244), isolated from Haplisclerida sponge, was identified as an inhibitor
of cathepsin K [174], while its C3-CO2H analog Hainanerectamine C (245), identified from
the Hyrtios erecta sponge, showed moderate anticancer activity as an inhibitor of Aurora
kinase A [35].

Hyrtimomine I (246) and J (247), hydroxyimidazolium βCs found in the Hyrtios
sponge, exhibited antifungal activity against A. niger (IC50 = 8.0 µg/mL each) and C. albicans
(IC50 = 2.0 µg/mL each), but only 246 showed activity against C. neoform (IC50 4.0 µg/mL).
However, Hyrtimomine H (248), from the same sponge, showed no activity, indicating that
the C3-CO2H group is crucial [175] (Figure 51). It is worth noting that this kind of activity
has not been reported so far for similar compounds 235–237.
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Blunt and Munro indicated that C1-vinyl groups might be beneficial for antitumor
activity (Figure 52). 1-Vinyl-8-hydroxy-β-carboline (249), collected from bryozoan Cribricel-
lina cribaria [176], and Plakortamine B (250), produced by the sponge Plakortis nigra [150],
were found to be active against the P388 (IC50 = 100 ng/mL) and HCT-116 cell lines
(IC50 = 3.2 µM), respectively. The C1-aryl compound Chaetogline F (251), obtained from
the fish-derived fungus Chaetomium globosum 1C51 through biotransformation [177], rep-
resents a more promising structure for the design of anti-Alzheimer’s drugs [178] and
had antibiotic activity against Veillonella parvula, Bacteroides vulgatus, Streptococcus sp., and
Pepto streptococcus sp. [179]. Apart from antibiotic activities, other authors found that some
synthetic C1-aryl derivatives exhibited activity against Leishmania donovani [180].
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C1-furyl-substituted Flazin (252) (Figure 53), obtained from the oyster Crassostrea
sikamea [181], is a promising candidate for the development of anti-HIV drugs [182]. An
exhaustive SAR study carried out by Liu et al. identified the synthetic Flazinamide (253) as
the most promising drug. Eudistomin I (254), isolated from Eudistoma olivaceum tunicate,
contains a dihydropyrrole ring that confers its antibacterial effects [183–185]. Indole-
substituted Eudistomin U (255) and Isoeudistomin U (256), isolated from Lissoclinum fragile,
and their synthetic analogs, have been reported to have antibacterial, antimalarial, and anti-
cancer properties, as extensively reviewed by Kolodina and Serdyuk [186]. Plakortamine D
(257), a C1-isoxazolidine-substituted scaffold obtained from the Plakortis nigra sponge, has
antitumor activity against the HCT-116 cell line (IC50 = 15 µM) [150]. Finally, Annomontine
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(258), Ingenine C (259), and Ingenine D (260), all of them bearing aminopyrimidine rings
and isolated from the Indonesian sponge Acanthostrongylophora ingens, exhibited cytotoxic
activities against MCF-7 and HCT-116 [168,187].
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Figure 53. C1-substituted βC compounds 252–260.

1-Acetyl-β-carboline (261), isolated from Marinactinospora thermotolerans, showed weak
cytotoxicity against NCI-H460 cells (IC50 = 18.73 µg/mL) [188] and antibiotic properties
against S. aureus [189]. Eudistomidin K (262), from the tunicate Eudistoma glaucus, exhibited
weak cytotoxicity against P388, L1210, and KB cells (IC50 > 10.0 µg/mL) [166]. Marinacar-
bolines A–D (263–266), obtained from Marinactinospora thermotolerant, and their synthetical
derivatives, bear an additional C3-amido moiety with pendant aryl rings (Figure 54). Their
cytotoxicity was first investigated in 2015 [190], but Hong and Lee have performed a very re-
cent and in-depth SAR study against ocetaxel-Resistant Triple-Negative Breast Cancer [191].
Compounds 263–266 also exhibit promising antimalarial activity [129]. Eudistalbin A
(267), isolated from Eudistoma album tunicate, exerts cytotoxic activity in vitro against KB
cells (IC50 = 3.2 µg/mL) [149]. Eudistomin T (268), from the tunicate Eudistoma olivaceum,
exhibited not only weak phototoxicity but also antibiotic properties [184].

Mar. Drugs 2024, 22, x FOR PEER REVIEW 32 of 56 
 

 

 
Figure 54. C1-substituted βC compounds 261–268. 

Eudistomin Y (269), isolated from Eudistoma tunicates, and its synthetic analogs, 
tends to exhibit antifungal [192] and antibiotic [192,193] properties (Figure 55), but also 
significant cytotoxic and antiproliferative activities [192,194,195]. SAR analysis indicated 
that an increased number of Br atoms in the aromatic rings increased their antibiotic effect. 
Reduction of the benzoyl moiety does not affect its properties, as found for Eudistomin 
Y11 (270). 

 
Figure 55. C1-substituted βC compounds 269–270. 

Xestomanzamine A (271) (Figure 56), isolated from the sponge Acanthostrongylophora 
sp., had moderate antibiotic, anti-HIV, and antifungal activity, but no cytotoxicity against 
A594 and HCT-116 [196]. However, imidazole-containing Hyrtiocarboline (272), from 
Hyrtios reticulatus sponge, showed significant cytotoxicity against H522-T1, MDA-MB-
435, and U937 cell lines (IC50 = 1.2, 3.0, and 1.5 µg/mL, respectively) [197]. Imidazolium-
containing Hyrtiomanzamine (273), from Hyrtios erecta sponge, and Dragmacidonamine 
A (274), from Dragmacidon sponge, exhibited some cytotoxicity [171,197]. Further, 273 ex-
hibited some immunosuppressive activity [198]. Indolyl-substituted Pityriacitrin (275), 
first isolated from a Paracoccus marine bacterium, exerts promising anticancer activity 
against MCF-7, MDA-231, and PC3 cell lines [199]. In-depth SAR analysis of Pityriacitrin 
analogs showed that C3 amide, hydrazide, hydrazones, 1,3,4-oxadiazole, 1,2,4-triazole, 
and pyrazole moieties are essential for potent anticancer activity [200]. 

Hyrtiosulawesine (276), found in the Indonesian sponge Hyrtios erectus, displays a 
great variety of properties, such as antioxidant [201], antiphospholipase A2 [202], antidi-
abetic [203], anti-inflammatory [204], antimalarial [205], and cytotoxicity properties, to-
wards the Hep-G2 cell line (IC50 = 19.3 µmol/L) [206]. 6-O-(β-glucopyranosyl)hyrtiosula-
wesine (277), from the same marine species, is only slightly cytotoxic towards hepatic cells 
and has antimalarial activity (IC50 = 5 µM). 

Figure 54. C1-substituted βC compounds 261–268.

Eudistomin Y (269), isolated from Eudistoma tunicates, and its synthetic analogs,
tends to exhibit antifungal [192] and antibiotic [192,193] properties (Figure 55), but also
significant cytotoxic and antiproliferative activities [192,194,195]. SAR analysis indicated
that an increased number of Br atoms in the aromatic rings increased their antibiotic effect.
Reduction of the benzoyl moiety does not affect its properties, as found for Eudistomin
Y11 (270).
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Xestomanzamine A (271) (Figure 56), isolated from the sponge Acanthostrongylophora
sp., had moderate antibiotic, anti-HIV, and antifungal activity, but no cytotoxicity against
A594 and HCT-116 [196]. However, imidazole-containing Hyrtiocarboline (272), from
Hyrtios reticulatus sponge, showed significant cytotoxicity against H522-T1, MDA-MB-435,
and U937 cell lines (IC50 = 1.2, 3.0, and 1.5 µg/mL, respectively) [197]. Imidazolium-
containing Hyrtiomanzamine (273), from Hyrtios erecta sponge, and Dragmacidonamine
A (274), from Dragmacidon sponge, exhibited some cytotoxicity [171,197]. Further, 273
exhibited some immunosuppressive activity [198]. Indolyl-substituted Pityriacitrin (275),
first isolated from a Paracoccus marine bacterium, exerts promising anticancer activity
against MCF-7, MDA-231, and PC3 cell lines [199]. In-depth SAR analysis of Pityriacitrin
analogs showed that C3 amide, hydrazide, hydrazones, 1,3,4-oxadiazole, 1,2,4-triazole, and
pyrazole moieties are essential for potent anticancer activity [200].
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activity against Sarcina lutea (MIC = 2.3 µg/mL) and Corynebacterium xerosis (MIC = 5.7 
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larial and antituberculosis activity compared to the other manzamines [220]. 12,28-
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Hyrtiosulawesine (276), found in the Indonesian sponge Hyrtios erectus, displays a
great variety of properties, such as antioxidant [201], antiphospholipase A2 [202], antidia-
betic [203], anti-inflammatory [204], antimalarial [205], and cytotoxicity properties, towards
the Hep-G2 cell line (IC50 = 19.3 µmol/L) [206]. 6-O-(β-glucopyranosyl)hyrtiosulawesine
(277), from the same marine species, is only slightly cytotoxic towards hepatic cells and has
antimalarial activity (IC50 = 5 µM).

Finally, Shishijimicin A–C (278–280) (Figure 57), isolated from sea squirt Didemnum
proliferum, has antitumor activity against P388 cells [207]. This property is attributed to
the intricate and conjugated enediyne functional group, with 278 being the most powerful
enediyne-based antitumor and antibiotic identified to date. Remarkably, the total synthesis
of compound 278 was accomplished in 2015 by Nicolaou [208].
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Manzamines

Manzamines are a special family of C1-substituted βCs in which the C1 moiety gener-
ally consists of a characteristic complex penta-or tetracyclic system or a monomacrocycle
(Figure 58). Manzamine A (281) (also named Keramamine A) [209] was the first reported
member of these compounds [210]. Compound 281 showed a broad spectrum of biological
effects, including potent antileishmanial and antimycobacterial activity [211], cytotoxicity
against pancreatic cancer, P388, and human colorectal carcinoma [210,212,213], and anti-
Alzheimer’s activity [214]. It also exhibited antiviral effects against HSV-1, HSV-2, and
HIV [211,215,216]. Compound 281 exhibited potent antitubercular activity against M. tuber-
culosis (H37Rv) [217]. 8-Hydroxymanzamine A (282) (also named manzamine G or manza-
mine K) exhibited moderate antitumor activity against KB and LoVo lines and anti-HSV-2
activity [216]. ent-8-Hydroxymanzamine A (283) is active against P388 (IC50 = 0.25 µg/mL)
and exerts an in vitro antitrypanosomal effect [218]. Manzamine M (284) had cytotoxic-
ity against L1210 cells (IC50 = 0.3 µg/mL), and antibacterial activity against Sarcina lutea
(MIC = 2.3 µg/mL) and Corynebacterium xerosis (MIC = 5.7 µg/mL) [219].

12,34-Oxamanzamine A (285), with a C12–C34 ether bridge, exhibited lower anti-
malarial and antituberculosis activity compared to the other manzamines [220]. 12,28-
Oxamanzamine A (286) and 12,28-Oxa-8-hydroxymanzamine A (287), with C12–C28 or
C12–C34 ether bridges, showed effective antifungal, anti-inflammatory and anti-HIV-1
activities [221].

3,4-Dihydro-6-hydroxymanzamine A (288) had cytotoxicity against L1210 cells
(IC50 = 1.4 µg/mL), and antibacterial activity against Sarcina lutea (MIC = 6.3 µg/mL)
and Corynebacterium xerosis (MIC = 3.1 µg/mL) [219]. N-Methyl-epi-manzamine D (289) and
epi-Manzamine D (290) showed cytotoxicity against HeLa and B16-F10 cells [220]. 1,2,3,4-
Tetrahydro-2-N-methyl-8-hydroxymanzamine A (291) (8-Hydroxy-2-N-methylmanzamine
D) is cytotoxic toward the P388 cell line (ED50 = 0.8 µg/mL) [222].

Biologically active pentacyclic manzamines having a ketone or alcohol group in their
eight-membered ring instead of a double bond, have been also reported (Figure 59). Manza-
mine E (292) and Manzamine F (Keramamine B) (293) displayed cytotoxicity toward L5178Y
and P388 cells [223]. Ent-manzanine F (294) inhibited H37Rv (IC50 < 12.5 µg/mL) [218].
ent-12,34-oxamanzamines E (295) and F (296) showed weak inhibitory activity against M. tu-
berculosis (IC50 value of 128 µg/mL) [220]. Pre-neo-kauluamine (297) exhibited proteasome
inhibitory activity, a potent antitrypanosomal effect, and antimalarial activity [224,225].
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Biologically active pentacyclic manzamines having a ketone or alcohol group in their 
eight-membered ring instead of a double bond, have been also reported (Figure 59). Man-
zamine E (292) and Manzamine F (Keramamine B) (293) displayed cytotoxicity toward 
L5178Y and P388 cells [223]. Ent-manzanine F (294) inhibited H37Rv (IC50 < 12.5 µg/mL) 
[218]. ent-12,34-oxamanzamines E (295) and F (296) showed weak inhibitory activity 
against M. tuberculosis (IC50 value of 128 µg/mL) [220]. Pre-neo-kauluamine (297) exhibited 
proteasome inhibitory activity, a potent antitrypanosomal effect, and antimalarial activity 
[224,225].  
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Several biologically active manzamines containing a βC ring system with a C1-
tetracyclic scaffold have been reported (Figure 60). Manzamine J (298) showed cytotoxic
activity against KB cells (IC50 > 10 µg/mL), while its N-oxide (299) showed cytotoxicity
against L1578Y (IC50 = 1.6 µg/mL). Additionally, 298 has anti-tubercular activity against
H37Rv [217]. Manzamine B N-oxide (300) displayed weak activity against several Gram-
positive and Gram-negative bacteria [226]. Acanthomanzamines D (301) and E (302), had a
strong proteasome inhibitory effect (IC50 = 0.63 and 1.5 µg/mL, respectively) [227].



Mar. Drugs 2024, 22, 126 35 of 54

Mar. Drugs 2024, 22, x FOR PEER REVIEW 35 of 56 
 

 

 
Figure 59. Chemical structures of Manzamines 292–297. 

Several biologically active manzamines containing a βC ring system with a C1-tetra-
cyclic scaffold have been reported (Figure 60). Manzamine J (298) showed cytotoxic activ-
ity against KB cells (IC50 >10 µg/mL), while its N-oxide (299) showed cytotoxicity against 
L1578Y (IC50 = 1.6 µg/mL). Additionally, 298 has anti-tubercular activity against H37Rv 
[217]. Manzamine B N-oxide (300) displayed weak activity against several Gram-positive 
and Gram-negative bacteria [226]. Acanthomanzamines D (301) and E (302), had a strong 
proteasome inhibitory effect (IC50 = 0.63 and 1.5 µg/mL, respectively) [227]. 

Manzamines H (303) and L (304) hold cytotoxicity against KB cells (IC50 = 4.6 and 3.5, 
respectively). Compound 304 also possesses weak activity antibiotic activity. [226] 
Ma’eganedin A (305), proved to be a potent antibiotic against Sarcina lutea and B. subtilis 
(MIC = 2.8 µg/mL each) [228]. 

Furthermore, 3,4-Dihydromanzamine J (306), and all the aforementioned manza-
mines, 291, 303–305, showed cytotoxic activity against the L1210 cell line (IC50 = 5.0, 2.6, 
1.3, 3.7, and 4.4 µg/mL, respectively) [217]. 

 
Figure 60. Chemical structures of Manzamines 298–306. 

Finally, other types of monomacrocyclics and diverse hexa- and heptacyclic biologi-
cally active manzamines have been reported (Figure 61). Manzamine C (307) exhibited 
cytotoxicity against A549, HT-29, and P388 cells (IC50 = 3.5, 1.5, and 2.6 µg/mL, respec-
tively) [229]. Pyrrolizine-substituted Kepulauamine A (308) unveiled weak inhibition 
against K562 and A549 cells and moderate antibiotic activity [226]. Manzamine X (309) 

Figure 60. Chemical structures of Manzamines 298–306.

Manzamines H (303) and L (304) hold cytotoxicity against KB cells (IC50 = 4.6 and
3.5, respectively). Compound 304 also possesses weak activity antibiotic activity [226].
Ma’eganedin A (305), proved to be a potent antibiotic against Sarcina lutea and B. subtilis
(MIC = 2.8 µg/mL each) [228].

Furthermore, 3,4-Dihydromanzamine J (306), and all the aforementioned manzamines,
291, 303–305, showed cytotoxic activity against the L1210 cell line (IC50 = 5.0, 2.6, 1.3, 3.7,
and 4.4 µg/mL, respectively) [217].

Finally, other types of monomacrocyclics and diverse hexa- and heptacyclic biolog-
ically active manzamines have been reported (Figure 61). Manzamine C (307) exhib-
ited cytotoxicity against A549, HT-29, and P388 cells (IC50 = 3.5, 1.5, and 2.6 µg/mL,
respectively) [229]. Pyrrolizine-substituted Kepulauamine A (308) unveiled weak inhi-
bition against K562 and A549 cells and moderate antibiotic activity [226]. Manzamine
X (309) exhibited cytotoxic activity against KB cells (IC50 = 7.9 µg/mL) [230], while 6-
Deoxymanzamine X (310) exhibited cytotoxicity against L5178 cells (ED50 = 1.8 µg/mL) [231].
Manadomanzamines A (311) and B (312) exhibited an anti-tubercular effect (MIC = 1.9 and
1.5 µg/mL, respectively), antiviral activity against HIV-1 (EC50 = 7.0 and 16.5 µg/mL, re-
spectively), cytotoxicity against A549 (IC50 = 2.5 µg/mL, only 311) and HCT-116 cells
(IC50 = 2.5 and 5.0 µg/mL, respectively), and an antifungal effect against C. albicans
(MIC = 20 µg/mL, only 312) and C. neoformans (MIC = 3.5 µg/mL, only 311) [196].
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N2-Substituted (DH/TH)β-Carbolines

The N2-methyl-β-carbolinium salts Irene-carbolines A (313) and B (314), isolated from
ascidian Cnemidocarpa irene, exerted anti-Alzheimer’s activity [232] (Figure 62). Notably,
other non-brominated derivatives identified in the same species did not exhibit any activity.
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Figure 62. N2-substituted βC compounds 313–317.

The N2-aryl-β-carbolinium species Reticulatol (315), Reticulatine (316), and Reticu-
latate (317) could be obtained from Fascaplysinopsis reticulata sponge. Compounds 316 and
317 had modest antitumor activity, while 315 showed significant selectivity for leukemia [233].

C3-Substituted (DH/TH)β-Carbolines

Variabines A (318) and B (319), with a C3-ester (Figure 63), were isolated from the
sponge Luffariealla variabilis, and had a respectively little and significant effect on the inhi-
bition of the chymotrypsin-like activity of proteasome and breast cancer metastasis [234].
Therefore, the inhibitory activities are lost by sulfonation of the 6-OH group. Stolonine C
(320), from the tunicate Cnemidocarpa stolonifera, induced apoptosis in the PC3 cell line [235].
Tiruchanduramine (321), obtained from the ascidian Synoicum macroglossum, could be iden-
tified as a promising inhibitor of α-glucosidase due to the presence of a cyclic guanidine
group [236].
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C3-indole-substituted βCs have been also found in marine sources, such as the family
of Hyrtioerectines isolated from the sponge Hyrtios erectus. Hyrtioerectine A (322) showed
moderate cytotoxicity against HeLa cells (IC50 = 10 µg/mL) [237]. Hyrtioerectines D–F
(323–325) exhibited antibacterial behavior against C. albicans, S. aureus, and Pseudomonas
aeruginosa. They also exhibited antioxidant activity, and weak antitumor activity against
MDA-MB-231, A549, and HT-29 cell lines, with 323 and 324 being more active than com-
pound 325. Therefore, the methylation of the phenol group hampers the antioxidant activity,
while a C4-CO2H moiety is more beneficial than an amido group for antitumor properties.
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Regarding saturated carbolines (Figure 64), Hyrtioerectine B (326) prompted moderate
cytotoxicity against HeLa cells (IC50 = 5.0 µg/mL).
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Annelated β-Carbolines

Several βCs with different 5-, 6- or 7-membered fused rings in different positions have
been isolated from marine sources over decades, and some of them exhibited promising
activities (Figure 65). Fascaplysin (327), 3-Bromofascaplysin (328), 10-Bromofascaplysin
(329), 3,10-Dibromofascaplysin (330), 6-Oxofascaplysin (331), and Homofascaplysate A
(332) are pentacyclic compounds isolated from the sponge Fascaplysinopsis sp., in which the
βC core is fused to a 5-membered ring through C1 and N2. In general, Fascaplysin natural
and synthetic derivatives represent excellent lead drugs since they exert multiple activities.
Namely, anticancer activity against Human Alveolar Rhabdomyosarcoma cells, leukemia,
liver cancer cells, melanoma, small lung cancer cells, and ovarian cancer cells, among others.
Further, they also exert analgesic, anti-thrombotic, anti-Alzheimer’s, and antimalarial
activity [238]. Thorectandramine (333), from the marine sponge Thorectandra sp., had weak
cytotoxicity against MCF-7, OVCAR-3, and A549 cell lines (EC50 27.0–55.0 µg/mL) [239].
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Eudistomins C (334), E (335), K (336), and L (337), Eudistomin K sulfoxide (338) and
Debromoeudistomin K (339) are tetracyclic THβC isolated from different marine ascidians,
featuring a fused oxathiazepine ring between C1 and N2, responsible of their antiviral
activity against HSV-1 and other DNA- or RNA-viruses [183]. Additionally, 336 has potent
antitumor activity against L1210, A549, HCT-8, and P388 cell lines [240].

Hyrtimomines D (340) and E (341), which contain a fused D-ring between C1 and
N9 forming a lactam unit, belong to the canthin-6-one family (Figure 66). Both have
antifungal activity against C. albicans (IC50 = 4 and 8 µg/mL, respectively) and C. neoformans
(IC50 = 4 and 8 µg/mL, respectively), but only 340 showed inhibitory activity against
T. mentagrophytes (IC50 = 16 µg/mL) and S. aureus (IC50 = 4 µg/mL). From their results,
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the authors inferred that the presence of carboxylic acid is less beneficial for its antifungal
properties [175].
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β-Carboline Dimers

Some recent research has shown a potential trend in which the dimers tend to be more
active than the corresponding monomers [159]. Therefore, several authors have turned
their attention toward the synthesis and evaluation of these scaffolds. According to the
linked positions of the βC monomers, they can be divided into 1,1-, 2,2-, 3,3-, 9,9-linked,
and ‘hybrid’ dimers, in which the two βC units are not equivalent.

However, these structures are not that commonly found in marine species compared
to plants and, to the best of our knowledge, only a couple of marine-isolated or marine-
inspired synthetic dimers with biological activity have been reported to date.

1,1-Linked Dimers

As far as we can ascertain, only three examples of biologically active marine naturally
occurring 1,1-dimers have been reported to date, varying the nature of the organic linker
from simple alkyl chains to complex polycyclic structures (Figure 67). Orthoscuticellines A
(342), a dimer derived from Plakortamine B (250) and obtained from the bryozoan Orthos-
cuticella ventricosa, has a 1,2-cyclobutane unit as a linker. Although its trans dimer had no
activity, 342 demonstrated higher cytotoxicity than parent 250 and moderate antiplasmodial
activity [151]. Plakortamine C (343), which can be regarded as a Plakortamine A (226) dimer
and was isolated from the same Plakortis nigra sponge, exhibited higher cytotoxic activity
than 226 against the HCT-116 cell line (IC50 = 2.15 mM) [150]. Finally, the manzamine
1,1-dimer Neo-kauluamine (344), isolated from Indonesian Acanthostrongylophora ingens
sponge, exhibited potent cytotoxic activity against H12999 (IC50 = 1.0 mM), proteasome
inhibitory activity (IC50 = 0.13 mM), and the inhibition of the accumulation of cholesterol
esters [224].
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It is worth mentioning that, inspired by these structures, Chatwichien et al. devel-
oped the synthesis of 1,1-dimers of simple Norharmane (217) linked by aminoalkylether
chains [241]. Surprisingly, their biological activity against various cancer cell lines was as
good as the one exerted by Neo-kualamine (344). Given the potential of these compounds,
this area is still a hot topic of research with promising expectations.

9,9-Linked Dimers

Interestingly, an N–N bonded 9,9-dimer of Norharmane (217) was isolated from the
Didemnum sp. ascidian (Figure 68). Although this species’ antibiotic activity was diminished
in comparison to 217, other synthetic derivatives have a wide application. In fact, the double
N-methylated carbolinium salt (345) was found to be more active for some strains such as
S. aureus [242].
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‘Hybrid’ Dimers

Some manzamine derivatives, in particular in the family of Zamamidines, were found
to bear a second pendant βC unit, usually exhibiting an N2–C1′ linkage (Figure 69). Za-
mamidine C (346) demonstrated a potent antitrypanosomal effect against Trypanosoma
brucei brucei and antimalarial activity against P. falciparum [225]. Zamamidines A (347)
and B (348) displayed cytotoxic activity against P388 cells (IC50 = 13.8 and 14.8 µg/mL,
respectively) [217].
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Finally, an interesting example of a 1,1′-hybrid manzamine dimer Kauluamine (349),
isolated from the sponge Prianos sp. (Figure 70), revealed moderate immunosuppressive
effect in a mixed lymphoma reaction [243].
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General Syntheses of β-Carboline Alkaloids

Within the last decade, the synthesis of βCs has been quite extensively reviewed
from diverse perspectives, focusing on the construction of the 9H-pyrido[3,4-b]indole [244].
Some of these authors distinguished between classical and current approaches, and a brief
summary of each is provided below.

Classical routes, summarized in Figures 71 and 72, are mostly dominated by the use
of acid-/base-catalyzed or photochemical metal-free approaches. The most commonly
exploited synthetic route for the formation of the βCs core, even nowadays, is the Pictet–
Spengler reaction (Figure 71, method A) [245], starting from readily available tryptophan
derivatives and carbonyl compounds. Another variation of this method includes the in situ
reduction of nitriles (Figure 71, method B) [246]. A third variation of this methodology is the
Bilschler–Napieralski reaction (Figure 71, method C) [247], in which amido-trypthophan
derivatives are converted to electrophilic chlorimines using P2O5 or POCl3. All three routes
yield tetrahydro-βC derivatives (THβCs), which require further oxidation steps to generate
dihydro-βC (DHβC) or βCs. An important feature of the Pictet–Spengler approach for
the synthesis of saturated carbolines is the possibility of inducing chirality by employing
enantioselective aid catalysts [245].
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Other early works reported the synthesis of βCs from 3-vinylindoles (Figure 72,
method A) [248], Diels–Alder reactions (Figure 72, method B) [249], the Pd-catalyzed
intramolecular arylation of anilinobromopyridines (Figure 72, method C) [250], Graebe–
Ullmann reactions (Figure 72, method D) [251], the intramolecular nucleophilic substitu-
tions of anilinofluoropyridines (Figure 72, method E) [252], and the photocyclization of
anilinopyridines (Figure 72, method F) [253]. However, some of these procedures lacked
functional group tolerance, forming only simple βC structures.

Over the past two decades, the number of chemical tools for organic synthesis has
grown exponentially and, given the promising application of βCs as a drug, several new
methodologies have been developed to build its azacarbazol skeleton. Mordi and Arshad
performed an extensive review of these new methodologies [254], grouping them into
the following categories: Larock heteroannulation (Figure 73A), C-H activation reactions
(Figure 73B), Cycloaddition reactions (Figure 73C), 6π-Electrocyclizations (Figure 73D),
Electrophilic cycloaromatization (not reported for βC so far), Cross-coupling reactions
(Figure 73E), and Radical nucleophilic substitution (Figure 73F). Summarizing all of these
processes is a difficult quest, given the wide range of chemical structures that could be
potential starting materials and the transformations reported. Therefore, only one example
of each is represented in Figure 73.

In this scenario, the elaboration of these scaffolds remains a hot area of research,
although classical approaches are still preferred in most drug discovery programs. Notably,
the development of valuable synthetic intermediates through these methodologies has
allowed us to also explore a great number of further derivatization processes [255].

2.3.4. Other Annelated Indole Alkaloids

In this section, some examples of annelated indole alkaloids (350–354), with varied
structures, have been included due to their cytotoxic activity against several human cancer
cell lines (Table 2).
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Figure 73. Representative modern approaches towards the synthesis of βCs.

Table 2. Annelated indole alkaloids (350–354) and their cytotoxic activity.
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Bromine Indolyl-carbazoles 351 HL-60, HeLa [257] 
Staurosporines 352 MV4-11 [258] 

Deoxyapoaranotin 353 HCT-116 1 [259] 
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3. Conclusions 
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strated by the antibacterial and anticancer properties of some MIAs shown in this review. 
However, despite these promising applications, around 86% of MIAs’ potential remains 
largely underexplored, probably due to the absence of a systematic approach for explor-
ing their pharmacological activity at clinically relevant concentrations for drug discovery. 
To harness the full therapeutic potential of MIAs, it is imperative to develop new bioassay
techniques and synthetic protocols. These innovations would enable the precise interro-
gation of MIAs and facilitate their straightforward modification to enhance pharmacolog-
ical efficacy. Although some MIAs may initially exhibit biological inactivity, strategic 
chemical modifications hold promise for optimizing their pharmacological properties. We 
believe that these approaches could represent a critical advancement in the quest for novel 
therapies to address current and emerging diseases, particularly in the face of challenges 
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Name Annelated Indol Structure Cytotoxicity [Reference] [Reference]

Antipathine A 350 SGC-791, Hep-G2 [256]
Bromine Indolyl-carbazoles 351 HL-60, HeLa [257]

Staurosporines 352 MV4-11 [258]
Deoxyapoaranotin 353 HCT-116 1 [259]

Phomazine B 354 HL-60, HCT-116, K562, MGC-803, A549 1 [260]
1 Via apoptosis-inducing effects.

3. Conclusions

Marine Indole Alkaloids comprise a wide variety of families of compounds. They origi-
nate from numerous marine organisms, such as fungi, sponges, corals, and mollusks, among
others. As they are compounds released in order to survive against pathogens/predators
in their own natural environment, they have important biological and pharmacological
properties, such as antibacterial (potentially interesting to combat resistance from hospital
bacteria) and anticancer (to avoid the resistance that some patients develop against certain
therapies). Likewise, they have been shown to be potentially useful for treating certain
eating disorders and diabetes. In this sense, MIAs can be considered as potential MDR
modulators and/or sources of promising lead compounds, as demonstrated by the antibac-
terial and anticancer properties of some MIAs shown in this review. However, despite these
promising applications, around 86% of MIAs’ potential remains largely underexplored,
probably due to the absence of a systematic approach for exploring their pharmacolog-
ical activity at clinically relevant concentrations for drug discovery. To harness the full
therapeutic potential of MIAs, it is imperative to develop new bioassay techniques and
synthetic protocols. These innovations would enable the precise interrogation of MIAs and
facilitate their straightforward modification to enhance pharmacological efficacy. Although
some MIAs may initially exhibit biological inactivity, strategic chemical modifications hold
promise for optimizing their pharmacological properties. We believe that these approaches
could represent a critical advancement in the quest for novel therapies to address current
and emerging diseases, particularly in the face of challenges posed by antibiotic-resistant
superbugs and therapy-resistant cancers.
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Abbreviations

Abbreviation Meaning Abbreviation Meaning
5-HT 5-hydroxytryptamine receptors HIV Human Immunodeficiency Virus
5-HT2A Hydroxytryptamine 2A HL-60 Promyelocytic leukemia cell line
5-HT2C 5-Hydroxytryptamine 2C HSV Herpes Simplex Virus
A/WSN/33 (H1N1) Influenza A Virus Subtype H1N1 HT-29 Human colon cancer cell line

A549
Adenocarcinomic human alveolar

IC50 Half-Maximum Inhibitory Concentration
basal epithelial cell line

AChE Acetylcholinesterase K562 Human myelogenous leukemia cell line
B16-F10 Melanoma cell line KB Human epithelial carcinoma cell line
βC β-Carboline L1210 Mouse lymphocytic leukemia cell line
BCG Bacille Calmette-Guérin L5178Y Mouse lymphoma cell line
BChE Butyrylcholinesterase LMM3 Human Melanoma Cells
CK1δ Casein Kinase 1 Delta LoVo Human colorectal cancer cell lines
CLK1 CDC-like Kinase 1 MCF-7 Human breast cancer cell line
DCE 1,2-Dicloroetane MDA-MB-231 Human Metastatic Breast Carcinoma Cells
DCM Dichloromethane MDA-MB-435 Human Breast Carcinoma Cell line
DHβC Dihydro- β-Carboline MDCK Madin-Darby canine kidney
DKP Diketopiperazine MIC Minimum Inhibitory Concentration
DMA N,N-Dimethylacetamide MRC-9 Human lung cancer cell line
DMAPP Dimethylallyl pyrophosphate MRSA Methicillin-Resistant Staphylococcus aureus

DMF N,N-Dimethylformamide NCI-H460
Human non-small cell lung carcinoma
cell line

DPPH 2,2-Diphenyl-1-picrylhydrazyl NFκB Nuclear Factor κB

Dyrk1A
Dual-Specificity Tyrosine-Phosphorylation

OVCAR-3
Human high-grade serous ovarian

Regulated Kinase 1A adenocarcinoma cell line

ED50
dose of a medication that produces the

P388 Leukemia cell lineintended pharmacological effect in 50%
of the patient population studied

FDA Food and Drug Administration PC3 Human prostatic adenocarcinoma cell line
GSK-3β Glycogen Synthase Kinase3 Beta PD Parkinson’s Disease
H12999 Human non-small cell lung carcinoma cell line PIA Prenylated Indole Alkaloid
H37Rv Mycobacterium tuberculosis strain PPi Pyrophosphate
H522-T1 human non-small cell lung cancer cell line PTP Protein Tyrosine Phosphatase
HCT-116 Human colon cancer cell line RD Human Rhabdomyosarcoma Cells
HCT-8 human colon carcinoma cell line SIA Simple Indole Alkaloid
HEK293 Human Embryonic Kidney cell line THβC Tetrahydro-β-Carboline
HEK293 T9 Non-malignant human kidney cell line THF Tetrahydrofuran
HeLa Human Cervical Epidermoid Carcinoma Cells U937 Human histiocytic lymphoma cell line

Hep2 Human Epithelial Carcinoma Cells USF-HO25
University of South Florida-Human
Osteosarcoma 25

Hep-G2 Human hepatocellular carcinoma cell line UV Ultraviolet
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