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Abstract: Fishery production is exponentially growing, and its by-products negatively impact indus-
tries’ economic and environmental status. The large amount of bioactive micro- and macromolecules
in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, en-
zymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to be utilized through effective strategies
and proper management. Due to the bioactive and healthy compounds in fishery discards, these
components can be used as functional food ingredients. Fishery discards have inorganic or organic
value to add to or implement in various sectors (such as the agriculture, medical, and pharmaceutical
industries). However, the best use of these postharvest raw materials for human welfare remains
unelucidated in the scientific community. This review article describes the most useful techniques and
methods, such as obtaining proteins and peptides, fatty acids, enzymes, minerals, and carotenoids, as
well as collagen, gelatin, and polysaccharides such as chitin–chitosan and fucoidan, to ensure the
best use of fishery discards. Marine-derived bioactive compounds have biological activities, such as
antioxidant, anticancer, antidiabetic, anti-inflammatory, and antimicrobial activities. These high-value
compounds are used in various industrial sectors, such as the food and cosmetic industries, owing to
their unique functional and characteristic structures. This study aimed to determine the gap between
misused fishery discards and their effects on the environment and create awareness for the complete
valorization of fishery discards, targeting a sustainable world.

Keywords: seafood by-product; valorization; bioactive compounds; green extraction methodologies;
circular economy

1. Introduction

Presently, a rapidly growing population demands quality food and ingredients as part
of their regular consumption preferences. Fish is considered the most accessible source of
protein, and protein-based food ingredient materials are cheaper than other sources. In
the fishery sector, the amount of fish and fish-related products (crustaceans, fish, mollusks,
and others) has increased, reaching 177.8 million tons (MT) in 2020; this includes 157.4 MT
directly used for human food and 20.2 MT utilized in nonfood applications [1]. Globally,
the annual discarded fish waste was estimated at 9.1 MT, comprising 10.8% of the annual
average catches in 2010–2014 [2]. In 2018, fish production was estimated to reach 179 MT,
producing nearly 20–23 MT of fishery by-products. Following that, the rapidly expanding
aquaculture industry contributed approximately 52% of the fish people consumed [3].
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Fishing activities in the ocean generate many by-products with economic and en-
vironmental impacts [3]. However, the knowledge of the effective valorization of these
by-products can help in sustainable management, thus reducing the negative impact. In
addition to fishery by-product generation during harvests in marine and coastal waters, a
considerable amount is generated from the fish-processing industries and domestic mar-
kets. These by-products typically comprise the skin, scales, bone, fins, visceral parts, heads,
and shells of various crustaceans [4], which are considered excellent sources of different
bioactive compounds [4–7] (Figure 1).
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Various studies have shown the use of fishery by-products as feeds in the poultry
and cattle industries [8,9]. Such low-cost applications hinder maximum utilization; hence,
combined information on these discards’ availability and potentiality can help create
a strategy. Moreover, by 2050, the world population is estimated to be approximately
9.2 billion, requiring effective strategies for a sustainable food supply and a reduction in
pollution to protect the environment [10]. The effective utilization of large amounts of
fishery by-products can significantly help the food, pharmaceutical, and other industries.
Previous studies have proven these by-products to be treasures upon their utilization.

Regarding their nutritional values and functional properties, fishery by-products
generally contain 15–30% protein, 0–25% crude lipids, 50–80% moisture, and different
vitamins and minerals [3,6,11]. Crustacean by-products are a rich source of different
macromolecules, including chitin, chitosan [12,13], polyunsaturated fatty acids, and various
valuable carotenoids such as astaxanthin [14,15]. The health benefits of these compounds
prompt scientists to think of better applications for these by-products (Figure 2).

Thus, this review aimed to summarize recent studies targeting the valorization of
fishery by-products. Converting low-value seafood by-products to high-value bioactive
compounds is an excellent economic and environmental approach. Reducing the loss
of valuable compounds in the by-products can also bring additional benefits and help
humanity achieve a sustainable world. Different food, pharmaceutical, and cosmetic
industries use bioactive compounds such as gelatin, collagen, carotenoids, and unsaturated
fatty acids from fishery sources owing to their good acceptability worldwide. We believe
that this review will provide up-to-date information on the valorization of seafood or
marine by-products, targeted bioactive compounds, their extraction technologies, and their
functional properties.
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2. Fishery By-Products

According to the fishery dictionary of the United Nations Food and Agricultural
Organization (FAO), “fishery by-products can be defined as the proportion of the total
organic material of animal origin in the catch, which is thrown away or dumped at sea,
for whatever reason. It does not include plant material and postharvest waste such as
offal.” Also, it describes bycatch as “the part of a catch of a fishing unit taken incidentally in
addition to the target species toward which fishing effort is directed. Some or all of it may
be returned to the sea as discards, usually dead or dying” [16]. Table 1 shows the amount
of by-products generated by major seafood items.

Table 1. Major by-products are obtained from various seafoods.

Groups Name of the Seafood By-Products References

Body Parts Percentage (w/w)

Mollusca

Octopus, squid, cuttlefish Skin, heads, fins, tentacles, and guts Up to 60 [17]

Clam, oyster, scallop,
mussel, etc. Shells and viscera 60–80 [18]

Crustacean

Crayfish Head and shell Up to 80 [19,20]

Shrimp Head, shell, and tail 40–45 [14,15]

Lobster Heads, shells, livers, and eggs 50–70 [21]

Crab Viscera, shell Up to 85 [22]

Finfish and other cartilaginous fishes

Trimming 2–5

[6,11,23]

Skin 1–5

Scales 2–4

Bones 10–34

Liver and gut 15–20

Head 15–20
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3. Fish By-Products as a Source of Various Bioactive Compounds
3.1. Concentrated Seafood Protein

Seafood-generated by-products such as fish heads, skin, bones, scales, fins, and blood
contain a high amount of proteins and other bioactive compounds [3,6,11,24]. Generally,
proteins in their original forms are tightly attached via different chemical forces, including
hydrophobic effects, electrostatic interactions, hydrogen bonds, van der Waals forces, and
disulfide bonds [25].

Methods for recovering protein from fishery by-products differ. The most common
include fish protein hydrolysates, fish protein isolates, and the extraction of myofibrillar
types of protein (surimi).

3.1.1. Fish Protein Hydrolysates

Several methods exist for obtaining protein hydrolysates from fishery by-products.
The most common are chemical hydrolysis via acidic or alkaline mediums, bacterial fermen-
tation, and enzymatic hydrolysis [26]. Although chemical hydrolysis has a low cost and
rapidly extracts protein compared with enzymatic hydrolysis, many scientists prefer enzy-
matic hydrolysis due to its several advantages. Using enzymatic hydrolysis, approximately
15–30% of protein is obtainable from fishery by-products [11]. Several studies have reported
little control over the consistency of the hydrolyzed products and the variations in the free
amino acid profile for the nonspecific breakdown of peptide bonds [26,27]. To hydrolyze
fish protein or to turn the protein from fish by-products into peptides or amino acids,
combined cleaved proteins are called fish protein hydrolysates. A factor contributing to its
interest is the use of industrially appropriate hydrolysis. Because they can recover large
amounts of protein, research on them has recently increased [26,28]. Enzymatic protein
hydrolysis, which uses endogenous enzymes to cleave peptide bonds in amino acids, has
recently been considered an alternative to traditional chemical hydrolysis. The protein
obtained from fishery discards using enzyme hydrolysis varies significantly depending
on the sex, age, diet, and even season of different species [26]. Table 2 shows the proteins
extracted from fishery by-products using different methods and extraction processes.

3.1.2. Fish Protein Isolates

Seafood protein can be isolated using the isoelectric solubilization method, commonly
known as the pH-shifting method. This isoelectric precipitation method involves three
steps. First, the protein from the marine by-products is solubilized at a higher pH value
(primary condition). Then, the solubilized protein is turned to a neutral pH to disrupt
the cellular membrane and separate unwanted molecules via centrifugation, and, finally,
the isolated protein can precipitate at the isoelectric point [28]. Tang et al. [25] reported
that protein extraction using the pH-shifting method showed better gelling, water-holding,
emulsification, and oil-holding properties. The nutritional value of the extracted protein
highly depends on the presence of essential amino acids [29]. Several studies have shown
that protein obtained using the pH-shifting method resulted in a high amount of essential
amino acids compared with other extraction methods [25,29,30].

3.1.3. Surimi

Myofibrillar types of protein obtained using the mechanical deboning and washing
of the fish process (fish flesh) are referred to as surimi. While preparing surimi, except for
the myofibrillar protein, all other compounds, such as sarcoplasmic protein, connective
tissues, and crude lipids, are removed via repeated washing and dewatering processes.
It is generally prepared from low-cost lean fish, bycatch species, and other marine by-
products. Surimi is an excellent concentrated protein source and a popular intermediate
raw material for preparing popular seafood products such as kamaboko, fish or crab analog,
and sausage [3,31,32].



Mar. Drugs 2023, 21, 485 5 of 37

Table 2. Protein hydrolysates obtained from different fishery products, their extracting agents, and
the functionalities of the obtained proteins.

Fish Species By-Products Extraction Agents
(Enzymes) Properties/Activities References

Channel catfish
(Ictalurus punctatus) Frames and heads

Ficin, neutrase,
protamex, papain,

novo-proD,
thermolysin, alcalase,

and bromelain

Protease reaction kinetics showed
that ficin was the most efficient to
hydrolyze catfish proteins, and the

foaming and emulsifying
properties of the protein

hydrolysates were observed.

[33]

Striped catfish
(Pangasianodon
Hypophthalmus)

Viscera

Enzymatic (pepsin and
papain) and

chemical process
(e.g., NaOH, HCl)

The spray-dried and enzymatically
extracted hydrolysate had lower
turbidity with increasing pH; the

lowest solubility, foaming capacity,
and stability were observed

at pH 5.0.

[34]

Small-spotted catshark
(Scyliorhinus canicula) By-products of muscle

Enzymatic hydrolysis
(protamex, esperase,

and alcalase)

Protein hydrolysates obtained via
enzymatic hydrolysis showed
strong antihypertensive and

antioxidant properties.

[35]

Bluefin leatherjacket
(Navodon

Septentrionalis)
Heads Enzymatic hydrolysis

(papain)
Protein hydrolysates showed

antioxidant properties. [36]

Sardinella (Sardinella
aurita) Viscera and heads Enzymatic hydrolysis

(microbial proteases)
Protein hydrolysates showed

antioxidant properties. [37]

Rainbow trout
(Oncorhynchus mykiss)

Fins, heads, backbone,
and viscera

Enzymatic hydrolysis
(alcalase)

Protein hydrolysates showed
antioxidant properties. [38]

Red tilapia
(Oreochromis spp.) Viscera Enzymatic hydrolysis

(alcalase)

Peptide fractionation was
performed using ultrafiltration,

and the <1 kDa fraction
(FRTVH-V) expressed the highest

iron-binding capacity.

[39]

Anchovies (Engraulis
encrasicolus) Viscera

Enzymatic hydrolysis
(alcalase, flavourzyme,

and protamex)

Protein hydrolysates showed
activities in in vitro and in vivo
model biological activities by

decreasing the severity of
oxidative stress.

[40]

Bluefin leatherjacket
(Navodon

Septentrionalis)
Skins

Enzymatic hydrolysis
(alcalase, trypsin,
papain, neutrase,

pepsin, and
flavourzyme)

The antioxidant activities of
peptides were evaluated with

three radical scavenging and lipid
peroxidation inhibition assays.

[41]

Australian rock lobster
(Jasus edwardsii) Shells Enzymatic hydrolysis

(alcalase)

The protein hydrolysate produced
by this study had excellent

functionality (solubility 91.7%,
water absorption 32%, oil

absorption 2.3 mL/g, foaming
51.3%, emulsification 91.3%) and

high nutritional quality (34%
essential amino acids, 45.4 mg/g

arginine, lysine/arginine ratio
0.69) with potential applications

for the food industry.

[42]
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Table 2. Cont.

Fish Species By-Products Extraction Agents
(Enzymes) Properties/Activities References

Horse mackerel
(Magalaspis cordyla) and
croaker (Otolithes ruber)

Skins

Enzymatic hydrolysis
(trypsin,

α-chymotrypsin,
and pepsin)

Peptides presented in protein
hydrolysates exhibited higher

activity against polyunsaturated
fatty acid peroxidation than the

natural antioxidant α-tocopherol.

[43]

Atlantic salmon
(Salmo salar) Backbones and heads

Enzymatic hydrolysis
(protex 7 L, promod

671 L, and
alcalase 2.4 L)

Chemical, surface activity, and
sensory properties were shown. [44]

Serra Spanish mackerel
(Scomberomorus

Brasiliensis)

Scales crushed
and bones

Enzymatic hydrolysis
(flavourzyme,
and alcalase)

Protein hydrolysate showed better
technological performance by

stabilizing emulsions and
retaining oil, and they could be
added to emulsified products,

improving their technological and
sensory aspects.

[45]

Black scabbardfish
(Aphanopus carbo)

Frames, heads, skin,
trimming, and viscera

Enzymatic hydrolysis
(protamex)

The protein hydrolysates
presented some antioxidant

activity, which increased with
increasing degree of hydrolysis.

[46]

Anchovy Fish sauce
by-product (FSB)

Enzymatic hydrolysis
(proteinase K)

The low-molecular-weight FSB
fraction contained potent

antioxidative molecules, which
were identified as PQLLLLLL

and LLLLLLL.

[47]

Atlantic holothurian
(Cucumaria frondosa)

Internal organs and
aqua-pharyngeal bulb

Enzymatic hydrolysis
(proteases)

Enzymatic hydrolysates extracted
from by-products of the marine

invertebrates were demonstrated
as active against HSV-1 (Herpes

Simplex virus 1).

[48]

Skipjack tuna
(Katsuwonus pelamis) Head and bone In-vitro gastrointestinal

(GI) digestion method

Protein hydrolysates can be
applied in health care products as

antioxidant agents.
[49,50]

Chinese sturgeon
(Acipenser sinensis) Whole body

Enzymatic hydrolysis
(papain and

alcalase 2.4 L)

Hydrolysates can be used as
natural antioxidant substitutes in

pharmaceuticals and
food products.

[51]

Monkfish (Lophius
piscatorius)

By-products (head and
viscera)

Enzymatic hydrolysis
(alcalase)

Protein hydrolysates showed
antioxidant and

antihypertensive activities.
[52]

Salmon Viscera
Enzymatic hydrolysis
(papain, alcalase, and

autolysis process)

The results showed that the
obtained protein-rich hydrolysates

from fish industries are a
promising alternative for

expensive nitrogen sources that
are commonly used for

fermenting yeasts.

[53]

Australian rock lobster Heads
Chemical process and
enzymatic hydrolysis

(alcalase)

The results of this study
demonstrated the potential value

of lobster protein hydrolysates
used as a safe emulsifier with

significant nutritional value for the
food industry.

[54]
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Table 2. Cont.

Fish Species By-Products Extraction Agents
(Enzymes) Properties/Activities References

Eel (Conger myriaster) Skin Subcritical water
hydrolysis Strong antioxidant activities. [55]

Yellow corvina
(Larimichthys polyactis) Head and viscera Subcritical water

hydrolysis

Protein hydrolysates showed
excellent antioxidant, antidiabetic,

and anticancer activity.
[4]

Comb Penshell
(Atrina pectinata) Viscera Subcritical water

hydrolysis

Protein hydrolysates showed good
antioxidant and

antihypertensive activity.
[56]

3.2. Extraction and Biofunctionality of Peptides from Marine By-Products

Bioactive peptides, generally inactive protein fragments obtained by the action of
enzymes, regulate the body’s receptor and physiological functions, including antihyperten-
sive, antibacterial, antifungal, antioxidant, antiproliferative, immunomodulating, anticoag-
ulant, and antiviral activities [3]. Peptides obtained from seafood by-products also showed
angiotensin enzyme (ACE)-inhibition activity, calcium and opioid binding inhibition, and
hemolytic properties [57]. Marine fishery discards have been found to be good sources
of bioactive peptides [58]. Table 3 shows recent studies on peptide extraction. Fishery
discards (usually skin, fin, and head) are rich sources of collagen and gelatin. Fish gelatins
contain hydrophobic amino acids (hydroxyproline, valine, glycine, proline, and alanine)
with a certain range of peptides with strong antioxidant activities [3,59]. Lassoued et al. [60]
showed that the antioxidant activities of ray skin (thornback) were mainly due to the
presence of hydrophobic amino acids.

There are different technologies for extracting bioactive peptides from marine biomass.
The traditional methods are enzymatic [37,43,48,51] and fermentation hydrolysis [47].
Enzymatic hydrolysis is mostly preferred and effective due to its high specificity, and
this methodology does not require any toxic chemicals. The main commercial enzymes
for producing bioactive peptides are alcalase, flavorzyme, neutrase, pepsin, trypsin, and
papain [36,37,43,49–51]. Subcritical water hydrolysis has attracted attention as a green
extraction methodology for extracting peptides from marine biomass [55,56].

Purifying peptides from hydrolysates is costly and considered economically unprof-
itable. Therefore, there is limited research on the purification of peptides from protein
hydrolysates. Several researchers have worked on crude protein hydrolysates from seafood
discards without purifying peptides [10]. Although seafood peptides have high antioxidant
properties, their application is limited in the food industry due to their fishy odors and
taste, which is unacceptable to some consumers [61]. Therefore, a large scope exists to
develop the taste of protein hydrolysates containing bioactive peptides.

There are various other peptides, along with antioxidant peptides, including antimi-
crobial and ACE-inhibitory peptides. Antimicrobial peptides are considered the building
blocks of animal defense systems [3]. Fish-originated antimicrobial peptides are pos-
itively charged and contain a higher amount of hydrophobic amino acids than those
obtained from terrestrial animals [62]. Antimicrobial peptides from snow crab and Atlantic
crab by-products showed potent inhibitory activity against Gram-positive and -negative
bacteria [63]. Researchers intend to develop modern antibiotics and food preservation
agents from marine-derived antimicrobial peptides.

Due to their biofunctional abilities, peptides derived from marine sources are gaining
popularity in different industries. It is assumed that synthetic drugs will be replaced by
marine peptides with similar efficacy but lower or no adverse effects [64].
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Table 3. Peptides from various fishery by-product derivatives, some examples of which are the
studies below.

Fish Species Body Parts
Extraction

(Hydrolysis) Agents
(Enzymes)

Properties/Activities References

Tilapia Skin gelatin Pepsin and pancreatin ACE-inhibitory activity. [65]

Rainbow trout
(Oncorhynchus mykiss) Skin

Flavourzyme, alcalase,
and ultrafiltration

method

Anticancer, antioxidant properties
present in fractions and
non-fraction peptides.

[66]

Pacific cod (Gadus
macrocephalus) Skin gelatin

Alcalase, papain,
trypsin, neutrase,

and pepsin
ACE-inhibitory activity. [67]

Cod (Gadus morhua) Frames
Trypsin, pepsin, and
those chymotrypsin

combinations
Antioxidant properties. [68]

Atlantic rock crab
(Cancer irroratus) By-products Proteolytic enzyme

action on processing Antibacterial activity. [63]

Smooth hound
(Mustelus mustelus) Viscera wastes

Proteases (commercial),
endogenous enzymes,

and those combinations

ACE-inhibitory, antimicrobial, and
antioxidant activity. [62]

Codfish blood
and sardine Cooking-water wastes Membrane

ultrafiltration

The peptide fractions from codfish
blood exhibited the highest ABTS+

and ORAC values. Peptide
fractions from sardine wastewater

were capable of inhibiting
Escherichia coli growth.

[69]

Threadfin breams
(Nemipterus japonicus) Frames Plant proteases

(bromelain and papain)

Antioxidant properties (2,2
diphenyl-1-picrylhydrazyl [DPPH]

radical scavenging activity,
ferric-reducing power, and lipid

peroxidation inhibition) of
hydrolysates increased with an

increase in the degree
of hydrolysis.

[70]

Shortfin scad
(Decapterus Macrosoma) Bones Alcalase

Obtained peptides showed
angiotensin I-converting enzyme

(ACE)-inhibitory activity.
[71]

Northern shrimp
(Pandalus borealis) By-products

Papain, protamex,
trypsin, flavourzyme,

and alcalase

Antioxidant and ACE-inhibitory
activity. The results of this
research suggested that the

high-molecular-weight enzymatic
hydrolysate derived from shrimp
can be used to control oxidative
stress and prevent hypertension.

[72]

Catfish
(Ictalurus punctatus) Bone frames and heads Proteases

The emulsifying and foaming
properties and stability of selected

hydrolysates were evaluated.
[33]

Skate (Raja porosa) Cartilage Chromatography and
ultrafiltration

The result suggested that the
isolated peptides have excellent

antioxidant properties.
[73]

Grass carp
(Ctenopharyngodon

idella)
Skin Alcalase

Novel peptides isolated from grass
carp skin possess potent

antioxidant activities and might be
used for food preservation and

medicinal purposes.

[74]
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Table 3. Cont.

Fish Species Body Parts
Extraction

(Hydrolysis) Agents
(Enzymes)

Properties/Activities References

Lizardfish
(Synodus macrops) Scale gelatin

Trypsin, papain,
bromelain,

chymotrypsin, and
alcalase

ACE-inhibitory peptides derived
from scale gelatin have the

potential to be used as healthy
ACE-inhibiting drug

raw materials.

[75]

Pacific cod
(G. macrocephalus) Skin gelatin Pepsin

Extracted peptides showed potent
ACE inhibition with IC50 values of

6.9 and 14.5 µM.
[67]

Anchovy (Engraulis
japonicas) Cooking-water wastes Protamex

Purified antimicrobial activity
with no hemolytic activity up to a

concentration of 512 µg/mL.
[76]

Thornback ray
(Raja clavata) Skin gelatin Alcalase ACE-inhibitory activity. [60]

Seabass (Lates calcarifer) Skin gelatin Alcalase
Peptides prepared from seabass

skin showed good
antioxidant activity.

[77]

Atlantic salmon (Salmo
salar) Trimming

Alcalase 2.4 L,
flavourzyme 500 L,
Corolase PP, and
Promod 144 MG

Bioactive peptides displayed good
DPP-IV and ACE inhibitory and

antioxidant activity.
[78]

Skipjack tuna
(Katsuwonus pelamis) Roe Flavourzyme

Four peptides among the fifteen
extracted peptides

showed remarkable
ACE-inhibitory activity.

[79]

Chinese sturgeon
(Acipenser sinensis) Whole body Papain and

alcalase 2.4 L

The fractions and purified
peptides can be used as natural

antioxidant substitutes in
pharmaceuticals and

food products.

[51]

Atlantic sea cucumber
(Cucumaria frondosa) Whole body Alcalase and trypsin

Generated peptides inhibited
MPO (a mediator and marker of

in vivo oxidative stress) with
predicted molecular interactions.

[80]

Antarctic krill
(Euphausia superba) By-products Trypsin

The preparation process of
Antarctic krill peptides-zinc

chelate was optimized. Chelate
showed excellent stability against

various pH and
gastrointestinal digestion.

[81]

Squid (Dosidicus gigas) By-products Protease XIV and
ultrafiltration (UFI)

Peptide fractions obtained after
UFI had higher antioxidant and
antimutagenic activities, but the
antiproliferative activity did not

improve after UFI.

[82]

Bigeye tuna Skin Subcritical water

Peptides obtained via subcritical
water hydrolysis showed high

antioxidant and
antimicrobial activity.

[83]
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Table 3. Cont.

Fish Species Body Parts
Extraction

(Hydrolysis) Agents
(Enzymes)

Properties/Activities References

Skipjack tuna
(Katsuwonus pelamis) Skin

Trypsin, neutrase,
papain, pepsin,

and alcalase

The antioxidant peptides extracted
in this study can act as active

ingredients in preventing
UVA injury.

[84]

Skipjack tuna
(Katsuwonus pelamis) Milts

Trypsin, neutrase,
papain, pepsin,

and alcalase

Bioactive peptides displayed
significant protection to HUVECs

against H2O2 damage by
increasing antioxidase levels.

[85]

Sturgeon
(Acipenser ruthenus) Spermary Papain

Extracted peptides change the
permeability of the microbial cell

membranes and may exert
antimicrobial activity by inhibiting

the metabolic process of the
nucleic acids.

[86]

Siberian sturgeon
(Acipenserbaerii) Cartilage

Alcalase, papain,
trypsin, flavourzyme,

and pepsin

The extracted peptides displayed
significant cytoprotection on

HUVECs against H2O2 injury.
[87]

Sea intestine
(Urechis unicinctus) Viscera Papain, trypsin, and

alkaline protease
Extracted peptides exhibited
strong antioxidant activity. [88]

3.3. Fishery Discards as a Source of Lipids

Marine fishery discards are considered an excellent source of edible lipids due to
the presence of health-beneficial polyunsaturated fatty acids (PUFAs). Most edible oils
are soluble in nonpolar solvents because of their nonpolar behavior [89]. Lipids include
triglycerides, waxes, alcohols, cholesterol, phospholipids, and free fatty acids [90].

Fish oil is a significant source of PUFAs in the human diet [3]. Eicosapentaenoic
acid (EPA) and docosahexaenoic fatty acid (DHA) are among the health-beneficial PUFAs
available in fishery by-products, which are highly demanded in the market [23]. Several
studies have reported that PUFAs are helpful for the brain development of infants during
pregnancy, reducing the risk of cardiovascular disease in humans, maintaining blood
pressure, and improving myocardial activity [3,6,11,90,91].

Several methods have been applied to extract lipids from fishery resources. Among
them, traditional methods such as solvent extraction require high energy and organic sol-
vents, negatively affecting the environment [23]. Hence, several green extraction methods
have recently been applied to obtain high-quality oil from fishery discards. The most com-
mon green extraction methods are supercritical carbon dioxide (SC-CO2) extraction [92],
microwave-assisted hydrolysis, and enzymatic hydrolysis [89,92]. SC-CO2 is a promising
technology for extracting high-quality lipids from fishery discards. This extraction method
can easily regulate the extraction of specific fatty acids by controlling the extraction pres-
sure and temperature. A significant advantage of this extraction method is that it does not
require any further purification of the oil after extraction. Figure 3 shows a diagram of a
typical SC-CO2 plant for extracting oils from fishery discards. Table 4 shows the extraction
methods of edible oils from seafood discards and their yields, as well as PUFA content.
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Seafood is an important source of various unsaturated fatty acids. Omega-3 is a unique
unsaturated fatty acid that plays an essential role in the regulation of various biological
functions in the human body [93]. DHA is a major structural component of human retinal
photoreceptors and helps maintain a healthy visual system [94]. Several studies have shown
that PUFAs are essential for developing brain and nerve cells along with the eyes of fetuses
and infants [95,96]. Omega-3 fatty acids can also regulate gene expression, cell membrane
composition, and eicosanoid production [97]. EPA acts as a precursor of eicosanoids and
plays a vital role in hormonal activities. Unsaturated fatty acids can serve as suppressors of
triacylglycerol and fatty acid synthesis, thus reducing the risk factors for cardiovascular
diseases [94].

The health-beneficial activities of marine-driven PUFAs have high market value. Due
to the high demand, PUFA-fortified products are widely available worldwide. Products
fortified with fish, krill, and algal oils are popular due to their functionalities [98,99]. Given
the oxidative vulnerability of PUFAs, different strategies are necessary to extend their shelf
life. However, several antioxidative agents are being used to extend fish oil’s shelf life
in the final products. However, several modern technologies, like PUFA microencapsula-
tion by various carrier materials, can be applied, and this new stabilization technique is
continuously progressing [100].
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Table 4. Extraction of high-quality lipids from by-products of different seafood species.

Fish Species Body Parts Extraction Methods Yield of Oil/PUFA Content (%) References

Seabass (Dicentrarhus
labrax), bluefin tuna

(Thunnus thynnus), and
gilthead seabream

(Sparus aurata)

Liver (bluefin tuna),
gills and heads
(seabass), guts

(seabream)

Raw materials were
ground and cooked at
95 ◦C temperature for

12 min. Then, the
materials were pressed
with an expeller screw

and separated oil,
water, and dry matter

via centrifugation
(at 4200 rpm).

Lipid content: 27 ± 3;
PUFA content of tuna by-product:

38 ± 7; tuna; liver: 35 ± 6; cod
liver: 34 ± 0.3; sardine oil: 36 ± 3;

seabass oil: 30 ± 0.2.

[101]

Rohu (Labeo rohita) Heads

Enzymatic treatment
with protamex

(1:100 w/w), with
microwave (MW),

ultrasound (US), and
heat pretreatment (HT).

Crude lipid obtained with MW:
60.45–69.75; US: 58.74–68.08; HT:

31.98–39.03.
PUFA content with MW:

37.51 ± 0.53, US: 39.28 ± 0.33, HT:
38.31 ± 0.17.

[102]

Yellowtail fish (Seriola
quinqueradiata) Viscera

SC-CO2 extraction
method and solvent
extraction methods.

The yield of oil via SC-CO2
extraction: 11.03–40.87; Solvent

extraction: 48.48 to 56.13.
Omega 3 PUFA content

SC-CO2-extracted oils: 18.97 to
20.14; solvent-extracted oils:

20.37 to 21.38%.

[103]

Tuna (Katsuwonus
pelamis) Liver

Enzymatic extraction
(EE), wet reduction

(WR), SC-CO2
extraction method, and

subcritical dimethyl
ether (SDE) extraction.

Oils obtained with EE:
85.25 ± 1.29; WR: 56.76 ± 1.57;

SC-CO2: 98.45 ± 1.04;
and SDE: 98.57 ± 0.60.

PUFA content of EE oil:
29.41 ± 0.16; WR: 29.31 ± 0.19;

SC-CO2: 32.77 ± 0.19;
and SDE: 32.83 ± 0.16.

[104]

Horse mackerel
(Trachurus

mediterraneus),
seabream (Pagellus

acarne), blue whiting
(Micromesistius

poutassou), and sardine
(Sardina pilchardus).

Discards/by-products

Pre-heated fish discards
at 40 ◦C for 30 min, and

then discards were
hydraulically pressed

(120 bar) and
centrifuged to recover

the crude oils.

Yield of the oil, HM: 1 to 6.2; SB:
4.7 to 5.8; BW: 1.1 to 3.2;

Sar: 2.5 to 18.8.
PUFA content, HM: 35 to 43.1; SB:
37.1 to 44.7; BW: 26.3 to 38.9; and

Sar: 39.6 to 42.6.

[105]

Japanese Spanish
mackerel

(Scomberomorus
niphonius)

Skin, muscle, bone,
head, and viscera

SC-CO2 extraction.
Temperature: 45 ◦C;

Pressure: 250 bar;
Extraction time: 3 h.

Oils obtained—skin: 42.79 ± 1.79;
muscle: 24.18 ± 1.09; bone:

29.11 ± 1.81; head: 31.08 ± 2.05;
and viscera: 22.70 ± 1.35.

PUFA content—skin: 27.54;
muscle: 29.15; bone: 18.34; head:

21.88; viscera: 21.88.

[23]

Australian rock lobster
(Jasus edwardsii) Liver

SC-CO2 extraction
method.

Temperature: 50 ◦C;
Pressure: 350 bar;

Extraction time: 4 h.

Oil obtained: 24.3% (w/w);
PUFA content: 31.3. [106]
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Table 4. Cont.

Fish Species Body Parts Extraction Methods Yield of Oil/PUFA Content (%) References

Conger eel
(Conger myriaster) Skin

SC-CO2
extraction method.

Temperature: 55 ◦C;
Pressure: 300 bar;

Extraction time: 2 h.

Crude lipid: 71.9 ± 0.12
PUFA content:

Omega 3: 18.62 ± 0.08;
Omega 6: 4.16 ± 0.19.

[55]

Frigate tuna (Auxis
thazard), Eastern little

tuna (Euthynnus affinis),
and Longtail tuna
(Thunnus tonggol).

Viscera, skin,
and heads

SC-CO2 extraction
method and solvent
extraction methods.

Crude oils obtained—viscera:
13.5–16.8; skin 21.8–26.4;

and head 30.2–36.2.
PUFA content: 24.1–27.9 where
docosahexaenoic acid (DHA)

was prominent.

[107]

Brazilian red-spotted
shrimp (Farfantepenaeus

paulensis)
Shell, tail, and heads

SC-CO2
extraction method.

Temperature: 40–60 ◦C;
Pressure: 200–400 bar.

Methods were reported about
4.9 ± 0.1% of oils obtained and

optimized for carotenoid-rich oil
extraction. PUFA content: EPA:

3.44 to 11.69; DHA: 2.25 to 12.20.

[108]

Northern shrimp
(Pandalus borealis) Shell, tail, and heads

SC-CO2 extraction.
Temperature: 40 ◦C;

Pressure: 350 bar.

Crude oils obtained—13.7
PUFA content—EPA: 7.8 ± 0.06;

DHA: 8.0 ± 0.07.
[109]

Brown seaweeds
(Saccharina japonica and

Sargassum horneri)
Whole body

SC-CO2 extraction.
Temperature: 45 ◦C;

Pressure: 250 bar;
Extraction time: 3 h.

Oil content: SJ: 1.09 ± 0.56; SH:
1.41 ± 0.15.

PUFA content: SJ: 14.67; SH: 26.7.
[110]

3.4. Fishery By-Products as a Source of Minerals

Bones and shells obtained from fishery by-products are excellent sources of minerals
and micronutrients [24]. Several studies have investigated the extraction of bone powders
from various fish species and their nutritional properties. Fish frames are obtainable in
two forms: cooked and uncooked. The uncooked frame (bone) is obtained from industry
filleting, while the cooked bone is available in restaurants (containing collagen) after
thermal treatment [111]. Calcium and phosphorus are the two major minerals obtained
from the fish frames. Calcium plays a vital role in our body by facilitating different
physicochemical activities, including strengthening neurological functions, bone and tooth
health, and acting as a cofactor in many enzymatic reactions [112]. Calcium deficiency may
cause osteoporosis and hypocalcemia, whereas phosphorus deficiency may cause a problem
in metabolism. Fishbone contains approximately 60% calcium and 35% phosphorus [113].
Therefore, several methods have been developed to extract minerals from fishery discards.
Fishbone powder has long been used for food fortification. Furthermore, minerals can
maintain the textural properties of fortified foods. Fishery discards like fish bones are
excellent sources of hydroxyapatite, which can be used as bone grafting materials [114]
and in dental treatments [24,115]. Table 5 shows the extraction of minerals from different
fishery by-products and their potential uses.
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Table 5. Extraction of fish minerals and their application in the preparation of various products for
biomedical applications.

Species Body Part Extraction of Minerals Final Products and Activities References

Salmon (Salmo salar) and
sea bream (Sparus aurata). Bones

Alkaline treatment (NaOH) for
24 h; Calcination at 850 ◦C

for 4 h.

Fishbone-derived biphasic calcium
phosphate coatings with improved

textural, anti-inflammatory, and
antimicrobial properties.

[116]

Spotted sorubim
(Pseudoplatystoma

corruscans).
Bones

Cleaned and washed with hot
water; Calcination with 900 ◦C

temperature.

Nanocomposite with improved
mechanical and physical properties. [117]

Grey triggerfish
(Balistes capriscus) and

Black scabbardfish
(Aphanopus carbo).

Skin and bones
Isolation of hydroxyapatite

400, 600, 800, 1000 ◦C
temperature.

Preparation of natural biphasic
materials for targeting bone grafting. [113]

Salmon (Salmo salar), Red
scorpionfish (Scorpaena

scrofa), and Atlantic horse
mackerel (Trachurus

trachurus).

Bones

Biogenic calcium phosphate
was obtained via alkaline

(hydrolysis) treatment and
calcination with 750, 900 ◦C

temperatures.

Biphasic carbonated hydroxyapatite
(HA)/beta-tricalcium phosphate (TCP)

and their application in the
biomedical field.

[118]

Cuttlefish
(Sepia Officinalis). Bones Calcination with 700 ◦C

temperature for 120 min.

Biphasic calcium phosphate scaffolds
targeting bone tissue engineering

applications.
[119]

Cuttlefish
(Sepia Officinalis). Bones

Boiling in water, dipped for
1 h; Calcination with 900 ◦C

temperature for 240 min.

Synthesis of biphasic calcium
phosphate for hydrogel

sample preparation.
[120]

Tuna (Thunnus thynnus)
and sword fish

(Xiphias gladius).
Bones

Boiled and wasted water jet
(strong) for 1 h; Calcination

with 600, 950 ◦C
temperature 12 h.

Biological hydroxyapatite for
biomedical application. [121]

Sardine, salmon (Salmo
salar), and sablefish

(Anoplopoma Fimbria).
Bones

Boiled for 2 h with deionized
water and flowing water
wasted; Calcination with
600–1100 ◦C temperature

for 60 min.

HA/β-TCP biphasic calcium
phosphate ceramics (BCP) are

produced from fish bones.
[122]

Nile tilapia
(Tilapia nilotica). Scales

Distilled water wasted and
dried up; Calcination with

800 ◦C temperature.

Obtained hydroxyapatite powder for
preparing biphasic calcium

phosphate coating.
[123]

Salmon (Salmo salar). Bones

Boiled for 2 h with deionized
water and flowing water
wasted; Calcination with

600 ◦C temperature for 60 min.

Construction of HA/β-TCP biphasic
ceramic as a novel bone graft material. [124]

Nile tilapia
(Tilapia nilotica). Scales

Washed with 0.1 M HCl
several times and dried at
60 ◦C after washing with

distilled water. Afterwards,
alkaline treatment with NaOH

at 100 ◦C to obtain the
hydroxyapatite.

Nanocrystalline hydroxyapatite and its
application for selenium adsorption in

aqueous solution.
[125]

Salmon (Salmo salar). Bones

Boiled for 1 h with 1% of
NaOH and pure water wasted;

Calcination with 800 ◦C
temperature for 180 min.

Preparation of calcium phosphate
bioceramics for

bone-substitute materials.
[126]

3.5. Seafood Wastes as a Source of Pigments

The beautiful coloration of different seafood species, such as fish, crustaceans, mol-
lusks, and seaweeds, is due to the presence of various coloring agents commonly known as
carotenoids [3]. Natural carotenoids in seafood by-products have strong health-beneficial
activities [127]. The common carotenoids obtained from seafood by-products are astaxan-
thin, cantaxanthin, zeaxanthin, β-carotene, etc. [127]. Although carotenoids have biological
activities, astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) (red–pink color) has an-
ticancer, neuroprotective, and strong antioxidant activities [14]. Supposedly, astaxanthin
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has 500 times more antioxidant activity compared with tocopherol (Vit-E) [128]. Astaxan-
thin is also beneficial for improving cardiovascular health and regulating blood pressure.
Owing to their highly beneficial activities, marine carotenoids are used in food products,
pharmaceuticals, and cosmetics [127]. Several carotenoids are used as preservatives in
cosmetic products like ions and sun-protection creams [3]. Various carotenoids like α and
β-carotene are the precursors of vitamin A and are considered trace elements for normal
growth, immunological function, and vision [129]. Recently, carotenoid supplements for
human consumption have become available on the market; hence, consumers are familiar
with these products. The demand for marine carotenoids is booming and attracting the
attention of scientists and industrialists [130].

In addition to carotenoids, other pigments are mainly obtained from marine algae,
commonly known as phycobiliproteins. The major classes of phycobiliproteins are phyco-
erythrin (commonly found in red algae), phycocyanin (available in brown seaweed), and
allophycocyanins [131]. Phycoerythrin has high antioxidant and anticarcinogenic activities
and various health-beneficial activities [132].

There are various carotenoid extraction methods. An old method is the solvent
extraction method. However, due to the drawbacks of solvent extraction [133], scientists
are looking for green extraction methods such as SC-CO2 extraction [15,108], ionic liquid
and deep eutectic solvent extraction [134], ultrasound-assisted extraction [15], microwave-
assisted extraction [135], enzymatic hydrolysis [136], and extraction by various edible
oils [89]. Owing to availability and market demand, astaxanthin extraction methods are
highly established. Table 6 presents the extraction of the different pigments.

3.6. As a Source of Important Enzymes

Because of their lower side effects and higher bioactivities, enzymes are considered
essential biomolecules [3]. Enzymes can work as catalytic agents for different reactions
and, thus, reduce the cost of producing various compounds in different industries [137].
Enzymes from fishery by-products can be divided mainly into proteolytic and lipolytic
enzymes [3]. Fishery by-products, especially viscera and head, are important sources of
enzymes such as proteases and lipases [137]. Proteases are considered the most impor-
tant class of enzymes, accounting for approximately 60% of the total enzyme market [3].
They are important for various food, pharmaceutical, and cosmetic applications. The
fish viscera’s most important protease enzymes are pepsin, trypsin, chymotrypsin, and
elastase [137]. Table 7 shows the enzymes available in fishery discards, their extraction
methodologies, and their potential uses.

Fish enzymes have versatile applications in various industries. Protease enzymes play
a vital role in the fish body during postmortem activities such as textural changes and
flavor and trigger spoilage activities [138]. Another enzyme, serine protease, causes the
black discoloration of shrimp by forming polyphenol oxidase [139]. In the industrial sector,
proteases are used to extract valuable compounds from different raw materials via selective
breakdown and can be used as substitutes for various biomolecules [3]. Lipolytic enzymes
from seafood by-products are used to cleave the long chain of unsaturated fatty acids and
prepare biodiesel [140]. Recent studies have reported that lipases extracted from seafood
can be used to improve the flavor and odor of dairy products [141]. Several other enzymes
also have commercial importance. Among them, chitinases [142], collagenases [143], and
transglutaminases (TGase) [144] obtained from marine sources have notable industrial and
medicinal importance. TGases isolated from different seafoods have been shown to improve
the textural properties of various food products [145]. In addition to these mentioned
enzymes, several other enzymes, such as ureases, alkaline phosphatase, phospholipases,
alginate lyases, and xanthine oxidase, can also be extracted from fishery by-products [3].



Mar. Drugs 2023, 21, 485 16 of 37

Table 6. Extraction of natural pigments from marine fishery discards (types of fishery by-products used, extraction methodologies, types of pigments, and yield).

Fish Species Parts of Body Extraction Methods Type of Pigments Yield References

Crabs, shrimp (Penaeus
indicus), crayfish, krill,

and lobster
Carapace and heads

Enzymatic hydrolysis with
Trypsin (2000 U/g), papain

(6000 NF Units), and alcalase
(0.6 Anson U/g)

Crude carotenoids
Highest yield by alcalase 28.6 µg/g

waste; papain (24.8 µg/g); and trypsin
(25.3 µg/g).

[136]

Freshwater crab (Potamon
potamon) and marine crab

(Charybdis cruciata)
Shells and meat

Extracted by solvent
extraction with acetone

and ether

Astaxanthin, zeaxanthin,
β-carotene

From the shell and meat of marine crab,
astaxanthin was estimated about 65.5

and 67.6 g/100 g of carotenoids.
From the shell and meat of marine crab,
zeaxanthin was estimated about 0.49 and

5.0 g/100 g of carotenoids.
From the shell and meat of marine crab,
astaxanthin was estimated about 36.5

and 14.7 g/100 g of carotenoids.
Zeaxanthin from shell and meat of

freshwater crab about 74.8 and
42.0 g/100 g of carotenoids.

The highest β-carotene was obtained
from the meat of the freshwater crab,

7.4 g/10 g of carotenoids.

[146]

Spiny lobster
(Panulirus japonicas) Carapace Acetone extraction

Canthaxanthin, astaxanthin,
zeaxanthin, β-carotene,

and adonixanthin

Total carotenoid yield:
0.1 mg/g carapace;

Canthaxanthin: 6g/100 g of carotenoids;
Astaxanthin: 65 g/100 g of carotenoids;
Zeaxanthin: 1.2 g/100 g of carotenoids;
β-carotene: 2g/100 g of carotenoids;

Adonixanthin: 1.2 g/100 g
of carotenoids.

[147]

Shrimp (Peneanus monodon) Shells
Concurrent

SC-CO2-extraction
methodology

Astaxanthin-rich oil

A new process design for extraction of
astaxanthin has been proposed and the

highest yield obtained was
43.09 µg/g of oil.

[14]
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Table 6. Cont.

Fish Species Parts of Body Extraction Methods Type of Pigments Yield References

Jumbo squid (Dosidicus gigas) Skins Solvent extraction with
acidified methanol Crude natural pigment 580 and 690 mg of pigment extract per

100 g of fresh squid skin. [148]

White shrimp
(Litopenaeus vannamei) Hepatopancreas

Alkaline and heat treatment
(1.0 M NaOH and

pre-incubated at 60 ◦C)
Carotenoproteins

Carotenoproteins contained—73.58%
protein and major carotenoids identified

as astaxanthin and β-carotene.
[149]

Shrimp (Peneanus monodon) Shells Ultrasound-assisted natural
deep eutectic solvent Astaxanthin

Optimized the extraction methodology
using response surface methodology,

and the highest yield of astaxanthin was
obtained at 68.98 ± 1.22 µg ASX/g

shrimp waste.

[15]

Shrimp (Penaeus vannamei) By-products Ultrasonic-assisted ionic
liquid extraction Astaxanthin Astaxanthin yield: 32.47 µg/g waste. [150]

Red shrimps (Aristeus
antennatus) By-products

Ultrasound and
microwave-assisted natural

deep eutectic solvent
Astaxanthin

Ultrasound-assisted extraction:
7.85 ± 0.47 mg of astaxanthin/100 g

dry sample;
Ultrasound-assisted extraction:

26.7 ± 2 mg of astaxanthin/100 g
dry sample.

[151]

Brown crab Shell residues Terpene-based natural deep
eutectic solvents Astaxanthin The highest yield of astaxanthin was

obtained at 9.3 ± 0.8 µg/g dry residue. [152]

Northern shrimp
(Pandalus borealis) By-products Sunflower oil (SF) and its

methyl ester (ME-SF) Astaxanthin Yield obtained with SF: 23 mg/kg waste;
ME-SF: 34.2 mg/kg waste. [153]

Red microalgae
(Porphyridium spp.) Seaweed

Conventional extraction
(maceration and

freeze–thaw);
Green extraction: (microwave
(MW) and ultrasound (US)).

Phycoerythrin

The highest yield by maceration is
15.93 mg/g biomass; freeze–thaw was

16.08 mg/g biomass.
Microwave: 23.94 mg/g biomass;
ultrasound: 32.63 mg/g biomass.

[154]
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Table 7. Enzymes extracted from different species of fishery by-products and their application.

Fish Species Body Parts Group and Name of the Enzymes Application of Extracted Enzymes References

Pink shrimp (Parapenaeus
longirostris) Gut, viscera and intestine. Polyphenoloxidase

-laccase

This enzyme exhibits very intense activity, and
during storage, melanosis may continue to occur

due to the oxidation of p-dihydroxyphenols
produced mainly by non-specific hydroxylation

of aromatic amino acids.

[139]

Leather jacket (Aluterus monoceros) Pyloric caeca Protease—trypsin Preparation of protein hydrolysates with higher
antioxidant activities. [155]

New Zealand hoki (Macruronus
novaezealandiae) and chinook salmon

(Oncorhynchus tshawytscha)
Liver and intestine Digestible lipases

Flavor development in dairy cream with
extracted lipases and compared with calf

pre-gastric esterase.
[141]

Goby (Zosterisessor ophiocephalus) Viscera Alkaline protease—crude extract Deproteinization of shrimp wastes by extracted
crude proteases. [156]

Whiteleg shrimp
(Litopenaeus vannamei)

Muscle, pleopods, digestive gland,
and uropods Lipase Potential role in the hydrolysis of

triacylglycerides stored as fat in the shrimp body. [157]

Sardinelle
(Sardinella aurita) Viscera A novel aspartic protease Proteolytic activity was examined against natural

food proteins. [158]

Silver mojarra (Diapterus rhombeus) Viscera Alkaline peptidase—trypsin

With high activity and stability at pH from 8.5 to
11, this enzyme has good potential to be used as

an additive in commercial
detergent formulations.

[159]

Crayfish (Pacifastacus leniusculus) Discards Trans-glutaminase (TGase)
Extracted crayfish TGase enzyme showed higher

activity at low temperatures (4 ◦C) than pig
liver TGase.

[160]

Tilapia (Oreochromis mossambicus),
bigeye snapper (Priacanthus hamrur),
common carp (Cyprinus carpio) and

Indian oil sardine
(Sardinella longiceps)

Fish muscle tissue Trans-glutaminase (TGase) Improvement of the setting and gelling ability of
fish mince from Cynoglossus spp. [144]

Antarctic krill (Euphausia superba) By-products Trans-glutaminase (TGase) Extracted enzymes enhanced the mechanical
properties of gelatin gels at 4 ◦C. [161]
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4. Macromolecules Obtained from Fishery By-Products
4.1. Gelatin and Collagen

Collagen proteins are obtained from fish by-products such as bones, skin, and cartilage
and are found in the tissues of both vertebrates and invertebrates [162]. Both collagen and
gelatin are highly used in the food, pharmaceutical, and cosmetics sectors. The animal
body is claimed to contain approximately 30% collagen of its total protein component [163].
Due to the religious aspect, marine collagen is highly acceptable to Muslim- and Hindu-
based countries due to the religious restriction for consuming porcine and bovine collagen.
Interest in marine collagen is expanding daily among scientists and industrialists due to its
high demand and unique physicochemical properties, and it will reach a market value of
1055.2 million USD by 2026 [3].

The collagen molecule has a triple helix structure and comprises three polypeptide
chains, and its molecular weight is approximately 100 kDa [164]. Collagen molecules can
be subdivided into three types based on cross-linking intensity. Type-I collagen is available
in all collective tissues, type-II is primarily found in cartilages, and type-III is mainly found
in body parts such as the intestine [165]. Gelatin can be obtained via the heat treatment
of collagen [164]. Gelatin obtained from marine fishery discards has lower rheological
properties such as melting point and viscosity; however, it has good homeostatic properties
compared with mammalian gelatin and better metabolic compatibility [166].

Marine teleosts are considered important sources of collagen as they contain 75% of
their total body weight [162]. Marine fishery discards, particularly fish skin, scales, and
bones, are sustainable and cost-effective sources of collagen. As the interest in marine
collagen is increasing, several scientists have extracted collagen from fishery by-products
such as cod skin [167], fish scales [168], tuna skin and scales [169], squid fins and arms [170],
and salmon scales and skin [171]. Collagen from marine fishery by-products is mainly
extracted using acid solubilization. However, different enzymes, such as collagenase, can
also be used to target this valuable macromolecule [172]. The collagen yield highly depends
on the species and can vary from 1% to 50% of the raw materials [3].

Collagen has been used in the food, cosmetic, and pharmaceutical industries. Purified
collagen has been used for tissue engineering by preparing different biomaterials such
as gels, scaffolds, sponges, and nanocomposites [173]. Gelatin is used for preparing
biodegradable packing films and nanoparticles, microencapsulating various bioactive
compounds, and tuning the texture properties of foods [174]. Table 8 shows recent studies
on the extraction of collagen, gelatin, and their derivatives.

As previously mentioned, collagen has a huge potential in the pharmaceutical industry [175].
Due to its biocompatibility and biodegradability, collagen and its derivatives are widely
used in different medicinal products. A recent study showed the potential of collagen-based
dressing for drug delivery as an attractive and promising system in medical applications [176].
Collagen or gelatin and their derivatives can also be used for tissue engineering and quick
wound healing (Figure 4). It has also been reported that collagen scaffolds can play an
important role in bone and cartilage reconstruction [177]. Different facial creams prepared
with collagen are popular due to their activity [162,178].

4.2. Seafood By-Products as Sustainable Sources of Polysaccharides

Seafood discards, especially the shells of crustaceans, exoskeletons of mollusks, and
seaweeds, are sources of various polysaccharides [179]. The utilization of crustacean
by-products is challenging because they contain approximately 75% of discards, are not
easily decomposed in nature, and are considered an environmental hazard [180]. Chitin
and chitosan extraction from crustacean shells are well-known, and they have a long
history of application in the food, pharmaceutical, and cosmetic industries [179]. Chitin
is a highly available polysaccharide after cellulose, which comprises 1,4-poly-N-acetyl-
D-glucosamine. The most exciting information is that approximately 100 billion tons
of chitin can be generated from nature if we can use all the resources, such as insects,
crustacean shells, fungi, and all other organisms [181]. According to several studies,
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the market value of chitin was 6.8 billion USD in 2019, and by 2027, its market value
is expected to increase by 24.7%, indicating its necessity in various industries [182]. By
deacetylating chitin, another popular polysaccharide, chitosan (poly-β-1,4–2-amino-2-
deoxy-D-glucopyranose), can be generated [183]. This polymer is well-known for its diverse
applications in various fields. It is biodegradable [184], nontoxic [183], and has multiple
biofunctional activities such as antioxidant [185], antimicrobial [186], antifungal [187],
anticancer [183], and wound healing activities [188]. This functional biomolecule also
helps lower cholesterol levels [189], acts as an anti-inflammatory agent [190], and inhibits
tumor formation [191]. The diverse applications of chitosan also include biodegradable
packaging, nanocomposite preparation, drug delivery, the preparation of various hydrogels,
and therapeutic agents. Low-molecular-weight chitosans or the oligomers of chitins and
chitosans are called chitooligosaccharides [182]. They are highly soluble in water and have
better functionality than native chitin and chitosan [183].

Chitin extraction through conventional processes requires high heat and various
chemicals. Chitin extraction usually has three steps: (i) demineralization, which requires
the application of strong acids, including HCl, HNO3, and H2SO4; (ii) deproteinization
by alkaline treatment using NaOH or KOH; and (iii) decolorization by organic solvents.
However, after chitin extraction, an extra step called deacetylation by alkaline treatment
using strong NaOH or KOH is necessary [183]. Due to the application of synthetic chemicals
during chitin and chitosan extraction, they impose hazardous effects on the environment;
scientists are looking for different green and eco-friendly approaches to extract these
valuable molecules. Recently, several green extraction methods have been used to extract
chitin and chitosan. They include the application of bacterial fermentation [192], enzymatic
hydrolysis [193], subcritical water [194], ultrasound [195], microwave-assisted [196], ionic
liquid [197], deep eutectic solvents [198], and pulsed electric field extraction [199].

Fucoidan is an important sulfated polysaccharide available in marine algae (brown sea-
weed) and different invertebrates such as sea cucumbers and sea urchins [200]. Researchers
have been very interested in this marine polysaccharide because of its biological poten-
tial since it was discovered in 1913 [200]. It is negatively charged and hygroscopic [201].
The solubility of this polysaccharide in both water and acid solutions makes it a suitable
candidate for medicinal applications over other sulfated polysaccharides [202]. In recent
decades, fucoidans isolated from marine sources have been extensively studied to discover
their potential use in the medical sector. Fucoidans have strong antioxidant, anticoagulant,
antitumor, and antiviral activities [203]. They are also effective in improving the diges-
tive and urinary systems [204]. The main constituents of fucoidan are fucose and sulfate.
However, the chemical structure also contains different monosaccharides such as glucose,
galactose, and other compounds such as uronic acid [200].

Fucoidan extraction via conventional methods, such as dilution in acetic acid, has
a long history [203]. Crude fucoidan extracted via conventional methods often contains
different contaminants, requiring purification. Column chromatography is a popular
technique for purifying fucoidan [204]. Recently, various green extraction methods have
been applied to extract fucoidan, such as subcritical water extraction [205] (Figure 5),
ultrasound-assisted extraction [206], and microwave-assisted extraction [207]. Table 9
shows recent studies on the extraction of polysaccharides, their extraction methods, and
the functionalities of the extracted polysaccharides.
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Table 8. Extraction of collagen and gelatin and their derivatives, their functionalities, and their potential applications from various fishery discards.

Fish Species Body Parts Type of Collagen/Gelatin Yield Properties/Finding of the Study References

Bullhead shark (Heterodontus
japonicas), Ayu (Plecoglossus

altivelis), Horse mackerel
(Trachurus japonicas), Skipjack

tuna (Katsuwonus pelamis),
yellow sea bream (Dentex
tumifrons), chub mackerel
(Scomber japonicas), and

Japanese sea-bass
(Lateolabrax japonicas)

Fins, bones, and skins Acid-solubilized
collagen (ASC)

(1) Skin collagen, 51.4% (Japanese
sea-bass), 49.8% (chub mackerel),

and 50.1% (bullhead shark),
respectively; (2) bone collagen, 42.3%

(skipjack tuna), 40.7% (Japanese
sea-bass), 53.6% (ayu), 40.1% (yellow

sea bream), and 43.5% (horse
mackerel), respectively; (3) fin

collagen, 5.2% (Japanese sea-bass
acid-soluble collagen) and 36.4%

(Japanese sea-bass
acid-insoluble collagen).

This report indicates that these fish
waste materials have the potential to

supplement the skin of land
vertebrates as a source of collagen.

[208]

Spanish mackerel
(Scomberomorous niphonius) Skin Acid-solubilized

collagen (ASC)
The collagen obtained from the skin

is 13.68 ± 0.35%.

Antioxidant activities; emulsifying
properties of the extracted collagen

varied by average molecular weight.
[209]

Jumbo squid (Dosidicus gigas) Skin and fins
Extraction of acid-solubilized

collagen (ASC) and then
enzymatic hydrolysis

Collagen was
obtained—from fin: 69%; and

from skin: 66% (based on dry wt.).

Extracted collagen showed higher
levels of polar and hydrophobic amino

acids. The collagen hydrolysates
produced by subtilisin showed a lower

degree of hydrolysis and higher
antioxidant activity.

[170]

Smooth-hound
(Mustelus mustelus) Skin

Acid-solubilized collagen
(ASC) and pepsin-solubilized

collagen (PSC)

Collagen obtained—ASC
(acid-soluble): 23.07%; and

PSC (pepsin-soluble): 35.27% of
the sample.

Extracted collagen used for preparing
films with chitosan and prepared

biofilm showed potential UV barrier
properties and antioxidant activity.

[210]

Red drum fish
(Sciaenops ocellatus) Scales

Acid-solubilized collagen
(ASC) and pepsin-solubilized

collagen (PSC)

Collagen obtained—ASC
(acid-soluble): 0.61 ± 0.20%; and

PSC (pepsin-soluble): 4.32 ± 0.30%
of the sample.

Type-I collagen was isolated rapidly
via hydrophilic ultrafiltration from the

scales of red drum fish (Sciaenops
ocellatus) after limited

pepsin digestion.

[168]
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Table 8. Cont.

Fish Species Body Parts Type of Collagen/Gelatin Yield Properties/Finding of the Study References

Bigeye tuna (Thunnus obesus) Bones, scales, and skin
Acid-solubilized collagen

(ASC) and pepsin-solubilized
collagen (PSC)

Collagen was obtained from
skin—ASC (acid-soluble)

13.05 ± 0.6%; and
PSC (pepsin-soluble) 16.7 ± 0.7%

based on dry wt.
Collagen was obtained from scale
and bone—PSC (pepsin-soluble)

4.6 ± 0.3% and 2.6 ± 0.3% based on
dry wt.

This study concluded physiochemical
properties of extracted fish collagen

were comparable to
mammalian collagen.

[169]

Black ruff (Centrolophus niger) Skin Acid-solubilized
collagen (ASC)

The yield of the extracted collagen
varied from 25% to 45% based on the

skin weight.

Extraction and characterization of
collagen from fish waste and its

application in the development of
antibacterial active

food-packaging film.

[211]

Atlantic cod and
Atlantic salmon Scales and skin Acid-solubilized

collagen (ASC)

Yield of collagen—Atlantic salmon:
skin 11.95% and fins: 5.76%.

Atlantic cod: skin: 3.46% and fins:
4.34% based on wet tissue.

Salmon scales and skin had very high
collagen levels, allowing them to be

promising sources for high-value
collagen production.

[171]

Eel fish (Evenchelys macrura) Skin
Acid-solubilized collagen

(ASC) and pepsin-solubilized
collagen (PSC)

Collagen yield—ASC: 80% and PSC:
7.1% based on the dry weight of

the skin.

The ASC and PSC gels and films also
showed equal potency in delivering
drugs against bacterial and fungal

human pathogens.

[212]

Blue whiting (BW,
Micromesistius poutassou),

Mackerel (M, Scomber
scombrus), Red scorpionfish
(RS, Scorpaena scrofa), and

Pouting (P, Trisoreptus luscus)

Heads and skins

Extraction of gelatin using a
sequential combination of

0.05 M NaOH, 0.02 M H2SO4,
and 0.05 M citric
acid solutions.

Yield of the gelatin (%. w/w fresh
skin)—BW: 0.23 ± 0.05;

M: 0.69 ± 0.33;
RS: 0.28 ± 0.11;
P: 0.56 ± 0.25.

Extracted gelatin showed strong
antioxidant and

antihypertensive activity.
[10]

Atlantic mackerel
(Scomber scombrus) Skin

Extraction of gelatin via
acid-based and
heat treatment

Gelatin yield varied
from 29.6 to 31.8%.

The chemical composition, rheological
and textural properties, and

microstructural characteristics of the
extracted gelatins were analyzed and

compared with commercial bovine
hide gelatin.

[213]
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Table 8. Cont.

Fish Species Body Parts Type of Collagen/Gelatin Yield Properties/Finding of the Study References

Mackerel (Scomber japonicus) Bone and skin Collagen hydrolysate using
subcritical water hydrolysis

Subcritical water treatment produced
low-molecular-weight (<1650 Da)

collagen peptides.

The antioxidant activities of collagen
hydrolysate obtained via subcritical
water hydrolysis were significantly

higher than native collagen.

[214]

Bigeye tuna (Thunnus obesus) Bones, scales, and skin
Collagen hydrolysate via

catalyst-assisted subcritical
water hydrolysis

The average molecular size of the
peptides in the obtained collagen

hydrolysates varied between 300 and
425 Da.

The collagen hydrolysates obtained in
this study showed enormous potential

for use in the food and
pharmaceutical industries.

[215]

Totoaba (Totoaba macdonaldi) Swim bladder

Pepsin-solubilized collagen
(PSC) and collagen

hydrolysates via enzymatic
hydrolysis (Alcalase

and papain)

The yield of collagen was high (68%)
and exhibited good thermal stability

(32.5 ◦C).

This study reported that the swim
bladder from the farmed totoaba could

be an ideal source to produce
high-quality type-I collagen and may

be considered an alternative to
conventional collagen sources.

[216]
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Table 9. Conventional and green extraction methods for extracting polysaccharides from marine fishery discards and their functionalities.

Seafood Body Parts Extraction Methods Polysaccharide Yield Properties/Characteristics References

Pacific white shrimp
(Litopenaeus vannamei) Heads

Demineralization and
deproteinization through
HCl and NaOH solutions.
The deacetylation process

obtained chitosan

Chitin and chitosan

Chitin and chitosan were
obtained from shrimp waste

processing about 25 ± 2 g/kg
and 17 ± 4 g/kg.

Anticoagulant properties
and anti-

inflammatory activity.
[217]

Shrimp Shrimp waste

Chitin extracted with
conventional methods.
Chiton extracted using

microwave-
assisted extraction

Chitin and
chitosan

The maximum yield obtained
from shrimp waste was about
36.43% (based on dry wt.), and
the highest chitosan yield was

90% based on the chitin wt.

Antibacterial, functional,
antioxidant, and

physicochemical properties.
[218]

Shrimp (Metapenaeus
monoceros) Shells

Enzymatic extractions by
several microbial and fish

alkaline proteases
Chitin and chitosan

Concerning microbial enzyme
preparation, high

deproteinization (DDP) degrees
were obtained with 77 ± 3%.

Antimicrobial, antitumor,
and antioxidant activities. [219]

Norway lobster
(Nephrops norvegicus)

Thorax, heads, and
appendix

by-products

Enzymatic extraction
(protease from
Bacillus lentus)

Chitin
The yield of the chitin extracted

from Norway lobster was
24.6 ± 1.02% (based on dry wt.).

Antiproliferative and
antimicrobial activities. [220]

Shrimp (Marsupenaeus
japonicas) Shells Deep eutectic

solvent extraction Chitin
A higher yield was obtained

compared with the conventional
extraction (16.08%).

Extracted chitins showed
excellent potential for

preparing biodegradable
packaging film.

[198]

Lobster Shells DES (Deep eutectic solvent) Chitin

The highest yield of chitin was
23.31% with Choline

chloride-lactic acid deep
eutectic solvent.

Acid-based deep eutectic
solvents have the potential
for use as green media for
the production of chitin.

[12]

Shrimp Shells
Extraction by

ammonium-based
ionic liquids

Chitin and chitosan

A chitin extraction of 14% of the
original biomass was found
after shrimp-shell treatment

with ionic liquids.

The experimental results
revealed that ionic liquids

could be a potential medium
for chitin extraction.

[197]
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Table 9. Cont.

Seafood Body Parts Extraction Methods Polysaccharide Yield Properties/Characteristics References

Prawn Shells Microbial extraction
(fermentation) Chitin and chitosan

The highest yield of chitin was
0.78%, with a higher degree of

deacetylation of 72.90%.

A higher degree of
deacetylation is valued

compared with the
commercial chitin.

[221]

Shrimp Shells Ultrasound-assisted
extraction Chitin and chitosan

Ultrasound reduces the protein
content and particle size

of chitin.

Chitosan of high
deacetylation and medium

molecular weight was
produced, and the extracted

chitosan was applied for
beef preservation.

[222]

Swimming crab
(Portunus trituberculatus) Shells Subcritical water

pretreatment Chitosan

The yield and the molecular
weight of the chitosan were

12.2% and 1187.2 kDa,
respectively.

Chitosan prepared via
subcritical water

pretreatment was easier to
use in preparing
oligosaccharides.

[223]

Shrimp (Penaeus
monodon) Shells Subcritical water Oligochitosan

Subcritical water hydrolysis
reduces the molecular weight of

the chitosan (3.06 kDa).

Oligochitosan showed
potent antioxidant,
antimicrobial, and

anticancer activities.

[183]

Shrimp Shells Fermentation by
Pseudonocardia antitumoralis Chitooligosaccharides

The results indicate that the
isolate Pseudonocardia

antitumoralis 18D36-A1 could
convert chitin into

chitooligosaccharides.

The extract produced the
active fraction D36A1C38,

which can inhibit the growth
of fungi by 74% at a

concentration of 1 mg/mL.

[224]

Shrimp Discards
Co-fermentation in the

presence of Bacillus subtilis
and Acetobacter sp.

Chitooligosaccharides

Final deproteinization (DP) and
demineralization (DM)

efficiency and the chitin yield
were achieved as 94, 92,

and 18%.

The proposed method
exhibited excellent stability

and high hydrolysis
efficiency.

[225]
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Table 9. Cont.

Seafood Body Parts Extraction Methods Polysaccharide Yield Properties/Characteristics References

Brown algae
(Turbinara ornata) Seaweed powder Conventional methods in

acid dilution Fucoidan

10 different fractions of the
crude fucoidan were obtained,
and the highest sulfate content

was reported as 38.34%.

This study claimed to be the
first report to illustrate the

potential anti-inflammatory
activity of fucoidan

extracted from the brown
algae T. ornata.

[204]

Brown seaweed
(Saccharina japonica) Seaweed powder

Subcritical water extraction
(SWE) with different

solvents
Fucoidan

The highest yield of crude
fucoidan was 8.23 at 140 ◦C,

50 bar, and 0.1% NaOH solvent.

A high yield of fucoidan was
obtained from SWE when

compared with the
conventional method, and

crude fucoidan showed high
antioxidant and emulsifying

activity properties.

[205]

Brown seaweed
(Fucus vesiculosus) Seaweed powder Microwave-assisted

extraction (MAE) Fucoidan
The highest yield of fucoidan

was 15.61%, and its sulfate
content was 22.76%.

This method required short
extraction times and

non-corrosive solvents,
resulting in reduced costs for
green extraction techniques.

[207]
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5. Conclusions and Implication of This Review Work

This study summarized the presence of valuable bioactive compounds and their func-
tionalities. In recent decades, the massive production of fishery products has introduced
enormous fish discards. Some are effectively used in agriculture (fertilizers), animal foods,
pharmaceuticals, and cosmetics. However, most discards are disposed of in the sea or
other water bodies and negatively impact environmental status. Thus, they need to be
managed with effective fishery management. Valorizing fish by-products for industries is
challenging, and the necessary techniques should be taken. Most methods are costly and
challenging to manage.

Caruso et al. [24] indicated that the losses of bioactive compounds from the by-
products due to poor handling and dumping negatively affect the environment. Thus, to
overcome these problems, the most effective techniques were used to extract or isolate
bioactive compounds (e.g., lipids, proteins, chitin, enzymes, peptides, etc.) and use those
valuable nutrients as food ingredients (with regulated food quality, production, distribu-
tion, and proper marketing). Enzymatic hydrolysis, SC-CO2 extraction, subcritical water
extraction, and other green extraction methods can be applied for the complete valorization
of these by-products. However, the development of techniques and methods to effectively
valorize seafood discards is ongoing. We believe that this narrative study for an up-to-date
understanding of fishery discards’ valorization will provide scientists and researchers with
new insights into the extraction of valuable treasures from seafood discards. However,
the application of bioactive compounds from fishery sources is increasing daily among
health-conscious consumers. Food, pharmaceutical, and cosmetic products from several
bioactive compounds, such as PUFA-containing fish oil, collagen, gelatin, and peptides,
are available. Due to consumer demand, this field is flourishing and requires further and
advanced research. It is believed that the ocean will be the source of various medicinal prod-
ucts in the future, as seafood already provides thousands of valuable bioactive compounds
to humans.

To achieve a sustainable and hunger-free world, minimizing the discarding of food
products is essential. From the food perspective, fishery by-products have tremendous
potential for the blue economy and the initiative toward zero-waste management. More
studies are required to develop an innovative approach to utilizing fishery discards and
extracting their bioactive and nutritional compounds, which can ensure a circular economy
in fishery-based industries.
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