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Abstract: Ascophyllum nodosum, a brown algae abundantly found along the North Atlantic coast, is
recognized for its high polysaccharide content. In this study, we investigated the anti-hyperlipidemic
effect of fucoidans derived from A. nodosum, aiming to provide information for their potential applica-
tion in anti-hyperlipidemic therapies and to explore comprehensive utilization of this Iceland brown
seaweed. The crude fucoidan prepared from A. nodosum was separated using a diethylethanolamine
column, resulting in two fucoidan fractions, AFC-1 and AFC-2. Both fractions were predominantly
composed of fucose and xylose. AFC-1 exhibited a higher sulfate content of 27.8% compared to AFC-2
with 17.0%. AFC-2 was primarily sulfated at the hydroxy group of C2, whereas AFC-1 was sulfated at
both the hydroxy groups of C2 and C4. To evaluate the anti-hyperlipidemic effect, a hyperlipidemia
mouse model was established by feeding mice a high-fat diet. The effects of AFC-1, AFC-2, and the
crude extract were investigated, with the drug atorvastatin used as a positive comparison. Among the
different fucoidan fractions and doses, the high dose of AFC-2 administration demonstrated the most
significant anti-hyperlipidemic effect across various aspects, including physiological parameters,
blood glucose levels, lipid profile, histological analysis, and the activities of oxidative stress-related
enzymes and lipoprotein-metabolism-related enzymes (p < 0.05 for the final body weight and p < 0.01
for the rest indicators, compared with the model group), and its effect is comparable to the ator-
vastatin administration. Furthermore, fucoidan administration resulted in a lower degree of loss in
gut flora diversity compared to atorvastatin administration. These findings highlight the significant
biomedical potential of fucoidans derived from A. nodosum as a promising therapeutic solution
for hypolipidemia.

Keywords: Ascophyllum nodosum; fucoidan; anti-hyperlipidemic; antioxidant enzyme; lipoprotein
metabolism; gut flora

1. Introduction

Ascophyllum nodosum is a marine brown algae that thrives along the North Atlantic
coast [1]. Apart from its ecological significance, this algae has garnered substantial attention
for its industrial applications in alginate extraction, as well as its utilization in agriculture
for fertilizer and feed production. In the food industry, it is commonly processed into
seaweed powder, which finds its way into various culinary and functional food products.
Notably, Ascophyllum nodosum contains fucoidan, a typical brown algal sulfated glycan,
which has been the subject of extensive scientific exploration.
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Fucoidan is a water-soluble heteropolysaccharide rich in sulfate groups, and has emerged
as a fascinating compound due to its diverse biological activities and potential health benefits.
It has shown promising properties in various fields, including anti-tumor [2–4], anti-viral [5,6],
hepatoprotective [7,8], anticoagulant [9,10], anti-inflammatory [11], immunomodulating [12],
and hypolipidemic effects [13]. Fucoidan’s unique negatively charged property contributes
to its bioactivity and therapeutic potential. Moreover, its natural origin and biocompatibility
make it an attractive candidate for applications in the food and biomedicine sectors, with
compelling prospects for future development.

As modern society develops, hyperlipidemia has become a major public health concern.
Characterized by elevated levels of lipids in the bloodstream, hyperlipidemia poses a
significant risk for cardiovascular diseases, including atherosclerosis and coronary heart
disease. The alarming rise in cardiovascular diseases has surpassed cancer mortality rates,
making it a critical concern [14]. In China alone, over 300 million individuals are affected,
with a staggering statistic of one patient dying every 9 s [15]. The effective management
of blood lipids plays a pivotal role in disease prevention and treatment. Of particular
significance are total cholesterol (TC) and LDL cholesterol (LDL-C), which exhibit a strong
correlation with the incidence of coronary heart disease [16]. While chemical drugs are
currently the primary treatment for hyperlipidemia, their side effects and potential harm
to the liver and kidneys have led to a growing interest in finding natural and harmless
therapeutic agents, making it a prominent area of research [17].

In recent years, gut flora has been found to be a key environmental factor regulating
body metabolism. Research shows that it is involved in the occurrence and development
of obesity, diabetes, atherosclerosis, and other chronic diseases, and plays a vital role in
regulating host lipid metabolism [18]. Hyperlipidemia leads to an imbalance in gut flora,
and modifying gut flora may be a new method to treat hyperlipidemia [19].

Based on the above-mentioned background, this study aimed to explore the anti-
hyperlipidemic effect of fucoidan fractions prepared from Ascophyllum nodosum sourced
from Iceland. Two fucoidan fractions were derived using an anion-exchange method, and
their compositional information was further investigated. Using a hyperlipidemia mouse
model, the effects of the fucoidan crude extract and fractions on physiological parameters,
lipid profiles, and relevant enzymatic activities were investigated. Histological studies of
liver tissues and gut flora compositional analysis were also conducted to provide further
information. While some recent studies have explored the anti-hyperlipidemic activity
of fucoidan prepared from common brown seaweed species and reported encouraging
results [20–24], no research has been reported using fucoidan prepared from Ascophyllum
nodosum. This study aims to provide insights into the biomedical applications of fucoidans
and their potential as a natural anti-hyperlipidemic product, as well as information for the
future comprehensive utilization of Ascophyllum nodosum for high-value product production.

2. Results
2.1. Separation and Compositional Analysis of A. nodosum Fucoidans (AN-FUC)

The separation of AN-FUC using the Diethylaminoethyl (DEAE)-Sepharose Fast Flow
anion exchange column is illustrated in Figure 1. Two distinct fractions, AFC-1 and AFC-2,
were obtained. AFC-1 was eluted with water, while AFC-2 was eluted with an increasing
salinity of the mobile phase. The symmetrical peaks observed in the chromatography
indicate a relatively high purity of the two fractions. The carbohydrate content, sulfate
content, and monosaccharide composition of each fucoidan fraction are summarized in
Table 1. AFC-2 exhibited the highest carbohydrate content, while AFC-1 had the highest
sulfate content. The dominant monosaccharides in both fractions were fucose and xy-
lose, with small amounts of mannose, glucose, rhamnose, galactose, and glucuronic acid
also detected.
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Figure 1. Chromatography of fucoidan separation using DEAE column.

Table 1. Compositional information of each fucoidan fractions (% of dry weight).

Component Carbohydrate
Content (%)

Sulfate
Content(%) Purity (%)

Monosaccharide Composition (%)

Fuc Gal Man Glu Rha Xyl Glu-UA Gal-UA

AN-FUC 62.80 ± 1.21 20.48 ± 0.72 83.28 58.98 5.08 5.03 2.04 6.29 16.15 6.43 N.D
AFC-1 57.77 ± 1.44 27.84 ± 0.81 85.61 54.36 6.10 5.67 1.50 6.23 19.25 6.89 N.D
AFC-2 76.18 ± 1.02 17.60 ± 0.56 93.78 57.25 7.03 6.25 N.D 6.49 16.76 6.22 N.D

Note: Fuc: Fucose; Gal: Galactose; Man: Mannose; Glc: Glucose; Rha: Rhamnose; Xyl: Xylose; GlcA: Glucuronic
acid; Gal-UA: Galacturonic acid.

2.2. Structural Features of Fucoidans from A. nodosum

The 13C NMR spectra of fucoidans from A. nodosum, as shown in Figure 2, confirmed
the presence of a high fucose content in AFC-1 and AFC-2, indicated by the significant
fucose C6 signal peaks at 18.22 ppm and 18.29 ppm, respectively. The major anomeric
C1 signal at 101–102 ppm was assigned to α-L-fucose. Both AFC-1 and AFC-2 exhibited
complex signals in the range of 69–85 ppm, suggesting heterogeneous substitution of the
hydroxy group in the sugar with either glycosidic linkage or sulfate group. The FT-IR
spectra, depicted in Figure 3, displayed typical glycan features of AFC-1 and AFC-2. The
broad bands observed at 3600–3200 cm−1 were assigned to the deformation of O-H. The
bands around 2939 cm−1 and 2923 cm−1 corresponded to C-H stretching vibrations. AFC-1
and AFC-2 exhibited absorption bands at around 1035 cm−1 and 1260 cm−1, respectively,
which were attributed to C-O and asymmetric O-S-O stretching vibrations, respectively [1].
Both AFC-1 and AFC-2 displayed absorption peaks at 821 cm−1 and 819 cm−1, indicating
equatorial C-O-S stretching vibrations caused by sulfation of the hydroxy group at C2. Ad-
ditionally, AFC-1 exhibited an absorption peak around 847 cm−1, suggesting the presence
of an axial C-O-S stretching vibration, corresponding to the hydroxy group at C4 [2].

2.3. Effect of Fucoidan Administration on Physiological Parameters and Blood Glucose Level

The impact of fucoidan administration on physiological parameters and blood glucose
levels is summarized in Table 2. The initial body weight did not show significant differences
among the groups. However, the model group (no drug administered, high-fat diet fed)
exhibited a significant difference in body weight compared to the control group (p < 0.05)
at the end point, indicating the successful establishment of the model. The drug group
(atorvastatin administered, high-fat diet fed) displayed a significant difference in body
weight compared to the model group (p < 0.01) and showed similar body weight to
the control group, suggesting a notable antihyperlipidemic effect of the drug. Similar
patterns were observed for the liver index and blood glucose levels, with the model group
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showing significantly higher values compared to the control group, while the drug group
demonstrated higher values than the control group but lower than the model group, with
significant differences. A normal distribution test was performed before statistical analysis
using one-way analysis of variance (ANOVA) (p < 0.05, the same below).
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Figure 3. The FT-IR spectra of fucoidans from A. nodosum.

Table 2. Effects of drug and fucoidan administration on body weight, liver index, and blood glucose
level of mice. Data are expressed as the means ± SEM (n = 8). (**: p < 0.01 compared with the model
group, *: p < 0.05 compared with the model group; ##: p < 0.01 compared with the control group,
#: p < 0.05 compared with the control group;44: p < 0.01 compared with the drug group,4: p < 0.05
compared with the drug group. L, M, H represent low, medium, high-dose group, respectively).

Group The Initial Body Weight (g) The Final Body Weight (g) Liver Index (mg/g) Blood Glucose Level (mmol/L)

Control 18.80 ± 1.06 25.49 ± 1.99 ** 3.62 ± 0.16 **4 4.48 ± 0.61 **4
Model 19.50 ± 0.96 32.09 ± 3.23 ##4 4.55 ± 0.12 ##44 7.92 ± 0.62 ##44
Drug 19.26 ± 1.22 25.94 ± 1.22 ** 3.97 ± 0.10 ** # 5.82 ± 0.71 ** ##

AN-FUC L 18.88 ± 2.11 28.95 ± 3.73 4.45 ± 0.16 ##44 6.58 ± 0.86 ** ##
AN-FUC M 19.34 ± 1.26 27.52 ± 2.87 4.39 ± 0.16 * ##44 7.58 ± 0.99 ##44
AN-FUC H 18.74 ± 0.73 26.66 ± 2.72 * 4.35 ± 0.13 * ##4 7.08 ± 0.40 ##4

AFC-1 L 18.66 ± 2.12 26.50 ± 2.44 * 4.34 ± 0.22 * ##4 6.67 ± 0.73 * ##
AFC-1 M 20.19 ± 1.71 29.08 ± 3.56 4.33 ± 0.17 ** ##4 6.40 ± 0.91 ** ##
AFC-1 H 19.46 ± 1.01 28.81 ± 3.11 4.04 ± 0.23 ** ## 6.23 ± 0.59 ** ##
AFC-2 L 18.93 ± 1.15 27.20 ± 3.17 4.16 ± 0.22 ** ## 5.74 ± 0.33 ** ##
AFC-2 M 19.38 ± 1.34 26.55 ± 1.99 * 4.03 ± 0.12 ** ## 6.02 ± 0.73 ** ##
AFC-2 H 19.20 ± 0.90 26.77 ± 1.56 * 3.87 ± 0.29 ** 5.60 ± 0.67 ** #
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The different fucoidan groups exhibited varied effects on these parameters, with the
medium and high dose groups of AFC-2 demonstrating superior effects compared to other
groups. These groups showed significant differences when compared to the model group,
indicating notable effects on all three parameters.

2.4. Effect of Fucoidan Administration on Lipid Profile

The differences in lipid profile among the groups are shown in Figure 4. As expected,
the model group displayed typical features of hyperlipidemia, with higher levels of total
cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), but
lower levels of high-density lipoprotein cholesterol (HDL-C) compared to the control group.
The drug group exhibited significant improvement in the lipid panel compared to the model
group but still showed a statistically significant difference from the control group. Most
of the fucoidan-administered groups showed improvements in the lipid panel compared
to the model group, although to a lesser degree than the drug group. Generally, each
fucoidan fraction demonstrated a dose-dependent improvement among the low, medium,
and high-dose groups. AFC-1 and AFC-2 showed better effects than the crude extract
counterpart at the same dose. Based on the data, the high-dose AFC-2 group demonstrated
the most favorable outcomes among the fucoidan groups, judging from the lipid panel data.
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Figure 4. Effects of fucoidan on lipid profile after 28 days. (A): TC level. (B): TG level. (C): HDL-C
level. (D): LDL-C level. Values are expressed as the means ± standard deviation (n = 8). **: p < 0.01
compared with the model group; *: p < 0.05 compared with the model group; ##: p < 0.01 compared
with the control group; #: p < 0.05 compared with the control group;44: p < 0.01 compared with the
drug group,4: p < 0.05 compared with the drug group.

2.5. Effect of Fucoidan Administration on Oxidative-Stress-Relevant Enzyme Activities

The levels of oxidative stress-relevant enzymes and markers were determined for each
group, as shown in Figure 5. The model group exhibited lower levels of catalase (CAT),
glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and peroxidase (POD)



Mar. Drugs 2023, 21, 468 6 of 14

compared to the control group, indicating a compromised antioxidative capacity in the liver
caused by hyperlipidemia. Additionally, the model group showed a significant increase
in malondialdehyde (MDA) levels, which is a final product of polyunsaturated fatty acid
peroxidation, indicating significant oxidative stress in the liver of hyperlipidemic mice.

Mar. Drugs 2023, 21, x  7 of 16 
 

 

 
Figure 5. Effects of fucoidan on CAT, GSH-PX, SOD, MDA and POD levels of mice liver tissue. (A): 
CAT; (B): GSH-PX; (C): SOD; (D): MDA; (E): POD. Values are expressed as the means ± standard 
deviation (n = 8). **: p < 0.01 compared with the model group; *: p < 0.05 compared with the model 
group; ##: p < 0.01 compared with the control group; #: p < 0.05 compared with the control group; △△: p < 0.01 compared with the drug group, △: p < 0.05 compared with the drug group. 

The drug group demonstrated apparent improvement compared to the model group 
in all oxidative stress indicators mentioned above, although enzyme function and MDA 
levels did not fully restore to the normal levels observed in the control group. The fu-
coidan-administered groups showed a dose-dependent improvement compared to the 
model group for each fucoidan fraction. Notably, the high dose of AFC-2 exhibited com-
parable ameliorative effects as atorvastatin on hyperlipidemia-related oxidative stress. 

2.6. Effect of Fucoidan Administration on Lipoprotein-Metabolism-Related Enzyme Activities 
The effects of fucoidans on lipoprotein-metabolism-related enzyme activities are 

shown in Figure 6. Compared to the control group, the model group exhibited a 51.99% 
increase in hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activ-
ity, along with significant reductions of 59.92%, 63.88%, and 58.81% in hepatic liver lipase 
(HL), lipoprotein lipase (LPL), and lecithin-cholesterolacyltransferase (LCAT) activities, 
respectively, compared to the control group. By administering atorvastatin and varying 

Figure 5. Effects of fucoidan on CAT, GSH-PX, SOD, MDA and POD levels of mice liver tissue.
(A): CAT; (B): GSH-PX; (C): SOD; (D): MDA; (E): POD. Values are expressed as the means ± standard
deviation (n = 8). **: p < 0.01 compared with the model group; *: p < 0.05 compared with the model
group; ##: p < 0.01 compared with the control group; #: p < 0.05 compared with the control group;
44: p < 0.01 compared with the drug group,4: p < 0.05 compared with the drug group.

The drug group demonstrated apparent improvement compared to the model group
in all oxidative stress indicators mentioned above, although enzyme function and MDA
levels did not fully restore to the normal levels observed in the control group. The fucoidan-
administered groups showed a dose-dependent improvement compared to the model
group for each fucoidan fraction. Notably, the high dose of AFC-2 exhibited comparable
ameliorative effects as atorvastatin on hyperlipidemia-related oxidative stress.

2.6. Effect of Fucoidan Administration on Lipoprotein-Metabolism-Related Enzyme Activities

The effects of fucoidans on lipoprotein-metabolism-related enzyme activities are
shown in Figure 6. Compared to the control group, the model group exhibited a 51.99%
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increase in hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity,
along with significant reductions of 59.92%, 63.88%, and 58.81% in hepatic liver lipase
(HL), lipoprotein lipase (LPL), and lecithin-cholesterolacyltransferase (LCAT) activities,
respectively, compared to the control group. By administering atorvastatin and varying
concentrations of fucoidan sulfate, the levels of HMG-CoA in the liver decreased, while
the levels of HL, LPL, and LCAT increased compared to the model group, indicating
the pharmaceutical effects of fucoidan on hyperlipidemia in a dose-dependent manner.
Once again, the high-dose AFC-2 group exhibited the most effective outcome among the
fucoidan groups.
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2.7. Histological Observation of Liver Tissues

Microscopic images of the livers from different experimental groups are presented
in Figure 7. The liver tissue from the control group (Figure 7A), drug group (Figure 7C),
and the three high-dose fucoidan groups (Figure 7F,I,L) exhibited a uniform and compact
appearance, with closely arranged cells. In contrast, the liver tissue from the model group
displayed significant cavitations, likely attributed to the loss of lipid droplets in the paraffin
sections. Notably, all the low and medium dose fucoidan-administered groups showed
similar microscopic appearances to the model group. These distinct observations provide
histological evidence that both the drug and high-dose fucoidan administrations effectively
prevent lipid accumulation in the liver.

2.8. Effect of Fucoidan Administration on Gut Flora Composition

The dilution curves are commonly used to depict the diversity of samples within a
group, providing insights into the sequencing data volume and species richness. When
the curve flattens out, it indicates that increasing sequencing data does not significantly
contribute to obtaining new operational taxonomic units (OTUs), thereby reflecting the
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saturation of the sequencing depth. Figure 8A illustrates that the number of OTUs rapidly
increased and then plateaued with increasing sequencing depth, indicating that the se-
quencing volume in this experiment was sufficient to capture most of the microorganisms
and reflect the basic composition of the intestinal flora in each group. Moreover, Figure 8A
shows that the high-fat diet resulted in a reduction in the diversity of the mouse intestinal
flora. Notably, the atorvastatin group exhibited the lowest diversity, suggesting that the
drug had a substantial impact on the diversity of the intestinal flora.
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Figure 8B,C demonstrate the proportional changes in gut flora for different groups. At
the phylum level, the majority of the groups fed with a high-fat diet exhibited increased
proportions of Proteobacteria and reduced proportions of Bacteroidetes. Additionally, the
atorvastatin-administered mice showed a notable decrease in the proportion of Firmicutes.
At the genus level, all the groups fed with a high-fat diet exhibited decreased propor-
tions of Helicobacter. The drug group showed an exceptional increase in Alloprevotella,
while the other high-fat diet groups showed an increased proportion of an unidentified
Lachnospiraceae genus.
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3. Discussion

This study explored the anti-hyperlipidemic effects of fucoidan components derived
from Icelandic brown algae Ascophyllum nodosum in a mouse model. We examined phys-
iological parameters, lipid profiles, and paraffin sections of liver tissues to confirm the
anti-hyperlipidemic effects of fucoidan administration. Further investigation involved
assessing the activity of oxidative stress-related enzymes to understand the mechanisms
behind fucoidan’s anti-hyperlipidemic activity. The experimental results consistently
demonstrate that fucoidan administration prevented significant reductions in the activities
of oxidative stress-related enzymes and decreased levels of the oxidative stress indicator
MDA, which had been notably increased in the model group.
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Additionally, we examined the activity of lipoprotein-metabolism-related enzymes
and found that fucoidan administration prevented significant changes in enzyme activities
observed in the model group. Specifically, it alleviated decreases in HL, LPL, and LCAT
activities while also inhibiting the increase in HMG-CoA reductase activity. HL, LPL, and
LCAT are all crucial enzymes involved in lipid metabolism. The lower levels of these
enzymes in the model group indicated impaired lipid metabolism, which was improved
by the administration of both atorvastatin and ACF-2. HMG-CoA reductase, as the rate-
limiting enzyme in lipid metabolism, catalyzes the conversion of HMG-CoA to mevalonic
acid, leading to increased cholesterol synthesis. The elevated HMG-CoA reductase level
in the model group indicated higher cholesterol synthesis, while the control group, drug
group, and ACF-2 high-dose group showed significantly lower levels, suggesting a lower
cholesterol synthesis rate in vivo. These comprehensive findings suggest that both the
drug atorvastatin and fucoidan protect the activity of lipid metabolism enzymes, maintain
higher lipid clearance rates, and achieve their anti-hyperlipidemic effects by controlling
cholesterol synthesis.

Moreover, this study considered the role of intestinal flora, as it has been reported to be
associated with the status of hyperlipidemia, and its relative abundance undergoes changes
during therapeutic treatment in both animal experiments and clinical studies [25]. Previous
research has shown that therapeutically treated mice with improved hyperlipidemic param-
eters exhibit a reduced ratio of Firmicutes/Bacteroidetes [26,27]. In our research, the drug
group displayed a lower Firmicutes/Bacteroidetes ratio compared to the other high-fat diet
groups, and AFC-2 showed a relatively decreased ratio compared to the other fucoidan
groups and the model group. This suggests that both the drug group and the AFC-2 group
may have derived some benefits from their gut flora composition. Additionally, previous
studies have also indicated that the Lachnospiraceae family increases in mice following
fecal microbial transplantation, leading to improved lipid metabolism [28,29]. In our re-
search, an unidentified Lachnospiraceae genus showed an increased relative abundance
in all high-fat diet-fed groups, except for the drug group. This suggests that the high-fat
diet may promote the proliferation of the Lachnospiraceae genus to consume fat, while
the administration of atorvastatin interrupted this natural response caused by the high-fat
diet. Notably, the drug group displayed reduced diversity in gut flora, whereas AFC-2 had
the advantage of maintaining the diversity of gut microbiota. The lower sulfated content
of AFC-2 may enhance its utilization by gut microbiota compared to its higher sulfated
counterpart, AFC-1.

In conclusion, our study demonstrates a dose-response relationship in the anti-hyperlipidemic
effect for the fucoidan derived from Icelandic brown algae Ascophyllum nodosum, whether
in its crude extract or two fractionated components. Among them, the high dose of ACF-2
showed a significant anti-hyperlipidemic effect in all measurements, presenting a signif-
icant difference compared to the model group (p < 0.05 for the final body weight and
p < 0.01 for the rest indicators) but no significant difference compared to atorvastatin. This
indicates that ACF-2’s anti-hyperlipidemic effect is comparable to atorvastatin. Fucoidan
administration was found to help maintain the activity of oxidative stress-related enzymes
and the enzymes engage in lipid metabolism. It was also found to refrain cholesterol
synthesis-related enzyme activity, and mitigates the decline in gut microbiota diversity
observed in the drug group. All of these aspects may contribute to the anti-hyperlipidemic
function of fucoidan.

However, we acknowledge that our study only investigated the anti-hyperlipidemic
mechanisms at the enzyme activity level due to the cycle, we did not explore in depth
the signaling pathways and protein expression levels in vivo such as the Nrf2 and AMPK
signaling pathways. Moreover, the simultaneous use of hyperlipidemic model mice has
some limitations, with a low number of effective animals due to feeding and handling.
These aspects will be the focus of our future research endeavors. Hyperliidemia is also
an important risk factor for the induction of inflammatory manifestations and subsequent
inflammation related chronic disorders, since a continuous and unresolved inflammatory
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response is usually observed in such hyperlipidemic conditions, which usually concludes to
atherosclerotic and athero-thrombotic events [30]. Several algae compounds have been thor-
oughly studied for their anti-inflammatory potential in such pathological conditions [31],
which also suggests that further studies on the anti-inflammatory and antithrombotic
benefits of AN-FUC in such conditions is also of great importance and will compliment the
current findings of their anti-hyperlipidemic effects, as one of the future perspectives of the
present study.

4. Materials and Methods
4.1. Biological Material and Reagents

Ascophyllum nodosum was collected from Iceland. The crude fucoidan (AN-FUC)
prepared by enzymatic hydrolysis was provided by the National Seaweed Processing
Technology Research and Development Center [32]. Monosaccharide standards (L-fucose,
L-arabinose, L-rhamnose, D-galactose, D-mannose, D-xylose, D-glucose, galacturonic acid,
glucuronic acid) were from Sigma-Aldrich Co. LLC. (Billerica, MA, USA). Reagent kits for
measuring the blood glucose level, total cholesterol (TC), triglyceride (TG), low-density
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glutathione
peroxidase (GSH-Px), super oxide dismutase (SOD), malondialdehyde (MDA), peroxidase
(POD), catalase (CAT), lipoprotein lipase (LPL), hepatic lipase (HL), HMG-CoA reductase,
lecithin cholesterol acyl transferase (LCAT) were purchased from the Nanjing Jianchen
Bioengineering Institute (Nanjing, China). HPLC mobile phase reagents were of HPLC
grade and other chemicals were of analytical grade.

4.2. Isolation, Purification, and Compositional Analysis of A. nodosum Fucoidan

To further fractionate the crude fucoidan from Ascophyllum nodosum (AN-FUC), a
DEAE-Sepharose fast flow column was employed [33]. The eluent obtained from the
column was used to determine the polysaccharide content using the phenol sulfuric acid
method [34]. The major peaks corresponding to fucoidan were collected, and the separation
process was repeated to obtain an adequate quantity of the fucoidan fraction. Subsequently,
the fractionated fucoidans underwent dialysis and freeze-drying. To determine the sulfate
content of each fucoidan fraction, the gelatin barium chloride method was used [35]. For
the analysis of monosaccharide composition, hydrolysis of the fucoidans was performed,
and the resulting PMP-labeled monosaccharides were subjected to HPLC analysis [36].

General characterization of the fucoidans was conducted using Fourier transform
infrared (FT-IR) spectroscopy. Two micrograms of each sample, which had been previously
dried to a constant weight, were mixed with dried potassium bromide and pressed into
sheets for FT-IR scanning. A Nicolet-Nexus 470 Fourier infrared spectrometer with a
scanning range from 400 to 4000 cm−1 was utilized for this analysis. Furthermore, 13C
Nuclear Magnetic Resonance (NMR) spectroscopy was employed to analyze the fucoidan
samples. A Bruker AVANCE III NMR spectrometer (Billerica, MA, USA) operating at a
frequency of 500 MHz and a temperature of 25 ◦C was utilized for the NMR analysis [37].

4.3. Animal Experiments

Male Kunming mice weighing 20 ± 2 g were obtained from the Animal Experimental
Center of Dalian Medical University (Dalian, China). The mice were acclimated to the
laboratory environment for 7 days prior to the commencement of the experiment. The
mice were housed under controlled conditions of 12-h light/dark cycle at a temperature of
25± 2 ◦C. Standard diet and water were provided to all animals throughout the acclimation
period. The mice were randomly divided into twelve groups, each consisting of eight
individuals. The groups were as follows: low-dose AN-FUC, AFC-1, and AFC-2 group
were administered 100 mg/kg·d of AN-FUC, AFC-1, and AFC-2, respectively; medium-
dose AN-FUC, AFC-1, and AFC-2 groups were administered 200 mg/kg·d of AN-FUC,
AFC-1, and AFC-2, respectively; and high-dose AN-FUC, AFC-1, and AFC-2 groups were
administered 400 mg/kg·d of AN-FUC, AFC-1, and AFC-2, respectively. Both the control
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group and the model group received saline. The drug group received atorvastatin calcium
tablets through gavage at a dose of 5 mg/kg·d. Except for the control group, all other
groups were fed a high-fat diet.

During the experiment, the body weight of each mouse was recorded daily at the same
time. After four weeks, the mice underwent a 12-h fasting period, and blood glucose levels
were measured by collecting blood samples from the lateral tail vein. Following blood
collection, the mice were euthanized, and terminal blood samples were collected. The liver
and gut of each mouse were aseptically removed and collected.

The collected blood samples were subjected to centrifugation at 3000 rpm for 15 min,
and the resulting supernatant serum was used for the determination of total cholesterol (TC),
triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein
cholesterol (LDL-C) using commercially available kits according to the provided instructions.

The livers were rinsed with sterile saline and weighed after removing excess water
using filter paper. The liver index was calculated using the following formula: liver
index % = (liver weight/body weight) × 100%. Livers from five randomly selected mice
from each group were partially sliced and fixed in 10% neutral formaldehyde. All the
rest of the liver tissues and gut samples were preserved in liquid nitrogen before further
assays and analyses. The study was approved by the Ethical Committee of Dalian Ocean
University (protocol code: DLOU20191003, 12 October 2019).

4.4. Enzyme Activity Assay

The activity of enzymes related to oxidative stress and lipoprotein metabolism was
assessed using the following methods. For the oxidative stress assay, mouse liver tissue
weighing 0.5 g was mixed with 4.5 mL of saline. The mixture was homogenized in an ice
water bath and subsequently centrifuged at 4000 rpm for 15 min. The resulting supernatant
was collected and utilized for the measurement of malondialdehyde (MDA) levels, as well
as the activities of catalase (CAT), peroxidase (POD), glutathione peroxidase (GSH-PX),
and superoxide dismutase (SOD). The measurements were performed according to the
instructions provided with the respective reagent kits. To determine the activities of key
enzymes involved in lipoprotein metabolism, liver tissue was homogenized using the
same method as mentioned above, resulting in a 10% homogenate (w/w). The activities
of lipoprotein lipase (LPL) and liver lipase (HL) were assessed using a total lipase test kit.
Additionally, the levels of lecithin cholesterol acyl transferase (LCAT) and 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMG-CoA reductase) in the liver homogenate were
measured using the ELISA method with specific kits. The experiments were conducted
following the instructions provided by the respective reagent kits, all of which were
purchased from Nanjing Jiancheng Bioengineering Institute.

4.5. Histological Observation of Liver Tissues

Liver tissues of five randomly selected mice from each group were fixed using 10% neutral
formaldehyde solution, embedded in paraffin, sectioned, and stained with hematoxylin eosin
reagent. The histological sections were observed using an inverted fluorescence microscope.

4.6. 16S rRNA High-Throughput Sequencing of the Gut Flora

Genomic DNA of the mice gut microbiota was extracted using the CTAB method ac-
cording to the manufacturer’s protocol. The V3-V4 domain of the 16S rRNA gene was ampli-
fied using primers 341F (CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGGTATC-
TAATCC). The PCR amplification product was then recovered and purified. Subsequently,
a sequencing library was constructed. The qualified libraries were sequenced using the Ion
S5™ XL sequencing platform (Thermo Fisher, Waltham, MA, USA).

4.7. Statistical Analysis

The data were presented as means ± standard deviation. In order to test the normal
distributability of the data, statistical analysis was performed using a one-way analy-
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sis of variance (ANOVA) followed by a Duncan multiple comparison test. Statistical
significance was determined at the level of p < 0.05 or 0.01 (SPSS Statistics 21.0, IBM,
New York, NY, USA).
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