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Abstract: Marine cyanobacteria are a rich source of bioactive natural products. Here, we report the
isolation and structure elucidation of the previously reported iezoside (1) and its C-31 O-demethyl
analogue, iezoside B (2), from a cyanobacterial assemblage collected at Loggerhead Key in the Dry
Tortugas, Florida. The two compounds have a unique skeleton comprised of a peptide, a polyketide
and a modified sugar unit. The compounds were tested for cytotoxicity and effects on intracellular
calcium. Both compounds exhibited cytotoxic activity with an IC50 of 1.5 and 3.0 µM, respectively,
against A549 lung carcinoma epithelial cells and 1.0 and 2.4 µM against HeLa cervical cancer cells,
respectively. In the same cell lines, compounds 1 and 2 show an increase in cytosolic calcium
with approximate EC50 values of 0.3 and 0.6 µM in A549 cells and 0.1 and 0.5 µM, respectively,
in HeLa cells, near the IC50 for cell viability, suggesting that the increase in cytosolic calcium is
functionally related to the cytotoxicity of the compounds and consistent with their activity as SERCA
(sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) inhibitors. The structure–activity relationship
provides evidence that structural changes in the sugar unit may be tolerated, and the activity is
tunable. This finding has implications for future analogue synthesis and target interaction studies.

Keywords: anticancer; intracellular calcium; marine cyanobacteria; SERCA inhibitor

1. Introduction

Calcium ions (Ca2+) regulate various cellular processes by activating gene transcrip-
tion, cell proliferation and migration [1,2]. The cytosolic levels of calcium are maintained
at sub-micromolar concentrations, while the extracellular levels are at high millimolar
concentrations. Most of the intracellular Ca2+ is stored in the endoplasmic reticulum (ER),
which is enriched in calcium-binding proteins [1]. Calcium is exchanged between the
cytosol and the ER in three different ways: channels, which allow transport from the ER to
the cytosol; exchangers of Na+/Ca2+, which use the Na+ gradient to transport Ca2+; and
pumps (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, SERCA), which transport Ca2+

against the concentration gradient into the ER [2,3]. In recent years, it has been reported
that cancer cells have altered expression of SERCA pumps, making them a potential target.
Inhibition of the SERCA pump leads to high levels of Ca2+ in the cytosol, which is toxic
and, if prolonged, results in growth arrest and apoptosis of the cells [4,5].

Over 30,000 marine natural products have been identified, with many of them demon-
strating some type of biological activity and marine cyanobacteria emerging as an important
source of drug leads [6–8]. To date, there are several natural products that inhibit the dif-
ferent isoforms of SERCA, including thapsigargin, cyclopiazonic acid, biselyngbyasides,
kurahyne and iezoside (1) [9–17]. Thapsigargin, a sesquiterpene lactone isolated from
Thapsia garganica, is a potent SERCA inhibitor that binds irreversibly and results in cell
apoptosis [4,18]. An analogue of thapsigargin, mipsagargin is currently in clinical trials
against hepatocellular carcinoma [18–21]. Biselyngbyasides are a family of cyanobacterial
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secondary metabolites that inhibit SERCA. The binding site of biselyngbyasides was identi-
fied through co-crystallization with the Ca2+ pump and was shown to be in a distinct site
from that of thapsigargin [22].

Iezoside (1) (Figure 1) was previously isolated from a filamentous marine cyanobac-
terium collected from Ie Island, Okinawa, Japan, that was identified based on morphology
as Leptochromothrix valpauliae. Molecular phylogenetic analysis indicated that while the
cyanobacterium was related to Leptochromothrix spp., it was phylogenetically distinct and
likely represented a new species (Figure S1 in [13]). Iezoside consists of three moieties:
a polyketide unit, a peptide unit and a rhamnose sugar. The planar structure, double
bond geometry and relative configuration of the sugar unit were determined by NMR. The
absolute configuration of the molecule was determined by amino acid analysis, Mosher’s
method for the sugar moiety and circular dichroism for the polyketide unit. The uncertain
C18–C19 configuration required the total synthesis (16 steps LLS, 4.4% total yield) to con-
clusively assign the complete 3D structure. Using computational methods and electronic
circular dichroism (ECD), the compound was limited to two potential isomers, 18R,19R or
18S,19R. The total synthesis indicated that 1 had the 18R,19R configuration. Iezoside (1)
was identified as a SERCA inhibitor that promotes cell cycle delay and induces apoptosis
pathways, with an IC50 for cell viability of 6.8 nM against HeLa cells and a Ki of 7.1 nM on
SERCA1a [13].

We previously reported the discovery of lagunamide D (3) (Figure 1), a 26-membered
macrocycle from a collection of marine cyanobacteria comprised of mainly Dichothrix sp.
and Lyngbya sp. Compound 3 was shown to be a mitochondrial cytotoxin, with potent an-
tiproliferative activity and an IC50 of 7.1 nM against A549 lung adenocarcinoma cells [23,24].
The same extract and fraction that yielded 3 was further investigated based on its NMR pro-
file. Here, we report the isolation of iezoside (1) and a new, O-demethyl analogue, iezoside
B (2) (Figure 1) [13]. Both compounds were isolated in sub-milligram quantities. Iezoside
(1) was four-fold more abundant than iezoside B (2), and logically, we first determined the
structure of the major compound, which provided clues about the structural differences
of the new minor analogue. Our structure determination of iezoside B (2) relied on the
NMR comparison in DMSO-d6, which required us to first conclusively demonstrate that
the structures (except the methylation pattern) are identical. Since iezoside (1) from Japan
was shown to be a cytotoxic and potent SERCA inhibitor, 2 was tested for its cytotoxicity
and its effect on intracellular calcium. We compared the potencies of 1 and 2 side-by-side
to interrogate the effect of the methylation pattern in the sugar moiety on its activity.
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Figure 1. Structures of iezoside (1), iezoside B (2) and lagunamide D (3).

2. Results
2.1. Isolation and Structure Elucidation

The cyanobacterial assemblage was lyophilized and extracted using 1:1 EtOAc/MeOH
followed by 1:1 EtOH:H2O and further partitioned between EtOAc and H2O, followed by
partitioning the polar layer between n-BuOH and H2O. The EtOAc soluble portion was
further subjected to fractionation using reversed-phase chromatography to yield 0.8 mg of
iezoside (1) and 0.2 mg of iezoside B (2).
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Iezoside (1) was isolated as a colorless oil with a molecular formula of C37H59N3O7S
([M+H]+ 690.4104, calcd. for C37H60N3O7S, 690.4152) as determined by HRESIMS. The
structure was established in three parts by NMR analysis in DMSO-d6, while data for
iezoside (1) from the Okinawan cyanobacterium were published in acetone-d6 after we had
completed our analysis [13]. Briefly, a tripeptide unit was determined by COSY and HMBC
correlations as Thz-Leu-N-Me-Ala (Table 1, Figure 2). The broadening of the H-10 (δH 4.83),
H-11 (δH 1.29) and H-12 (δH 2.78) as well as the lack of HSQC signals were observed in
DMSO-d6, similarly to the published 1 [13]. The broadening was attributed to the slow
conformational exchange of the N-Me-Ala residue. The polyketide unit was established
using the COSY and HMBC correlations in Figure 2 and Table 1, similarly as described [13].
H-21 (δH 6.14) had to be part of a trans double bond (J = 15.7 Hz) with H-20 (δH 5.29).
H-16 (δH 6.09) was part of a conjugated diene with s-trans configuration (J = 11.2) with
H-15 (δH 6.32), which also showed HMBC correlation to C-26 (δC 14.3). To complete the
polyketide unit, H-26 (δH 1.83) showed HMBC correlations to C-14 (δC 130.2) and C-13
(δC 173.0). The two units were connected based on the HMBC correlations of H-26 and
H-12 (δH 2.78) to C-13. Finally, the sugar moiety was determined as a 2,3-O-dimethyl-
methylpentose, based on COSY and HMBC correlations and connected to the rest of the
structure based on the HMBC correlations of H-30 (δH 4.69) to C-19 (δC 78.2), completing
the planar structure.
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Figure 2. Key COSY, HMBC and NOESY data for iezoside (1).

Iezoside B (2) was isolated from the same fraction as iezoside (1) and had a molecular
formula of C36H57N3O7S as determined by HRESIMS ([M+H]+ 676.3990 calcd. 676.3954)
with 10 degrees of unsaturation. Compound 2 differs by 14 mass units (CH2) from 1, which
is attributed to the lack of the methoxy group at C-31 (Figures 1–3), as detailed below.

The structure of 2 was established based on 1D and 2D NMR analysis in DMSO-d6
(Table 1, Figure 3). The thiazole ring was established based on characteristic 1H and 13C
NMR chemical shifts (Table 1), coupled with COSY and HMBC data. H-1 (δH 7.70) showed
a COSY correlation to H-2 (δH 7.58) and an HMBC correlation to C-3 (δC 173.6), supporting
the thiazole structure. The HMBC correlation of H-4 (δH 5.19) to C-3 extended the structure
by a leucine unit, based on the COSY correlations of H-4 to 4-NH (δH 8.56) and to H-5
(δH 1.77) and of H-5 to H-6 (δH 1.65). H-6 showed COSY correlations to H-7 (δH 0.91) and
H-8 (δH 0.87).
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The adjacent N-Me alanine unit was connected based on the HMBC correlation of H-11
(δH 1.28) and 4-NH to C-9 (δC 170.6). Similarly, as observed and reported for 1, broadening
of the proton signals occurred, and the unit also did not show correlations in the HSQC
spectrum [13].

The polyketide unit (C13–C29) was established as three spin systems with three
trisubstituted double bonds and one disubstituted double bond that could be connected
due to HMBC correlations. The first unit (C22–C25) was established from the COSY
correlations of H-25 (δH 0.93) to H-24 (δH 2.07) and of H-24 to H-23 (δH 5.48), which
belonged to a trisubstituted double bond. The HMBC from H-23 to C-29 (δC 12.1) and of
H-29 (δH 1.63) to the non-protonated C-22 (δC 131.8) established that C-22 was methylated.

The COSY correlations of H-21 (δH 6.11) to H-20 (δH 5.26), of H-20 to H-19 (δH 3.91),
of H-19 to H-18 (δH 2.43) and finally of H-18 to H-28 (δH 1.10) established a linear 5-carbon
chain (methylated C18–C21), which was connected to the methylated C22–C25 unit as
shown by HMBC correlation of H-29 to C-21 (δC 138.0). E-configuration of the C20–C21
double bond was confirmed by proton–proton coupling constant (J = 15.7 Hz).

The remaining α,β,γ,δ-unsaturated carbonyl system of the polyketide unit, consisting
of two trisubstituted double bonds, was connected based on the HMBC correlations of
H-18 and H-27 (δH 1.64) to the quaternary C-17 (δC 142.2). H-27 showed further HMBC
correlations to C-16 (δC 121.0), and H-16 (δH 6.10) showed a COSY correlation to H-15
(δH 6.31), which in turn has an HMBC correlation to C-26 (δC 14.6). Finally, H-26 (δH 1.82)
showed an HMBC correlation to C-14 (δC 130.4) and to C-13 (δC 173.1), which positioned
the polyketide unit next to the N-Me alanine unit based on the HMBC correlation of H-12
(δH 2.78) to C-13. The configuration of the conjugated diene was established by NOESY
(Figure 2).

The remaining unit was determined as a 3-O-methyl-methylpentose based on the
COSY correlations of H-30 (δH 4.55) to H-31 (δH 3.75) and of that to H-32 (δH 3.12), which
in turn had a COSY correlation to H-33 (δH 3.28), and that to H-34 (δH 3.48), which finally
had a COSY correlation to H-35 (δH 1.13). The HMBC correlation of H-37 (δH 3.31) to C-32
(δC 80.7) guided the positioning of the O-Me, while the HMBC correlation of H-30 to C-19
(δC 78.0) completed the planar structure.
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Table 1. NMR data for iezoside and iezoside B (2) in DMSO-d6.

Iezoside (1) Iezoside B (2)

Position δH, mult., J (Hz) a δC
b HMBC COSY NOESY δH, mult., J (Hz) a δC

b HMBC COSY NOESY

1 7.70, d (3.3) 142.1 2, 3 2 7.70, d (3.3) 142.2 2, 3 2
2 7.58, d (3.3) 119.1 1 1 7.58, d (3.3) 119.4 1
3 173.6 173.6
4 5.19, m 49.2 3, 5 5, 8-NH 5.19, m 49.2 3, 5 5, 8-NH

5 1.77, m 43.2 4 4, 6 1.77, m 43.2 3, 4, 6, 7,
8 4, 6

6 1.65, m 24.4 7, 8 1.65, m 24.3 6, 7, 8
7 0.90, d (6.7) 23.0 5, 6, 8 6 0.91, d (7.0) 22.9 5, 6, 8 6
8 0.87, d (6.5) 21.4 5, 6, 7 6 0.87, d (6.5) 21.3 5, 6, 7 6

NH 8.58, d (8.4) 9 4 8.56, d (8.5) 9 4
9 170.5 170.6
10 4.83, br c 11 4.80, br c

11 1.29, br d (7.2) c 9 10 1.28, br d (7.1) c 9 12
12 2.78, s c 13 2.78, s c 13 11
13 173.0 173.1
14 130.2 130.4

15 6.32, d (11.2) 121.0 13, 17,
26 16 27 6.31, d (11.2) 121.0 13, 26 16 27

16 6.09, d (11.2) 121.1 14, 18,
27 15 18, 26,

28 6.10, d (11.2) 121.0 18, 27 15 18, 26

17 142.6 142.2

18 2.43, p (6.7) 47.7 16, 17,
19, 20 19, 28 2.43, p (6.7) 47.7 16, 17,

19, 28 19, 28 16

19 3.95, t (8.0) 78.2 18, 21,
28, 30 18, 20 27 3.91, t (8.0) 78.0 18, 21,

28, 30 18, 20 21, 27,
28, 30

20 5.29, dd (15.7, 8.4) 124.4 22 19, 21 29 5.26, dd (15.7, 8.4) 124.6 22 19, 21 29

21 6.14, d (15.7) 138.1 19, 22,
23, 29 20 6.11, d (15.7) 138.0 19, 22,

23, 29 20 19

22 131.8 131.8

23 5.49, t (7.2) 134.7 21, 24,
29 24 24 5.48, t (7.2) 134.9 21, 24,

25, 29 24 24

24 2.08, m 21.0 22, 23,
25 23, 25 2.07, m 20.9 22, 23,

25 23, 25 23, 29

25 0.93, t (7.5) 14.0 23, 24 24 0.93, t (7.5) 13.8 23, 24 24
26 1.83, s 14.3 13, 14 1.82, s 14.6 13, 14 16

27 1.65, s 14.8 16, 17,
18 1.64, s 14.3 16, 17,

18 15, 19

28 1.10, d (7.0) 15.4 17, 18,
19 18 1.10, d (7.0) 15.5 17, 18,

19 18

29 1.64, s 12.1 21, 22 1.63, s 12.1 21, 22,
23 20 24

30 4.69, d (1.8) 93.0 19, 32,
34 31 31 4.55, br s 96.2 19, 31,

32, 34 31 19, 31

31 3.47, m 76.7 32, 33,
36 30 30 3.75, m 66.6 30, 32 30, 32

31-OH - 4.71, d (4.5) 30, 31,
32 37

32 3.21, m 81.0 31 34 3.12, dd (9.3, 3.2) 80.7 33, 36 31, 33 31
33 3.21, m 70.9 3.28, m 70.6 34, 35 32, 34

33-OH 4.97, br 4.87, d (5.5) 33, 34,
35

34 3.47, m 69.0 32, 33 35 32, 36 3.48, dq (11.8, 6.0) 68.9 33, 35 35
35 1.12, d (6.2) 18.0 33, 34 34 1.13, d (6.0) 17.9 33, 34 34 34
36 3.27, m 58.3 31 34 -
37 3.32, m 56.8 32 3.31, m 56.2 32

a Recorded at 600 MHz; b Recorded at 150 MHz; c These signals were not detected.

The configuration of C-20/C-21 and C-15/C-16 for both 1 and 2 was determined as
trans and s-trans, respectively, based on the J coupling constants (15.7 Hz and 11.2 Hz,
respectively). The absolute configuration of C-18/C-19 was determined by comparison of
its circular dichroism (CD) spectra to the literature, as shown in Figure 4 [13]. Compound 2
shows a similar Cotton effect as 1. Iezoside (1) shows a negative Cotton effect at 258 nm
(∆ε −3.6) and a positive at 234 nm (∆ε +5.9), while iezoside B (2) shows a negative Cotton
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effect at 272 nm (∆ε −1.2) and a positive at 232 nm (∆ε +8.9). According to the published
data for 1, the C18/C19 configuration would be either 18R,19R or 18S,19R [13]. The
NMR data for 1 was initially collected in DMSO-d6 and later compared and matched to
the literature values for iezoside (1) in acetone-d6 as the planar structures and relative
configuration of the compounds were identical (Figure S8, Table S1) [13]. By comparison
of the 1H NMR spectra, the isolated compound matched the natural iezoside and not
the 18S,19R-unnatural analogue; therefore, the absolute configuration was determined as
18R,19R [13]. The key differences between the two diastereomers were the H-27 and H-29
shifts as well as the upfield shift of the H-28 from δH 1.12 to δH 0.96. Coupling constants
and NOESY data supported the relative configuration of the sugar moiety as rhamnose
(Figures 2 and 3), indicating the presence of 2,3-O-dimethyl-α-l-rhamnose in 1 and 3-O-
methyl-α-l-rhamnose in 2. For 1, the sugar moiety was determined as rhamnose using
the coupling constant between H-30 and H-31 (J 1.8 Hz) as well as the NOE correlations
between H-31/H-34 and H-32/H-34. For 2, the relative configuration was established
using the coupling constant of H-34 to H-33 (J 11.8 Hz), and the NOE correlations between
H-31/H-32 and H-31/H-30. H-30 is a broad singlet, indicating a small coupling constant
to H-31 and further supporting the relative configuration. Amino acid analysis following
ozonolysis and acid hydrolysis revealed L-Leu and N-Me-Ala as in published 1 [13]. Finally,
the optical rotation ([α]20

D = +18.2 (c 0.05, CHCl3)) was compared to the reported data
for 1 ([α]25

D = +56 (c 0.38, CHCl3)), [13] suggesting the same absolute configuration. The
data for 2 ([α]20

D = +18.7 (c 0.013, CHCl3)) matched closely and in sign with those of 1,
suggesting 2 has the same absolute configuration as 1 [13].
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2.2. Cytotoxicity and Effect on Intracellular Calcium

Since compounds 1 and 2 were isolated from the same fraction as the cytotoxic la-
gunamide D (3), they were originally tested for their cytotoxicity against A549 cells as
described for 3 [23]. Iezoside (1) and B (2) were shown to possess micromolar activity
against A549 cells. Iezoside (1) was shown to be two-fold more active than 2 with IC50
values of 1.5 and 3.0 µM, respectively (Figure 5A). Both compounds were shown to be
non-cytotoxic against primary human small airway epithelial cells (HSAEC), showing over
70% viability at the highest tested concentration (10 µM) compared to the ~20% shown
in the A549 line (Figure 5D), suggesting a potential preference for lung cancer cells over
normal small airway epithelial cells. Thapsigargin showed a similar reduced cytotoxicity
in HSAEC as shown in Figure S20.

The antiproliferative activity of 1 was originally observed in HeLa cells, concomitant
with a change in morphology, an increase in cells in G1 phase and a decrease in cells
in S phase, indicating a cell cycle delay [13]. Furthermore, 1 was tested in 39 human
cancer cell lines by the Japanese Foundation for Cancer Research 39 (JFCR39), and the
fingerprint showed similarities to that of thapsigargin and A23187. Iezoside (1) shows a
similar phenotype in HeLa cells as thapsigargin and cyclopiazonic acid, both of which
are SERCA inhibitors [14,16,17]. To further investigate that SERCA was the presumptive
functional target of 1, the compound was evaluated for its inhibitory effect of SERCA1a via



Mar. Drugs 2023, 21, 378 7 of 12

a coupled enzyme assay and downstream effect on the expression of cell cycle regulation
and apoptosis proteins [13].
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Figure 5. Biological activities of 1 and 2. (A,E) Antiproliferative effect against A549 cells and against
HeLa cells using the MTT assay after 48 h treatment. (B,F) Effect of 1 on intracellular calcium
in A549 cells and HeLa cells. (C,G) Effect of 2 on intracellular calcium in A549 and HeLa cells.
(D,H) Antiproliferative effect against HSAEC and against primary cervical epithelial cells using the
MTT assay after 48 h treatment. All experiments were performed in n = 3.

With the prior knowledge of 1 being a SERCA inhibitor, both compounds were tested
for their effect on cytosolic calcium oscillations in A549 cells, alongside thapsigargin. An
increase in cytosolic calcium was observed near the IC50 for 1 and 2 (0.32 and 1 µM) with
an approximate EC50 of 0.3 µM and 0.6 µM, respectively (Figure 5B,C, following the same
trend as the antiproliferative activity for both compounds (Table 2).
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Table 2. Cell viability IC50 values and approximate EC50 values for intracellular calcium flux for
iezoside (1), iezoside B (2) in µM.

A549 HeLa HSAEC Primary Cervical
Epithelial Cells

IC50 EC50 IC50 EC50 IC50 IC50

Iezoside (1) 1.5 ± 0.5 ~0.3 1.0 ± 0.4 ~0.1 >10 0.02 ± 0.01
Iezoside B (2) 3.0 ± 0.9 ~0.6 2.4 ± 0.9 ~0.5 >10 0.05 ± 0.01

The compounds were also tested for their cytotoxicity in HeLa cells, similarly as
described in the literature [13]. The compounds showed an IC50 of 1.0 and 2.4 µM, respec-
tively, at 48 h (Figure 5E), with compound 1 being 2.3-fold more potent than 2. Our IC50
values are somewhat higher than reported (6.8 nM), although the precise experimental
condition differed, including incubation time (72 h) and, possibly, genetic variations in the
cell line [13]. Both compounds were shown to reduce cell viability of primary cervical ep-
ithelial cells with an IC50 of 0.02 and 0.05 µM, respectively (Figure 5H), while thapsigargin
was two-fold more potent against primary cervical epithelial cells compared to HeLa cells
(0.06 ± 0.04 µM in HeLa cells and 0.03 ± 0.01 µM in the primary cells). This data suggests
substantial cell type-dependent differences and that the preference for cancer cells over
normal cells cannot be generalized. The spindle-like morphology of HeLa cells that was
previously observed for 1 was also noticeable in our experiments (Figure 6A), suggesting
that 2 has a similar mechanism of action [13]. At the tested concentration, 26.5 ± 1.0% of
the cells treated with 1 and 14.3 ± 0.4% of the cells treated with 2 showed the spindle-like
morphology after 24 h of exposure (Figure 6B). In the calcium assay using HeLa cells, a
similar fold difference was detected with activity at an approximate EC50 of 0.1 µM and
0.5 µM for 1 and 2, respectively (Figure 5F,G, Table 2).

The effective concentration observed for both in the intracellular calcium assay is in
the same order of magnitude as the viability assay and shows the same fold difference
between the two compounds. These data indicate that the O-methyl in position C-31 is
not essential for the activity of the compound class (Figure 5B,C,E,F) (Table 2), but that the
C-31 O-Me group has incremental contribution to the overall activity at the level of target
engagement and calcium flux as well as antiproliferative activity. This structure-activity
relationship (SAR) suggests that the activity is potentially tunable through modification in
the sugar moiety.
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3.2 µM of thapsigargin (24.5 ± 2.1% of the cells show spindle like morphology), 10 µM of 1
(26.5 ± 1.0% of the cells show spindle like morphology), 3.2 µM of 2 (14.3 ± 0.4% of the cells show
spindle like morphology). Scale bar 100 µm. (B) Quantification of morphological changes by visual
scoring. Statistical analysis was performed using one-way ANOVA (**** p < 0.0001). All experiments
were performed in triplicate (n = 3). For each individual experiment, three images/well were collected
and counted with a total of 150–200 cells/image for 1, 2 and thapsigargin, and 300–350 cells/image
for the vehicle control.

3. Materials and Methods
3.1. General Experimental Procedures

The optical rotations were recorded on a Rudolph Research Analytical Autopol III
automatic polarimeter. NMR data were collected on a Bruker Avance II 600 MHz, high
resolution 5-mm cryoprobe spectrometer operating at 600 MHz for 1H and 150 MHz for
13C, using residual solvent signals (δH 2.50; δC 39.5 ppm DMSO-d6, δH 2.50 ppm (CD3)2CO)
as internal standards. The edited HSQC and HMBC experiments were optimized for
1JCH = 140 Hz nJCH = 8 Hz, unless indicated otherwise (3 Hz HMBC). HRMS data were
obtained using a Bruker Daltonics, Impact II QTOF with electrospray ionization (ESI).
Chiral analysis was performed using an Agilent 6230 ESI-ToF and an Applied Biosystems
3200 QTRAP triple quad/linear trap. The effect on intracellular calcium was measured
using a Molecular Devices Flexstation instrument. Circular Dichroism data were collected
on a Chirascan™ Circular Dichroism Spectrometer (Applied Photophysics, Surrey, UK),
with the Pro-Data Chirascan and Pro-Data viewer software 4.7.0.

3.2. Biological Material

The cyanobacterial tufts (DRTO 85) were collected from the shallow reef at Loggerhead
Key, FL, on 9 May 2015. The cyanobacterial assemblage was microscopically identified as
a mixture of Dichothrix sp., Lyngbya sp. and Rivularia sp. [23]. The Smithsonian Marine
Station, Fort Pierce, FL, USA, maintains a voucher.

3.3. Extraction and Isolation

The cyanobacterium was lyophilized and extracted using 1:1 EtOAc:MeOH followed
by 1:1 EtOH:H2O to provide 9.22 g and 11.88 g of extract, respectively. The extract was
partitioned between EtOAc and H2O, followed by partitioning the polar layer between
n-BuOH and H2O. The EtOAc fraction was subjected to a silica column using hexanes
and increasing amounts of EtOAc, followed by increasing amounts of MeOH in EtOAC to
give thirteen fractions. The SiO2 fraction eluting with 25% MeOH in EtOAc was further
purified using a snap C18 column with increasing amounts of MeOH in H2O. The fraction
eluting at 100% MeOH was further purified using a H2O/MeOH gradient (80–90% for
30 min, followed by 100% over 15 min) by HPLC (Phenomenex Synergi 4 µHydro-RP 80 Å,
250 × 10 mm, 4 µm; flow rate, 2.0 mL/min; UV detection at 200 nm and 220 nm), from
which the fractions at tR 18 min and tR 24 min were further purified. The first fraction was
purified using a H2O/ACN gradient (60–70% for 30 min, followed by 100% over 10 min) by
HPLC (Phenomenex Synergi 4µ Hydro-RP 80 Å column, 250 × 10 mm, 4 µm UV detection
at 200 nm, 2 mL/min) and yielded iezoside B (2) (0.2 mg) at tR 25.5 min. The second fraction
was further purified using a H2O/ACN gradient (60–80% for 30 min, followed by 100%
over 10 min) by HPLC (Phenomenex Synergi 4µ Hydro-RP 80 Å column, 250 × 10 mm,
4 µm UV detection at 200 nm, 2 mL/min) which yielded iezoside (1) (0.8 mg) at tR 30.1 min.

Iezoside (1): colorless oil, [α]20
D = +18.2 (c 0.05, CHCl3), reported [α]25

D = +56 (c 0.38,
CHCl3), [13] CD (MeOH) ∆ε234 +5.9, ∆ε258 −3.6, 1H NMR, 13C NMR, COSY, and HMBC
data in DMSO-d6, see Table 1; 1H NMR data in acetone-d6, see Table S1; HRESIMS m/z
([M+H]+ 690.4104 (calcd. for C37H60N3O7S, 690.4152).

Iezoside B (2): colorless oil, [α]20
D = +18.7 (c 0.013, CHCl3), CD (MeOH) ∆ε232 +8.9,

∆ε272 −1.2, 1H NMR, 13C NMR, COSY, and HMBC data in DMSO-d6 see Table 1; HRESIMS
m/z ([M+H]+ 676.3990 (calcd. for C36H58N3O7S, 676.3954).
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Ozonolysis and acid hydrolysis: A portion (50 µg) of 1 and 2 were dissolved in 3 mL
of DCM, and O3 was bubbled in at −78 ◦C for 20 min. The samples were dried under
nitrogen and were subjected to oxidative workup (2:1 FA:H2O2, 70 ◦C, 30 min). The
samples were dried under vacuum, subjected to acid hydrolysis (6 N HCl, 110 ◦C, 18 h)
and then evaporated to dryness. The samples were reconstituted in 50 µL H2O and
subjected to chiral analysis using three separate conditions. Condition 1: (Chirobiotic
TAG (4.6 mm × 250 mm), Supelco; solvent, MeOH −10 mM NH4OAc (40:60); flow rate,
0.5 mL/min; detection by ESIMS in positive mode)]. The retention times (tR, min) were
as follows: L-Leucine (8.7 min). Both N-Me-L-Alanine (9.9 min) and N-Me-D-Alanine
(47.0 min) were observed at a 1:5 ratio, indicating the presence of N-Me-D-Alanine. The
authentic standards eluted at L-Leucine (8.7 min), D-Leucine (15.21 min), N-Me-L-Alanine
(9.9 min), N-Me-D-Alanine (47.0 min).

3.4. Cell Viability Assay

A549 (American Type Culture Collection, ATCC), HSAEC (ATCC), HeLa (ATCC) and
primary cervical epithelial (ATCC) cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum at 37 ◦C humidified air and
5% CO2. Cells were seeded (7500/well (A549, HSAEC) and 2000/well (HeLa, primary
cervical epithelial cells)) in 96-well plates and allowed to attach overnight before being
treated with the compounds or the solvent control (0.5% DMSO). The cells were incubated
for 48 h followed by addition of MTT dye, according to the manufacturer’s protocol
(Promega). IC50 values were calculated using GraphPad prism software 9.2.0.

3.5. HeLa Cell Morphology Study

HeLa (ATCC) cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum at 37 ◦C humidified air and 5% CO2. Cells were
seeded 700/well in 384-well plates and allowed to attach overnight before being treated
with the compounds or the solvent control (0.5% DMSO). The cells were incubated for 24 h
followed by observation under the microscope to quantify the morphological changes.

3.6. Intracellular Calcium Assay

A549 and HeLa cells were seeded (10,000/well and 20,000/well, respectively) over-
night in black plates. The cells were allowed to attach overnight before the compounds
or the solvent control (0.5% DMSO) was added. The FLIPR calcium 6 assay kit was used
following the manufacturer’s protocol (FLIPR Ca 6, Molecular Devices, San Jose, CA, USA).
For the calculation of the approximate EC50 values, the vehicle control was used as the
minimum response, and the maximum detected response before saturating the detector
was used as the maxima.

4. Conclusions

In conclusion, we report the isolation of iezoside (1) and iezoside B (2), the second
member of the peptide-polyketide hybrid glycoside, from a collection of a marine cyanobac-
terial assemblage from Florida. Iezoside (1) was previously isolated from Okinawa, Japan,
and now isolated from the Dry Tortugas, Florida, indicating the broad distribution of the
compound. Lagunamide D (3), also isolated from the same extract, was proven to be a
mitochondrial cytotoxin, which further supports the richness of cyanobacterial extracts [24].
Compound 2 shows similar but slightly weaker activity than 1 in the assays performed,
indicating that the methylation on the sugar moiety only minorly impacts the biological
effect. The SAR provides evidence that structural changes in the sugar unit may be tolerated
and that the activity of this compound class is tunable. This finding has implications for
future analogue synthesis and potential target interaction studies.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/md21070378/s1, Figures S1–S15: 1D/2D NMR data of iezoside and
iezoside B in DMSO-d6 and acetone-d6; Figures S16–S21: Bioassay data for thapsigargin, Table S1:
Comparison of experimental and literature 1H NMR data of iezoside in acetone-d6.
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