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Abstract: Anti-lipopolysaccharide factor 3 (ALFPm3) possesses a wide antimicrobial spectrum and
high antibacterial and viral activities for broad application prospects in the aquaculture industry.
However, the application of ALFPm3 is limited by its low production in nature, as well as its low
activity when expressed in Escherichia coli and yeast. Although it has been proven that its secretory
expression can be used to produce antimicrobial peptides with strong antimicrobial activity, there is
no study on the high-efficiency secretory expression of ALFPm3 in Chlamydomonas reinhardtii. In this
study, signal peptides ARS1 and CAH1 were fused with ALFPm3 and inserted into the pESVH vector
to construct pH-aALF and pH-cALF plasmids, respectively, that were transformed to C. reinhardtii JUV
using the glass bead method. Subsequently, through antibiotic screening, DNA-PCR, and RT-PCR,
transformants expressing ALFPm3 were confirmed and named T-JaA and T-JcA, respectively. The
peptide ALFPm3 could be detected in algal cells and culture medium by immunoblot, meaning that
ALFPm3 was successfully expressed in C. reinhardtii and secreted into the extracellular environment.
Moreover, ALFPm3 extracts from the culture media of T-JaA and T-JcA showed significant inhibitory
effects on the growth of V. harveyi, V. alginolyticus, V. anguillarum, and V. parahaemolyticus within 24 h.
Interestingly, the inhibitory rate of c-ALFPm3 from T-JcA against four Vibrio was 2.77 to 6.23 times
greater than that of a-ALFPm3 from T-JaA, indicating that the CAH1 signal peptide was more helpful
in enhancing the secreted expression of the ALFPm3 peptide. Our results provided a new strategy for
the secretory production of ALFPm3 with high antibacterial activity in C. reinhardtii, which could
improve the application potentiality of ALFPm3 in the aquaculture industry.

Keywords: antimicrobial peptide; Chlamydomonas reinhardtii; anti-lipopolysaccharide factor 3; secretory
expression; arylsulfatase 1 signal peptide; carbonic anhydrase 1 signal peptide

1. Introduction

The abuse of antibiotics leads to the frequent occurrence of drug-resistant microor-
ganisms and brings irreversible losses in the aquaculture industry [1,2]. The prohibition of
the addition of antibiotics in breeding feed is a consensus. Antimicrobial peptides (AMPs)
originally found in insects [3] have become the perfect substitutes for antibiotics due to their
broad antimicrobial spectrum, strong antibacterial activity, and low susceptibility to drug
resistance [4–6]. As one cluster of the known AMPs, anti-lipopolysaccharide factors (ALF)
firstly found in Limulus polyphemus displayed high antibacterial activity [7]. In recent years,
it was reported that the anti-lipopolysaccharide factor 3 (ALFPm3) from Penaeus monodon
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with a lipopolysaccharide binding domain (LBD) had strong antibacterial activity against
common aquaculture pathogenic bacteria, such as Vibrio harveyi, Vibrio parahaemolyticus,
and Staphylococcus aureus, at a very low concentration (0.77 µM), showing its potential for
application in the aquaculture industry [8–10]. ALFPm3 is commonly produced via genetic
engineering due to its low yield from natural sources. However, ALFPm3 is difficult to
express in Escherichia coli because of its high antimicrobial activity against E. coli [8,11].
Although ALFPm3 could be expressed in P. pastoris, its antibacterial activity is affected
by excessive glycosylation in P. pastoris [12,13]. With lots of advantages for industry, such
as short growth cycle, posttranslational modification, low and cheap nutritional require-
ments, and efficient large-scale culture techniques [14–16], microalgae have been received
widespread attention for their potential to be a factory to produce valuable components.
Currently, studies on microalgae are mainly focused on Chlamydomonas reinhardtii, Chlorella
vulgaris, Phaeodactylum tricornutum, and so on. However, in Chlorella and P. tricornutum, the
expression of exogenous genes is unstable and the transformation efficiency is low [17,18].
Differently, as a model species, genetic manipulation toll kits were well developed in
C. reinhardtii [19]. In addition, C. reinhardtii has the advantages of high photosynthesis
efficiency, no endotoxin, and reliable industrial cultivation system [20]. It was reported
that several medicinal proteins, such as the RBD vaccine [21,22], IFN-α [23], and human
interleukin 2 [24], were successfully expressed in C. reinhardtii, indicating that C. reinhardtii
is an ideal platform for the production of pharmaceutical proteins.

Until now, the genetic transformation of foreign genes in the nuclei, chloroplasts,
and mitochondria of C. reinhardtii has been reported. However, target products were
mainly accumulated within cells. In general, the extracellular secretory expression system
can help secrete proteins into culture media, providing convenience for protein isolation,
purification, and industrial application [25,26]. Moreover, glycosylation modification
during the secretion process also facilitates the stability of the protein structure [27,28]. It is a
pity that only a few studies on the secretion of proteins have been conducted on C. reinhardtii.
Nowadays, secretory expression is mainly achieved through signal peptides (SPs), which
are located at the N-terminal of proteins and carry protein secretory information to mediate
the secretion process. Different SPs perform differently in the secretion and production of
recombinant proteins. For example, a 10-fold difference on the secretion of the mCherry
fluorescent protein was observed among more than 2000 signal peptides [29]. Even more
significantly, a 100-fold difference in the protein secretion in CHO cells was found among
17 signal peptides [30]. Therefore, finding effective SPs is important for the development of
the secretory expression system in C. reinhardtii.

Previously, it was reported that over 95% of the xylanase 1 produced in C. reinhardtii
was successfully secreted into the culture medium by inserting arylsulfatase 1 (ARS1) into
the coding region of xyn1 [27]. Additionally, the secretion of luciferase in C. reinhardtii was
increased by nearly 84% when using carbonic anhydrase 1 (CAH1) [31]. Therefore, ARS1
and CAH1 signal peptides have a great potential in mediating the secretion of ALFPm3 in
C. reinhardtii.

In this study, ARS1 and CAH1 were fused with ALFPm3 to construct plasmids pH-
aALF and pH-cALF, respectively, which were then transferred into the nuclear genome of
C. reinhardtii using the glass bead method. Transformants were identified through DNA-
PCR, RT-PCR, and immunoblot analysis. Furthermore, their ability to inhibit aquaculture
pathogenic bacteria was also evaluated. Results showed that ALFPm3 could be secreted
into medium with the help of the ARS1 signal peptide and the CAH1 signal peptide. The
protein extracts from the medium showed high antibacterial activity towards aquaculture
pathogenic bacteria such as Vibrio harveyi, Vibrio alginolyticus, Vibrio anguillarum, and Vibrio
parahaemolyticus. This study provides a new idea for the highly efficient expression and
secretion of AMPs in C. reinhardtii.
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2. Results
2.1. Design of ALFPm3 Expression Cassette

Based on the codon preference of the C. reinhardtii nuclear genome, the ALFPm3 gene
from P. monodon (Genbank number JQ256520) was optimized and its GC content was
increased from 56% to 68%. The signal peptides ARS1 (21aa: MGALAVFAVACLAAVAS-
VAHA) and CAH1 (23aa: MARTGALLLVALALAGCAQACIY) were fused with ALFPm3 at
the N-terminal, respectively. The 3 × HA tag was connected to the C-terminal of ALFPm3
for subsequent protein identification. The psaD promoter and psaD terminator with high ef-
ficiency in expressing heterologous genes in C. reinhardtii [32,33] were used to express target
gene. The expression cassette of the ble given transformants with the bleomycin/zeocin-
resistance was used as the selection maker [19,34]. To screen positive transformants at
molecular level, the psaD-P and psaD-T primer set, located in the psaD promoter and psaD
terminator region, was used. The Fa and ALF3R1 and the Fc and ALF3R2 primer sets,
located in the signal peptide region and ALFPm3 coding region, were used for RT-PCR to
confirm the expression of ALFPm3 in transformants (Figure 1).
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Figure 1. The diagram of the “ARS1-ALFPm3” and “CAH1-ALFPm3” expression cassettes. (a) “ARS1-
ALFPm3” expression cassette in plasmid pH-aALF. (b) “CAH1-ALFPm3” expression cassette in plasmid
pH-cALF. PsaD pro: the psaD promoter, PsaD ter: the psaD terminator, RBCS2 pro: the RBCS2 promoter,
RBCS2 ter: the RBCS2 terminator, Ble-exon-1,2,3: the three exons of ble gene, intron: the intron of RBCS2
gene, ARS1 sig: ARS1 signal peptide, CAH1 sig: CAH1 signal peptide, 3 ×HA: 3 ×HA tag for protein
identification. PsaD-P and psaD-T were primers used for genomic PCR. Fa and ALF3R1 were primers
used for RT-PCR of T-JaA. Fc and ALF3R2 were primers used for RT-PCR of T-JcA.

2.2. Screening of Transgenic C. reinhardtii

The transformation of C. reinhardtii JUV was carried out using the glass bead method.
After cultivation for three to four weeks, green colonies were visible and were transferred
to the new TAP agar medium containing 100 µg/mL ampicillin and 10 µg/mL zeocin.
Candidates of algae transformed with plasmid pH-aALF were named T-JaA, and those
with plasmid pH-cALF were named T-JcA. It was found that the transformation frequency
was 2.5 × 10−5 in T-JaA and 3.7 × 10−5 in T-JcA.

As a common endogenous promoter of microalgae, the native psaD promoter/terminator
is responsible for initiating the transcription of photosystem I complex related proteins in
C. reinhardtii [33]. Therefore, PCR with primers psaD-P and psaD-T could generate an 813 bp
endogenous gene fragment in the genome of C. reinhardtii while generating additional 679 bp
and 676 bp fragments in T-JaA and T-JcA, respectively. As expected, according to the genomic
PCR results, positive transformants could detect target bands at both 679/676 bp and 813 bp,
indicating that the target genes were successfully inserted into the genome of C. reinhardtii
JUV (Figure 2a,b).

The expression of ALFPm3 in T-JaA and T-JcA was identified by RT-PCR using primer
pairs Fa/ALF3R1 and Fc/ALF3R2, respectively. PCR fragments at 222 bp and 203 bp were
expected in T-JaA and T-JcA, respectively. As expected, the results of RT-PCR showed
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that target fragments could be detected as the positive control (Figure 2c,d), indicating the
successful expression of ALFPm3 at the transcription level in C. reinhardtii JUV.
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Figure 2. Genomic PCR analysis and RT-PCR analysis of transgenic algae. (a) Genomic PCR analysis
of T-JaA. (b) Genomic PCR analysis of T-JcA. (c) RT PCR analysis of T-JaA. (d) RT PCR analysis of
T-JcA. Endogenous band: Genomic PCR analysis of the endogenous gene of C. reinhardtii. ARS1-
ALFPm3-3 × HA tag: Genomic PCR analysis of ARS1-ALFPm3-3 × HA tag gene in T-JaA. CAH1-
ALFPm3-3 × HA tag: Genomic PCR analysis of CAH1-ALFPm3-3 × HA tag gene in T-JcA. ARS1-
ALFPm3: RT-PCR analysis of ARS1-ALFPm3 gene in T-JaA. CAH1-ALFPm3: RT-PCR analysis of
CAH1-ALFPm3 gene in T-JcA. β-actin: RT-PCR analysis of β-actin gene. M: DL 2000 DNA ladder
marker. P: Positive control. WT: C. reinhardtii JUV. H2O: blank control. A3, A4, A6, A9: Candidates of
T-JaA. C1, C2, C11: Candidates of T-JcA.

2.3. Analysis of Intracellular and Extracellular Expression of ALFPm3 in Transgenic C. reinhardtii

The existence of ARS1-ALFPm3 and CAH1-ALFPm3 fusion proteins in cells was
evaluated by immunoblot. Results showed that the proteins ARS1-ALFPm3 (a-ALFPm3)
and CAH1-ALFPm3 (c-ALFPm3) were detected in T-JaA (A3, A4, A6) and T-JcA (C1, C2,
C11), respectively, which was evidenced by the detection of 3 × HA using anti-3 × HA tag
antibody at the expected size of about 16 kD and no detection of that in in the wide type of
C. reinhardtii JUV (WT) (Figure 3a). Meanwhile, the protein of β-actin was detected in all the
wild-type and positive transformants using anti-α-tublin antibody (Figure 3a), indicating
that ARS1-ALFPm3 and CAH1-ALFPm3 fusion proteins were successfully expressed in
transgenic C. reinhardtii JUV.

Subsequently, the extracellular secretion of fusion proteins a-ALFPm3 and c-ALFPm3
was analyzed in culture medium. Results showed that only proteins extracted from the
culture medium of T-JaA6 (A6) and T-JcA1 (C1) generated the hybrid signal at 16 kD using
anti-3 × HA tag antibody (Figure 3b), indicating that the ALFPm3 peptide was successfully
secreted in vitro when fused with signal peptides ARS1 and CAH1. However, the target
protein was not detected in the culture medium of A3, A4, C2, and C11, even though
target proteins were found within cells (Figure 3a). A6 and C1 were used for subsequent
bacteriostatic analysis.

2.4. Both a-ALFPm3 and c-ALFPm3 Showed High Antibacterial Activity

For the antibacterial analysis, 100 mL of culture medium of T-JaA6 and T-JcA1 was
collected and freeze dried for protein extraction. The concentration of protein extracts
from T-JaA6 (containing a-ALFPm3) was 0.98 µg/µL, and that from T-JcA1 (containing
c-ALFPm3) was 2.02 µg/µL. Compared with the wild type, protein extracts containing
a-ALFPm3 and c-ALFPm3 had significant inhibitory effects on the growth of V. harveyi,
V. alginolyticus, V. anguillarum, and V. parahaemolyticus within 24 h (Figure 4). After 24 h,
except for V. alginolyticus with a bacteriostatic rate of 15.79%, the bacteriostatic rate of
a-ALFPm3 against aquaculture pathogenic bacteria exceeded 30%. The highest bacterio-
static rate, 39.67%, was found against V. harveyi. It is noted that c-ALFPm3 performed
much better than a-ALFPm3, which had a bacteriostatic rate of over 98% against all four
aquaculture pathogenic bacteria. Similarly, the highest bacteriostatic rate was found against
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V. harveyi, reaching 110.07%. The two types of ALFPm3 had the strongest inhibitory effect on
V. harveyi and the weakest inhibitory effect on V. alginolyticus. Although the concentration
of ampicillin used in the study was as high as 2 mg/mL, its inhibitory efficiency was only
−0.69%, −9.90%, −12.77%, and 8.48% against V. harveyi, V. alginolyticus, V. anguillarum,
and V. parahaemolyticus, respectively, after 24 h. The antibacterial activity of a-ALFPm3
and c-ALFPm3 against V. parahaemolyticus was 3.88 and 12.67 times as that of ampicillin,
demonstrating the strong antibacterial activity of a-ALFPm3 and c-ALFPm3. Indeed, the
bacteriostatic effect of ALFPm3 was also affected by the type of signal peptide, and after
24 h, the inhibitory rate of c-ALFPm3 against V. harveyi, V. alginolyticus, V. anguillarum, and
V. parahaemolyticus was 2.77, 6.23, 3.32, and 3.26 times that of a-ALFPm3, indicating that the
CAH1 signal peptide was more effective in secreting the ALFPm3 peptide in C. reinhardtii
than the ARS1 signal peptide.
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Figure 3. The immunoblot analysis of intracellular and secretory proteins extracted from genet-
ically engineered algae T-JaA and T-JcA. (a) Immunoblot analysis of proteins from algal cells of
T-JaA and T-JcA. (b) Immunoblot analysis of proteins from the culture medium of T-JaA and T-JcA.
Anti-3 × HA tag: protein extract was incubated with mouse anti-3 × HA tag antibody for testing
the existence of 3 × HA tag proteins. Anti-α-tublin: protein extract was incubated with mouse
anti-α-tublin tag antibody for testing the existence of α-tublin. N: Negative control. A3, A4, A6:
Candidates of T-JaA. C1, C2, C11: Candidates of T-JcA.
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3. Discussion

Prokaryotic expression systems such as E. coli were not generally used to express
AMPs, since those AMPs with high antibacterial activity might kill E.coli [35–37]. Given
the previous studies, P. pastoris successfully expressed and secreted some AMPs, such
as rFcALF2 [38], rMnALF4 [39], Mytichitin-A [40], and rPaDef [41]. However, the secre-
tory expression of rALFPm3 in P. pastoris was only found in a small quantity outside the
cell [42]. Additionally, the activity of recombinant proteins secreted by P. pastoris was
affected, for example, compared with the natural proteins Mycithin-A [40], CecropinB2 [43],
and Ch-Penaeidin [44] secreted by P. pastoris, which had no or low antibacterial activity.
Although the secretion of AMPs from C. reinhardtii includes many natural advantages, such
as glycosylation for proteins to stabilize their structure and biological activities [45,46], the
utilization of algae as a byproduct [47], and the large-scale cultivation in photoreactors
for industrial production [48,49], there are few reports about the secretion of AMPs by
C. reinhardtii. In previous studies, the signal peptides ARS1 and CAH1 were confirmed
to have a secretory expression function and could be used in various areas such as in the
delivery of targeted drugs [50] and the secretion of human intrinsic factors [51], xylanase
1 [27], and luciferase [31]. In this study, “ARS1-ALFPm3” and “CAH1-ALFPm3” expression
cassettes were designed. Based on genomic PCR, RT-PCR, and immunoblot analyses,
transgenic algal cells that could express and secrete ALFPm3 peptide in C. reinhardtii were
obtained. It was noted that, according to the immunoblot assay using the medium su-
pernatant, only one out of three transformants could secrete the protein into the medium,
which might be because of the random integration of foreign DNA into the nucleus of
C. reinhardtii [52]. In previous studies, it was observed that foreign DNA could be cleaved
during transformation [53,54]. The resulting fragments could induce complex situations,
including deletions and inversions of genomic DNA flanking the foreign DNA [54–56]
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and the integrated concatemers of identical molecules in transformants with multiple
copies of foreign DNA [54,57]. The above events might cause gene silencing or tran-
script instability [57–59], thereby affecting the expression and secretion of the target pro-
tein [60]. Compared with ALFPm3 secreted by P. pastoris [42], a-ALFPm3 and c-ALFPm3
secreted by C. reinhardtii in this study exhibited a strong inhibitory ability against V. harveyi,
V. alginolyticus, V. anguillarum, and V. parahaemolyticus within 24 h, and the inhibition rate
was much higher than that of ampicillin (2 mg/mL).

Differences in signal peptides affect the secretion yield and activity of recombinant
proteins distinctly by influencing the folding state of the peptide chain [61,62], translocation
efficiency [63], and protein stability [64,65]. In the study of signal peptides mediating
the secretion and expression of NHases in B. subtilis, it was found that the values of the
highest secretion were nearly 4.32 those of the lowest secretion [66]. The human–mouse
chimeric CMV-IgM was successfully expressed and secreted in CHO cells by five signal
peptides, and its secretory efficiency was more than 6.72-fold different [67]. According
to the previous research, when fused with different signal peptides, the secretion yield of
mCherry fluorescent proteins in C. reinhardtii was up to 10-fold different [29]. In this study,
comparing a-ALFPm3 with c-ALFPm3, the secretion yield of c-ALFPm3 was 2.06 times
that of a-ALFPm3, and the inhibition rate of c-ALFPm3 was also much higher than that
of a-ALFPm3, indicating that both the signal peptides could secrete the ALFPm3 peptide
out of C. reinhardtii efficiently, and the CAH1 signal peptide performed better than the
ARS1 signal peptide. In particular, ALFPm3, derived from T-JcA1, had an inhibitory rate
of over 98% against four pathogenic bacteria within 24 h, indicating that the strategy of
“CAH1-ALFPm3” constructed in this study had a high potential value of AMPs.

This work provides a new idea to produce ALFPm3 with high antibacterial activity. In the
future, further improvements in the secretion efficiency of T-JaA and T-JcA will be conducted,
and the application value of ALFPm3 in the aquaculture industry will be further explored.

4. Materials and Methods
4.1. Bacterial Strains, Algal Strain, and Culture Conditions

The C. reinhardtii cell-wall-deficient strain JUV was purchased from the Chlamy-
domonas Resource Center (Duke University, Durham, NC, USA). It is suitable for cultiva-
tion in triethyl phosphate (TAP) liquid medium or TAP agar solid medium with 100 µg/mL
ampicillin (Biosharp, Anhui, China) at a temperature of 22–25 ◦C and a light intensity of
90 µE·m−2·s−1. Transgenic algae were screened and cultivated on TAP liquid or agar solid
media containing 100 µg/mL ampicillin and 10 µg/mL zeocin.

Bacterial strains of V. harveyi, V. alginolyticus, V. anguillarum, and V. parahaemolyticus
were kindly provided by Professor Huang Jianhua from the South China Sea Fisheries
Research Institute of the Chinese Academy of Fishery Sciences. Bacteria were cultured on
LB medium under 37 ◦C at 200 rpm.

4.2. Plasmid Construction and Genetic Transformation

ARS1 signal peptide [27] and CAH1 signal peptide [31] were selected to construct
the fusion protein with ALFPm3 from P. monodon. The fusion fragments were named
ARS1-ALFPm3 and CAH1-ALFPm3, respectively. In order to improve the transformation
efficiency and enhance the heterologous expression of C. reinhardtii, the coding sequence
of ALFPm3 (Genbank number: JQ256520) was optimized based on the codon bias of the
genome of C. reinhardtii. Subsequently, fusion fragments tailed with 3 × HA tag were
inserted into the expression vector pESVH to obtain the plasmid pH-aALF (Figure 5a)
and the plasmid pH-cALF (Figure 5b). The “ARS1-ALFPm3-3 × HA tag” and “CAH1-
ALFPm3-3 × HA tag” expression cassettes were driven by the pasD promoter and the
pasD terminator. The RBCS2 promoter and the RBCS2 terminator were used to drive the
expression of sh-ble given the transformants with zeocin resistance. The transformation of
C. reinhardtii JUV was performed using the glass bead method according to the litera-
ture [68]. Transformed C. reinhardtii cells were selected on a TAP agar plate containing
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100 µg/mL ampicillin and 10 µg/mL zeocin at 22 ◦C, with continuous light intensity
90 µE·m−2·s−1 for 2–3 weeks until green colonies appeared. The number of colonies was
recorded and used to calculate the transformation frequency.
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4.3. Genomic PCR and RT-PCR Analysis

Genomic PCR and RT-PCR were performed to identify the positive transformants [69]
using 2 ×M5 HiPer plus Taq HiFi PCR mix (Mei5bio, Beijing, China) as recommended. For
genomic PCR, algal cells were collected from 2 mL cell culture by centrifugation at 5000 rpm
for 10 min and then subjected to genomic DNA extraction using the Ultra DNA Isolation
kit (Beibei Biotechnology Co., Ltd., Zhengzhou, China). Then, 2 microliters of extracted
DNA was used in the 20 µL PCR reaction system with the primer pair psaD-P/psaD-T
(Table 1). The PCR program was 95 ◦C for 3 min, 35 cycles of 94 ◦C for 25 s, 58 ◦C for
25 s, 72 ◦C for 40 s, and finally extended at 72 ◦C for 5 min. For RT-PCR, the total RNA
was extracted with an RNA fast 200 kit (Fastagen, Shanghai, China), and the first stranded
cDNA was synthesized using a Hifair® III 1st Strand cDNA Synthesis SuperMix for qRCR
(gDNA digest plus) (Yeasen, Shanghai, China), as recommended by the instructions. The
RT-PCR reaction system was in a 20 µL column containing 4 µL cDNA as the template. The
amplification primer pair for T-JaA was Fa/ALF3R1, and that for T-JcA was Fc/ALF3R2.
The primer pair actin-F/actin-R was selected to amplify β-actin as the internal control
(Table 1). The RT-PCR program was 95 ◦C for 3 min, 35 cycles of 95 ◦C for 30 s, 58 ◦C for
30 s, 72 ◦C for 40 s, and finally extended at 72 ◦C for 5 min. Finally, all PCR products were
analyzed via 1.5% agarose gel electrophoresis.

Table 1. Sequence of primers used in this study.

Name Sequence ( 5′–3′) Target Gene Expected Product (bp)

psaD-P GGGAATTGGAGGTACGACCGAGAT ARS1-ALFPm3
CAH1-ALFPm3

679
676psaD-T AGCTCCGATCCCGTATCAATCAGC

Fa CGCGCTGGCTGTGTTCG
ARS1-ALFPm3 222ALF3R1 GTCCAGCCGGGGCACCACATG

Fc CGCGCACCGGGGCACTCCTG
CAH1-ALFPm3 203ALF3R2 ACATGCGGCCCTTGTAGTACACCT

actin-F ACCCCGTGCTGCTGACTG
β-actin 351actin-R ACGTTGAAGGTCTCGAACA
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4.4. Protein Extraction and Immunoblot Analysis

To evaluate the presence of the protein ALFPm3 in T-JaA and T-JcA, the total proteins
in cells and the secretory protein in culture supernatant were extracted and subjected to
immunoblot analysis. Algal cells were pelleted by centrifugation and total intracellular
proteins were extracted based on the reference literature [9]. The extracellular protein
from culture medium was extracted as follows: the culture medium was collected by
centrifugation and then freeze dried. The obtained powder was finally dissolved with
1 × PBS (Biyuntian Biotechnology Co., Ltd., Shanghai, China).

The protein was separated by 12.5% SDS-PAGE (GenScript, Piscataway, NJ, USA)
and transferred to a PVDF membrane (Merck, Rahway, NJ, USA). The hybridization was
performed first with Anti-HA.11 Epitope Tag Antibody (1:2000) (Biogene, Beverly Hills,
CA, USA) and then with Anti-mouse IgG, HRP-linked Antibody (1:2000) (Cell Signaling
Technology, Boston, MA, USA) as per the instructions. Finally, BeyoECL Moon (Biyun-
tian Biotechnology Co., Ltd., Shanghai, China) was used for the stain development, and
Odyssey® Fc (Gene Company Limited, Hong Kong, China) was used to detect chemilumi-
nescence signals.

4.5. Antibacterial Assay

T-JaA6 and T-JcA1 algal cells were cultivated at 22–25 ◦C with continuous light in-
tensity at 90 µE·m−2·s−1 until the cell density reached 1 × 106 cells/mL. Total proteins
were extracted from culture supernatant as described above and dissolved in 1 × PBS
for subsequent antibacterial assay. The antibacterial assay was tested on four common
aquaculture pathogenic bacteria including V. harveyi, V. alginolyticus, V. anguillarum, and
V. parahaemolyticus. The tested strains were cultured with 3 mL fresh LB overnight at 37 ◦C,
200 rpm. Then, 30 µL overnight culture was inoculated to 3 mL of fresh LB and incubated
for 1 h at 37 ◦C. Subsequently, the mixture was diluted 1000 times with fresh LB liquid
medium for the antibacterial assay. The 50 µL protein extracts from the culture supernatant
of T-JaA and T-JcA were mixed with 150 µL bacteria culture in a sterile 96-well plate. At the
same time, 10 µL 2 mg/mL Ampicillin and 50 µL protein extracts from the culture super-
natant of C. reinhardtii JUV were set as the positive and negative control, respectively. The
total 200 µL mixtures were incubated at 37 ◦C for 24 h. During this period, the absorbance
value of the mixture at 600 nm was measured every 2 h. The growth rate (∆OD600) of the
bacteria in each treatment group was obtained by comparing the OD600 value at different
time points with that at 0 h. The bacteriostatic rate at each time point was calculated as
(%) = (∆OD600 of WT − ∆ OD600 of Experimental group)/∆OD600 of WT × 100.

4.6. Statistical Analysis

Each experiment had three independent replicates, and the software GraphPad Prism
8 was used to perform statistical analysis and make charts. In this study, the t-test was used
to analyze the statistical differences between the treatment groups. p < 0.05 was considered
to have a significant difference.

5. Conclusions

In this study, the signal peptides ARS1 and CAH1 were fused with ALFPm3, respec-
tively, and inserted into the pESVH vector to construct pH-aALF and pH-cALF plasmids,
which were transformed to C. reinhardtii JUV using the glass bead method. The positive
transformants were obtained after bleomycin resistance selection, DNA-PCR, and RT-PCR
analysis. The peptide ALFPm3 was detected within cells and culture supernatant, demon-
strating the successful expression and secretion of ALFPm3 using C. reinhardtii. In addition,
ALFPm3 extracted from the culture supernatant of T-JaA and T-JcA showed the significant
inhibition of the growth of V. harveyi, V. alginolyticus, V. anguillarum, and V. parahaemolyticus
within 24 h and performed much better than ampicillin (2 mg/mL), indicating the superior
antibacterial activity of ALFPm3. Interestingly, we found the inhibitory rate of c-ALFPm3
against the tested Vibrio was 2.77 to 6.23 times as that of a-ALFPm3, showing the superiority



Mar. Drugs 2023, 21, 346 10 of 12

of the CAH1 signal peptide for the secretory expression of ALFPm3 in C. reinhardtii. This
study provided a new strategy for the highly efficient secretion of ALFPm3 with high
antibacterial activity in C. reinhardtii.
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