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Abstract: Infections caused by multidrug-resistant Gram-negative bacteria have been named one
of the most urgent global health threats due to antimicrobial resistance. Considerable efforts have
been made to develop new antibiotic drugs and investigate the mechanism of resistance. Recently,
Anti-Microbial Peptides (AMPs) have served as a paradigm in the design of novel drugs that are
active against multidrug-resistant organisms. AMPs are rapid-acting, potent, possess an unusually
broad spectrum of activity, and have shown efficacy as topical agents. Unlike traditional therapeutics
that interfere with essential bacterial enzymes, AMPs interact with microbial membranes through
electrostatic interactions and physically damage cell integrity. However, naturally occurring AMPs
have limited selectivity and modest efficacy. Therefore, recent efforts have focused on the develop-
ment of synthetic AMP analogs with optimal pharmacodynamics and an ideal selectivity profile.
Hence, this work explores the development of novel antimicrobial agents which mimic the structure
of graft copolymers and mirror the mode of action of AMPs. A family of polymers comprised of
chitosan backbone and AMP side chains were synthesized via the ring-opening polymerization of the
N-carboxyanhydride of L-lysine and L-leucine. The polymerization was initiated from the functional
groups of chitosan. The derivatives with random- and block-copolymer side chains were explored as
drug targets. These graft copolymer systems exhibited activity against clinically significant pathogens
and disrupted biofilm formation. Our studies highlight the potential of chitosan-graft-polypeptide
structures in biomedical applications.

Keywords: antimicrobial peptides; chitosan; comb-like co-polypeptide; N-carboxyanhydrides; ring-
opening polymerization

1. Introduction

Antimicrobial peptides (AMPs) are a unique class of peptides that are part of the
innate immune response of most multicellular organisms [1]. Unlike traditional antibi-
otics, which inhibit an intracellular target, many AMPs and their synthetic analogues rely
on physically damaging the bacterial cell membrane [2]. As such, they offer promise as
a versatile therapeutic to combat the rising trend of antimicrobial resistance. A number of
AMPs with a broad range of structural and chemical compositions have been identified [3].
However, several characteristics are conserved [4]: effective AMPs possess a net posi-
tive charge, hydrophobic moieties, and amphiphilicity. Some approaches for improv-
ing the pharmacological performance of naturally derived AMPs have included chemi-
cal modification [5], non-native amino acids [6], fully or semi-synthetic scaffolds [7–10],
supramolecular assemblies [11,12], and multimeric structures [13,14]. The rational de-
sign of synthetic analogues may facilitate further improvement of the pharmacodynamic
properties. In particular, grafting peptides to a common polymer backbone to create
an antimicrobial graft copolymer (GCP) may bring several advantages: (i) they provide
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an opportunity to incorporate various functionalities and tune parameters to achieve high
activity, e.g., hydrophilic/hydrophobic balance; (ii) the graft copolymer structure provides
a high local concentration of peptides which may facilitate bacterial membrane disruption
thus reducing the minimally required global concentration compared to traditional AMPs;
(iii) the redundancy of GCP’s peptide grafts may undergo conformational adjustment to
maximize favorable interactions with the local environment and facilitate penetration of
the GCP in the bacterial cell wall and promote cell death; (iv) the composition of the GCPs
can be selected to complement the peptidoglycan layer of the cytoplasmic membrane of
a bacteria. A complementary structure may improve selectivity over mammalian cells and
promote adsorption onto the cell wall of bacteria [15]. Despite the large number of studies
demonstrating the therapeutic potential of AMP-based therapeutics, only a few candidates
have made it through the discovery phase and found clinical application [16].

In this work we report the synthesis of novel antimicrobial GCPs and evaluate their
antibacterial activity. We used the natural polysaccharide chitosan (CHI) as a backbone
to fabricate a small library of peptide graft copolymers via ring-opening polymerization
(ROP) of N-carboxyanhydrides (NCA) of L-lysine and L-leucine. Graft copolymers with
branched architectures composed of homo-, random, and block-polypeptide sequences
were targeted (Figure 1). The graft copolymers were analyzed by NMR, FTIR, and SEC to
characterize their molecular weight and composition. The results of an in vitro investiga-
tion of antibacterial activity against model pathogens and cytotoxicity for human dermal
fibroblasts are reported. Finally, we assessed the effect of the GCPs on the biomass and cell
viability within biofilms of Agrobacterium tumefaciens.
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mers consisting of L-lysine and L-leucine oligomers conjugated to chitosan via ring-opening poly-
merization of N-carboxyanhydrides (NCA-ROP).

2. Results and Discussion
2.1. Synthesis of GCPs

The CHI backbone was prepared using a method adopted by Sashiwa et al. [17]. For
complete dissolution to take place, the CHI-CSA salt was freeze-dried. The solid was found
to readily dissolve in DMSO. With this development, further chemical modification of CHI



Mar. Drugs 2023, 21, 243 3 of 20

could be carried out in homogeneous water-free conditions. Many factors in sourcing and
manufacturing CHI affect the characteristics and composition of the final product. Since the
amino groups of CHI initiate grafting, it is important to establish the fraction of available
amino groups prior to modification. The 1H NMR spectrum of CHI-CSA in DMSO-d6 is
presented in Figure 2. The signals at 3.5 ppm, 4.8 ppm, and 8.3 ppm are attributed to the
−5, −1, and -NH2 hydrogens of CHI, respectively. The hydrogens bound to the pyranose
ring (3, 4, 5, and 6) were assigned to a broad peak at about 3.8 ppm.
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The degree of acetylation (DA) was calculated using a method proposed by Weinhold
et al. where the area of the acetyl CH3 hydrogens

(
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3 × ACH3
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6(AH2−H6)
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The DA was found to be > 99%. Literature reports that N-acetyl linkages, as well as
main chain (glycosidic) linkages of CHI, are susceptible to acidic hydrolysis [19]. It is likely
that during the dissolution of CHI the acetyl groups are cleaved while in the presence of
excess CSA.

CHI-based GCPs could yield a versatile material with the combined characteristics of
its components, tunable amphiphilicity, and potentially controlled interactions with the
environment. Several research groups have synthesized such materials using the amino
groups of CHI to initiate ROP of amino acid NCAs (Figure 3). However, the restricted
solubility of CHI limits the number of synthetic pathways. Kurita et al. and Chi et al. synthe-
sized CHI-graft-poly(γ-methyl L-glutamate) and CHI-graft-poly(L-lysine) using a biphasic
interfacial approach in ethyl acetate and water [20,21]. Alternatively, the synthesis of
CHI-graft-poly(L-glutamic) acid and poly(lysine-ran-phenylalanine) copolymers was ac-
complished in homogenous conditions using a soluble form of CHI, 6-O-triphenylmethyl
CHI, in anhydrous DMF [22]. In this work, we adopted an approach first utilized by
Perdith et al. [23] who synthesized CHI-graft-poly(sodium-L-glutamate) nanoparticles us-
ing the primary amine sulfonate salt, CHI-CSA, as a macroinitiator in DMSO. Extending
this strategy, we explored the synthesis of CHI-based GCPs with hydrophobic L-leucine
and cationic hydrophilic L-lysine amino acids.
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The CHI-CSA was rapidly dissolved under argon in dry DMSO to which 0.3 molar
equivalents of DIPEA with respect to protonated amines -NH3

+ of CHI-CSA was added.
The addition of DIPEA served to suppress acid-catalyzed cleavage of CHI and increase
the propagation rate of NCA-ROP. Control over the reactivity of the growing polymer
chain end is critical to achieve a high molecular weight with optimal conditions that
are often necessary to be determined empirically. Amine salts such as CHI-CSA have
diminished reactivity as a nucleophile due to the formation of the inactive protonated
amines. Polymerizations initiated with hydrochloride salts were found to yield a single
NCA addition and required elevated temperatures to proceed [24,25]. Since CHI degrades
in the presence of sulfonic acid, we adjusted the equilibrium of free amines by increasing
the alkali content instead of temperature (Figure 4). DIPEA was selected as it is a sterically
hindered base capable of scavenging protons without acting as a nucleophile. The addition
of 0.3 equivalents of DIPEA to individual ammonium groups of CHI-CSA was found to
effectively yield graft copolymers after 3 days at room temperature. Upon completion,
the products were precipitated with diethyl ether and sequentially washed with THF and
water to remove any starting materials and by-products.
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2.1.1. Synthesis of CHI-graft-poly(L-lysine(Z))

Synthesis of CHI-graft-poly(L-lysine(Z)) was carried out in standard conditions us-
ing L-lysine(Z)-NCA. The ratio between the CHI and L-lysine(Z)-NCA repeating units
(CHI/Lys) was estimated by dividing the normalized integral value of the CHI protons
3H–6H (5 protons) by normalized integral value of the L-lysine(Z) B signal (6 protons)
(Figure 5). A ratio of 0.28 for CHI to L-lysine was found according to the Equation (2):

CHI : Lysine =
1
5 × Apyr
1
6 × Blys

(2)

where Apyr is the area of five protons of the pyranose ring of CHI and Blys is the area of the
six remaining aliphatic protons of L-lysine(Z) (marked B in Figure 5).

The Cbz protecting groups of L-lysine(Z) units were removed in two sequential depro-
tection reactions using HBr/AcOH and TFA. This yielded a water-soluble product rich in
NH2 functionalities; the deprotection degree was found to be 61% using Equation (3):

%Deprotection =

[
1 −

(
1
5 × Aar
1
6 × Blys

)]
× 100 (3)

where Aar is the area of the five aromatic protons of the benzyloxycarbonyl protecting
group of L-lysine(Z) and Blys is the area of the six protons of L-lysine (marked B in Figure 5).
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2.1.2. Synthesis of CHI-graft-poly(L-leucine-co-L-lysine)

Following the established procedure, CHI-graft-poly(L-leucine-co-L-lysine) was syn-
thesized by copolymerization of L-leucine-NCA and L-lysine-NCA in the presence of CHI
for a 49% yield. A feed ratio of 1:1.5:1.5 (CHI/L-leucine/L-lysine) was selected so that
the total CHI/NCA molar ratio remained consistent. As stated previously, L-leucine was
selected as the hydrophobic component of the GCP. Additionally, L-leucine allows for
straightforward characterization of L-lysine(Z) deprotection as its proton resonances do not
overlap with the aromatic protons of the Cbz protecting group. Upon work up, the ratio of
CHI to amino acids was determined with 1H NMR using Equations (4) and (5):

CHI : Lys =
1
5 Apyr
1
2 Alys

(4)

CHI : Leu =

1
5 Apyr
1
3 Aleu

; Aleu = AB+C − 6 × (
1
2

Alys) (5)

where Aleu is the area of three protons of L-leucine (marked C in Figure 6) and Apyr is the
area of five protons on the pyranose ring of chitosan. Aleu is calculated by subtraction of
Alys, i.e., the area of two protons of L-lysine bound to the carbons adjacent to the amine
group (marked A in Figure 6) from AB+C, i.e., the total area of the six alkyl protons of
L-lysine (marked B in Figure 6) and three alkyl protons of L-leucine (marked C in Figure 6).
The CHI/Lys ratio was determined to be 0.35 (Figure 6). With this information the ratio of
CHI/Leu can be calculated using the resonance peak of B+C which consists of six L-lysine
and three L-leucine protons. Upon substitution of Alys into Equation (5), the CHI/Leu was
found to be 0.22. Similarly, the deprotection degree was found to be 38%.

2.1.3. Synthesis of Block GCPs

Amphiphilic GCPs with block sequences may adopt a number of conformations as
a result of various interactions with the local environment [26,27]. Polypeptide block
copolymers can be prepared in a one-pot synthesis where the NCAs are sequentially added
to the polymerization mixture. This technique allows for the synthesis of polymers with
potentially complex structures that are often poorly defined and difficult to characterize.
In our work, we synthesized the block graft copolymer CHI-graft-poly(L-leucine-block-L-
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lysine) in a two-step sequential graft copolymerization with L-leucine-NCA and L-lysine-
NCA, respectively (Figure 7). First, NCA-ROP of L-leucine initiated by CHI at a ratio of 1:3
(CHI amino groups/NCA) to yield a CHI-graft-poly(L-leucine) with a yield of >90%. The
product was characterized with 1H NMR to determine the actual ratio of CHI:L-leucine.
However, the peaks associated with the CHI backbone protons were difficult to observe
due to matrix effects. We observed such silencing of CHI in other instances as well. This is
due to the fact that the CHI backbone is insoluble in DMSO and the graft copolymer adopts
a conformation where CHI collapses while the sidechains swell, thus providing solubility
of the entire macromolecule. In the second step, CHI-graft-poly(L-leucine) was subjected to
NCA-ROP of L-lysine(Z). Ideally, only the amino groups present on the propagating ends
of the poly(L-leucine) will initiate polymerization. However, unreacted amino groups on
CHI may also serve as grafting sites yielding blocks of poly(L-lysine) directly attached to
the CHI backbone. Regardless, the resulting product will still adopt configurations that
maximize favorable interactions with the environment and access novel conformations
and assemblies. Upon work up, the ratio of the amino acid blocks to CHI was evaluated
with 1H NMR using Equations (4) and (5). The CHI/Lys ratio was determined to be 0.64
from Equation (4). With this information, the ratio of CHI/Leu was calculated using the
combination of the peaks of B and C which consist of six L-lysine and three L-leucine
protons. Upon substitution of Alys into Equation (5), the CHI/Leu ratio was found to be
0.32. Similarly, the extent of Cbz deprotection was determined to be 41% by evaluating
the resonances Aar and Alys (Figure 8). It is important to note that this value may be
underestimated due to the matrix effects. The graft copolymer can adopt conformations
that place protected and deprotected L-lysines in distinct environments.
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In conjunction with CHI-graft-poly(L-leucine-block-L-lysine), which has a hydrophobic
core and cationic shell, we made an attempt to synthesize CHI-graft-poly(L-lysine-block-
L-leucine) “reverse-block”. The polymer was successfully obtained and isolated. Unfor-
tunately, upon deprotection, it was not soluble in any solvent and thus could not be used
any further.

FTIR spectroscopic analysis was employed to characterize the final products and
confirm the grafting of the peptide chains (Figure 9). CHI was evaluated and compared
after each step of the synthesis. In all spectra, the absorbance of amide bands I (1676 cm−1),
II (1531 cm−1), and III (1252 cm−1) appeared after ROP, indicating the successful graft-
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ing of polypeptides. Additionally, the disappearance of the C-O-C benzyl stretch upon
deprotection indicates the removal of the carboxybenzyl group from grafted poly(L-lysine).
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We used SEC to assess the molecular weight of some of the products. In general,
characterization of charged polymers with SEC poses substantial challenges caused by
specific interactions of the polymer and the stationary phase of the column, and a lack of
standards that accurately represent the hydrodynamic radius of nonlinear molecules and
polyelectrolytes [28,29]. We used an aprotic solvent DMF in order to minimize ionization of
the polymeric products. Only two products were soluble in DMF: CHI-graft-poly(L-lysine)
and a linear model compound GlcN-term-poly(L-lysine). Our attempts to use water as the
mobile phase and solvent for SEC resulted in extremely low elution volumes revealing
high molecular weights beyond any possibility which indicated either strong ionization of
the products or formation of aggregates.
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CHI-graft-poly(L-lysine) (black).

The results of SEC of CHI-graft-poly(L-lysine) and GlcN-term-poly(L-lysine) are shown
in Figure 10. The molecular weight of GlcN-term-poly(L-lysine) is 627 g/mol. Taking
into account the weight of the terminal GlcN fragment as 178 g/mol, we determined that
the length of poly(L-lysine) is about 3.5 units. This finding fits well with the synthesis
when a 3-fold (molar) amount of L-lysine(Z)-NCA monomer was added to GlcN initiator.
Some amount of GlcN-term-poly(L-lysine) was also observed on the SEC of CHI-graft-
poly(L-lysine), while the main broad peak averaged 3250 g/mol. Taking into account the
molar ratio (0.28) of CHI to L-lysine from the NMR spectrum, we obtained an average of
5.1 poly(L-lysine) chains of an average of 3.5 units in length grafted to a CHI backbone
composed of 5.1 units of GlcN. This means that short CHI chains were saturated with
poly(L-lysine) sidechains.
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2.2. Antimicrobial Activity

Following the characterization of all of our products, we examined the antimicrobial
activity of our graft copolymers. AMPs preferentially bind to the plasma membrane bi-
layer (PMB) of bacteria through electrostatic interactions. The selectivity in binding arises
from differences in the relative abundance and distribution of charged and hydrophobic
phospholipids. In line with this model, many reports cite that an optimum level of hy-
drophobicity is required to sufficiently facilitate interactions with fatty acyl chains to trigger
membrane permeabilization [30]. However, AMPs with increased hydrophobic content
can bind to mammalian membranes and exhibit increased toxicity [31].

In the case of CHI-based GCPs, several variables create a more complex picture of se-
lectivity. For example, many of the naturally occurring antimicrobial peptides characterized
to date possess a net positive charge, ranging from +2 to +9 [32], whereas the GCPs in this
work potentially carry more positive charges per macromolecule. From this perspective,
they may bind to cells irrespective of their composition and greatly reduce selectivity or
efficiency. Additionally, if the GCPs do in fact deliver a high local concentration of peptide
mass to the membrane interface, then off-target interactions with host cells could trigger
cell death and lead to increased cytotoxicity. However, membrane adsorption is a poorly
defined process in a complex environment. Off-target interactions such as protein adsorp-
tion and cation screening may substantially affect the electrostatic potential of the GCP.
Additionally, outside the cytoplasmic membrane of both Gram-negative and Gram-positive
bacteria, there is a peptidoglycan layer consisting of glycan chains interconnected by pep-
tide side chains [33]. GCPs in this work mimic the composition of bacteria cell walls and
may provide complementary interactions in that environment. This additional structural
affinity may promote selectivity and offset hydrophobic binding to mammalian cells.

Finally, due to the large molecular weight of the GCPs small changes in the mole
fraction of its components can lead to dramatic changes in adsorption behavior. All these
traits combined make it difficult to target compositions that exhibit strong selectivity. With
this in mind, the synthesized GCPs were initially screened for cytotoxicity.

The colorimetric MTT assay was utilized to assess mammalian cell biocompatibility
and in vitro cytotoxicity. In this experiment the GCPs were tested against Human Dermal
Fibroblast (HDF) cells. HDF cells were chosen as they are widely used as a model to
mimic the interaction of materials with human skin. They are also key components in
inflammatory processes and wound healing. Due to the large molecular weight of GCPs,
they are likely best suited for topical applications rather than systemic administration.

In general, CHI-graft-poly(L-lysine) exhibited the lowest toxicity with a minimum cell
viability of 65% at 30 mg/mL.

GlcN-term-poly(L-lysine) was slightly more toxic with 50% viability at 30 mg/mL.
CHI-graft-poly(L-lysine-co-L-leucine) and CHI-graft-poly(L-leucine-block-L-lysine) exhib-
ited similar profiles and were substantially more toxic with nearly 90% cell death at the
solubility limit of 30 mg/mL (See Supplementary Material, Figure S1). In the case of all four
compounds, however, 2.5 mg/mL was found to have little to no effect on HDF viability.
Equipped with this information, antibacterial assays of the GCPs were conducted at con-
centrations below 2.5 mg/mL for therapeutic relevance. The antimicrobial activity of the
GCPs against E. coli and S. aureus was determined using microtiter dilution methods. For
each graft copolymer and GlcN-term-poly(L-lysine), the minimal inhibitory concentration
(MIC) was determined as the lowest concentration of polymer required to inhibit ≥90%
of bacteria after overnight incubation. Reductions in the growth of E. coli and S. aureus
vs. polymer concentration are shown in Figures 11 and 12, respectively, and represent
the average of at least 12 trials. MIC values were quantified using a nonlinear regression
method adapted from Lambert et al. [34] and reported in Table 1.

The minimum bactericidal concentration (MBC) was determined using AlamarBlue
cell viability reagent. When added to bacteria, AlamarBlue is modified by the reducing
environment of viable cells and turns red. The wells with the lowest polymer concentration
which do not change color correspond to the MBC. The MBC was also confirmed by
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subculturing wells with the lowest concentration of polymer that inhibited growth onto
agar plates. The plates that did not show bacterial growth after overnight incubation
corresponds to the MBC (Figure 12).
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reus at concentrations well below the MIC of the graft copolymers (Table 1). Similar end-
tethered oligo-L-lysine structures synthesized by Singla et al. [35] exhibited comparable 
antimicrobial activity and were found to induce membrane damage in the tested mi-
crobes. Given the biocompatibility and activity of GlcN-term-poly(L-lysine), further 

Figure 11. Growth inhibition curve of E. coli treated with different concentrations of GlcN-term-poly(L-
lysine) (black squares), CHI-graft-poly(L-lysine) (red circles), CHI-graft-poly(L-leucine-co-L-lysine)
(blue triangles), and CHI-graft-poly(L-leucine-block-L-lysine) (green triangles) for 24 h. Data are
presented as the mean and standard deviation, n = 12. The half maximal inhibitory concentrations,
IC50, of tested GCPs estimated from these data are as follows: GlcN-term-poly(L-lysine—0.10 mg/mL, CHI-
graft-poly(L-leucine-block-L-lysine)—0.51 mg/mL, CHI-graft-poly(L-leucine-co-L-lysine)—0.66 mg/mL,
and CHI-graft-poly(L-lysine)—0.85 mg/mL.
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Table 1. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs)
of the synthesized polymers, mg/mL. The values are the average of three replicates.

Polymer E. coli S. aureus

MIC MBC MIC MBC

GlcN-term-poly(L-lysine) 0.16 ± 0.09 0.12 0.26 ± 0.12 0.25

CHI-graft-poly(L-lysine) 0.65 ± 0.11 >2.0 >2.0 >2.0

CHI-graft-poly(L-leucine-co-L-lysine) 1.2 ± 0.02 2.0 >2.0 >2.0

CHI-graft-poly(L-leucine-block-L-lysine) 0.76 ± 0.04 1.0 >2.0 >2.0

Magainin II 0.04 ± 0.03 0.06 Not tested

Our results show that all the polymers can inhibit the in vitro growth of E. coli but are
largely inactive against S. aureus (Table 1). At the highest concentrations above 1 mg/mL,
CHI-graft-poly(L-lysine) was observed to reduce E. coli growth by 50% (Figure 11). De-
spite possessing hydrophobic content from the CHI backbone, CHI-graft-poly(L-lysine) is
probably lacking sufficient hydrophobicity to efficiently compromise membrane integrity.
CHI-graft-poly(L-leucine-block-L-lysine) and CHI-graft-poly(L-leucine-co-L-lysine), on the
other hand, showed a nearly complete reduction in bacteria growth at similar concentra-
tions. The block-peptide CHI-graft-poly(L-leucine-block-L-lysine) was found to be about
30% more potent than the random co-peptide CHI-graft-poly(L-leucine-co-L-lysine) de-
spite having similar amino acid compositions. Though the overall activity was similar,
the differences were consistent with the hypothesis that block-peptide architectures may
facilitate membrane permeabilization more efficiently compared to random co-peptides.
However, further study of GCPs with greater contrast between block- and co-peptide com-
position is needed. Despite these promising results, the GCPs were inactive against S. aureus
(Figure 12). This is likely due to the presence of a thick peptidoglycan layer on the outer
membrane of Gram-positive bacteria which can prevent the diffusion of large molecules.

GlcN-term-poly(L-lysine) effectively inhibited the in vitro growth of E. coli and S. aureus
at concentrations well below the MIC of the graft copolymers (Table 1). Similar end-tethered
oligo-L-lysine structures synthesized by Singla et al. [35] exhibited comparable antimicro-
bial activity and were found to induce membrane damage in the tested microbes. Given
the biocompatibility and activity of GlcN-term-poly(L-lysine), further optimization of such
scaffolds could lead to the development of efficient antimicrobial agents. It is important
to note that differences in activities of GlcN-term-poly(L-lysine) and the graft copolymers
may be exaggerated from expressing the MIC in terms of mg/mL rather than µM. Graft
copolymers have a substantially larger molecular weight which equates to fewer molecules
per gram compared to GlcN-term-poly(L-lysine).

MBC was evaluated by subculturing the broth dilution of the MIC test. The Wells
above and below the respective MIC were subcultured onto agar plates and incubated for
24 h. As seen in Figure S2, the plates inoculated with GlcN-term-poly(L-lysine), CHI-graft-
poly(L-leucine-co-L-lysine), and CHI-graft-poly(L-leucine-block-L-lysine) at the respective
MIC concentration did not proliferate. However, CHI-graft-poly(L-lysine) showed growth
at 2.0 mg/mL which agrees with MIC data.

Another factor potentially influencing the antimicrobial activity of GCPs is the for-
mation of micelles. Several groups have demonstrated effective antimicrobial and an-
tibacterial activity of micelle-forming compounds at concentrations in the nanomolar to
low-micromolar range [36]. Amphiphilic polymers form micelles in aqueous solution
whereby the polar region faces the outside surface, and the nonpolar region forms the core.
In this state, the antimicrobial activity of GCPs may be substantially affected. Additionally,
the formation of micelles corresponds to changes in optical properties such as light scatter-
ing which may impact absorbance measurements in the MIC assay. In order to determine
if the GCPs form micelles at a concentration relevant to the MIC, the optical absorbance
was evaluated over increasing concentrations of polymer in MH media (Figure 13). Both
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GlcN-term-poly(L-lysine) and CHI-graft-poly(L-lysine) demonstrated non-linear scattering
which indicate the formation of micelles. CHI-graft-poly(L-leucine-co-L-lysine) and CHI-
graft-poly(L-leucine-block-L-lysine) on the other hand did not exhibit a change in slope
over the relevant concentrations. This observation provides a plausible explanation as to
why GlcN-term-poly(L-lysine) effectively inhibits in vitro growth of E. coli and S. aureus
at concentrations well below the graft copolymers’ MIC. This hypothesis is a subject of
further investigation.
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Figure 13. Absorbance of the graft copolymers at varying concentrations in MH media at 600 nm:
GlcN-term-poly(L-lysine) (black squares), CHI-graft-poly(L-lysine) (red circles), CHI-graft-poly(L-
leucine-co-L-lysine) (blue triangles), and CHI-graft-poly(L-leucine-block-L-lysine) (green triangles)
for 24h. Data are presented as the mean ± standard deviation, n = 4.

Biofilms consist of an assembly of microorganisms embedded in a self-produced matrix
of extracellular polymeric substances (EPSs) containing polysaccharides, extracellular
DNA, proteins, and lipids [37]. They are of clinical relevance due to their ability to colonize
medical devices such as catheters and implants. The National Institutes of Health in the USA
reported that approximately 80% of chronic infections in humans are biofilm related [38].

AMP-mediated strategies for biofilm eradication are an attractive approach that has
gained attention in recent years. Compared to traditional small-molecule antibiotics, AMPs
offer fast-killing kinetics, a high potential to act on slow-growing or non-growing bacteria,
and the ability to synergize with antibiotics [39]. Antimicrobial peptides and polymers
have been reported to act at several stages of biofilm development and with different
mechanisms of action. Depending on the stage of development, the AMP may inhibit the
formation of biofilm or eradicate established biofilms. AMPs that follow an inhibitory
pathway typically do so by: (1) altering the adhesion of microbial cells by binding their
surfaces or the surface of the substrate, [40] (2) disrupting signaling molecules that regulate
biofilm formation [41], or (3) killing early colonizer cells to prevent biofilm maturation [42].

AMPs that target established biofilms follow mechanisms that either kill microbial
cells or reduce biofilm mass. Killing pathways typically do so by penetrating the EPS matrix
and inhibiting cell division or disrupting the cytoplasmic membrane of microbial cells
directly [43]. AMPs that eradicate biofilms reduce film mass by solubilizing components of
the EPS matrix via their amphipathic and cationic structures [44].

Here, we study the potential of CHI-based GCPs as an anti-biofilm agent. The synthe-
sized GCPs readily form micelles that may support the solvation of key components in the
ECM matrix. Similar materials have been found to act as compatibilizers, stabilizing the
solvation of immiscible blends [45,46]. Additionally, the cationic and hydrophobic motifs
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may promote favorable interaction with the outer membrane of bacteria and neutralize
surface charges. Finally, the GCPs may adsorb onto biofouling surfaces before colonization
or directly on the biofilm and prevent further development.

Herein, we evaluated the anti-biofilm activity of the graft copolymers series against
A. tumefaciens. A. tumefaciens was selected as a model bacterium as it readily forms biofilms,
is generally safe to humans, and has well-established assays and protocols for evaluation.

The adherent biofilm mass after treatment with the respective graft copolymers is
shown in Figure 14. When compared to untreated bacterial cells, both GlcN-term-poly(L-
lysine) and CHI-graft-poly(L-leucine-co-L-lysine) showed significant reductions in the
adherent mass of WT and ∆visR strains. CHI-graft-poly(L-leucine-block-L-lysine), on the
other hand, increased biofilm mass of wild type while decreasing ∆visR. No changes
were observed in the biofilms of the ∆upp strain for any of the graft copolymers. Given
that ∆upp lacks the exopolysaccharide adhesions that are critical for surface attachment,
exposure to the graft copolymers could only result in increased adherent mass.
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Figure 14. Inhibition of adherent biomass upon exposure to CHI-based GCPs. A. tumefaciens was
grown in the presence of the respective graft copolymers at a concentration of 0.25 mg/mL. The ∆visR
and ∆upp mutants exhibited enhanced and depleted film formation, respectively. Total adherent
biomass was quantified by crystal violet staining. Mean values of three independent experiments
and standard error are shown.

Differences in the activity of CHI-graft-poly(L-leucine-block-L-lysine) when exposed
to wild type or ∆visR were unexpected. Some antimicrobial peptides are known to target
a wide range of intracellular components, including DNA, RNA, and proteins [47]. Binding
to any of these sites is complex as it can lead to opposing trends in biofilm regulation. Subtle
changes in gene expression or the intracellular composition of ∆visR may facilitate graft
copolymer binding and alter biofilm expression.

The direct antimicrobial effects of the graft copolymers on planktonic A. tumefaciens
were also evaluated. Optical density measurements of the biofilm inoculum were taken
before and after film formation (Figure 15). Reductions of 50% or greater were observed for
all graft polymers and strains of bacteria at a concentration of 0.25 mg/mL. This implies
that direct antimicrobial activity of the GCPs in solution may contribute to biofilm losses.
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Figure 15. Optical density of A. tumefaciens planktonic biomass treated with 0.25 mg/mL of each
polymer. Values are averages of triplicate assays and error bars represent standard deviation.

The extent to which reductions in biofilm mass correspond to reductions in planktonic
bacteria was evaluated by normalizing the ratio of biofilm mass to the number of planktonic
bacteria (Figure 16). Values greater than 100% correspond to elevated biofilm formation,
while values less than 100% indicate the biofilm was disproportionately reduced relative to
viable planktonic bacteria.
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biomass (OD600) treated with 0.25 mg/mL of each polymer. Values are averages of triplicate assays
and error bars represent standard deviation. Data for each strain are normalized (100%) to non-treated
cultures of each strain (black bars).
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Wild type A. tumefaciens treated with glucosamine-terminated poly(lysine) exhibited
reductions in biofilm mass and planktonic bacteria that were in proportion to untreated
bacteria. This suggests the anti-biofilm activity of GlcN-term-poly(L-lysine) is a result of
antimicrobial action rather than selective inhibition. CHI-graft-poly(L-leucine-co-L-lysine),
on the other hand, reduced adherent mass without killing planktonic bacteria. Finally, CHI-
graft-poly(L-leucine-block-L-lysine) was found to increase adherent mass despite reducing
viable bacteria. Further investigation is required to understand the mechanism of this
paradoxical behavior.

3. Materials and Methods
3.1. Materials

Chitosan of low molecular weight (Brookfield viscosity 20–300 cP, for 1 wt.% in
1% acetic acid; Mv = 50–190 kDa; 90% deacetylated), 10-camphorsulfonic acid (β) (CSA,
98%), N,N-diisopropylethylamine (DIPEA, 99.5%), d-(+)-glucosamine hydrochloride (GlcN,
>99%), N-acetyl-D-glucosamine, (GlcNAc, >98%), and 3-nitrobenzonitrile (3-NBN, 98%)
were purchased from Millipore Sigma (Burlington, Burlington Township, NJ, USA) and
used as is. N-ε-carbobenzyloxy-l-lysine (L-lysine(Z)-OH, 98%) and triphosgene (>99%)
were purchased from Oakwood Chemical Inc. (Estill, SC, USA). (4S)-4-(2-methylpropyl)-1,
3-oxazolidine-2, 5-dione (L-leucine-NCA) of 98% purity was purchased from OXCHEM
corporation. Dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) were dried over 3Å
molecular sieves to remove water and stored under argon until use. All other solvents
were of analytical grade and used without further purification. Glassware used for NCA
synthesis and polymerization were dried at 120 ◦C under vacuum overnight.

Magainin and Müeller–Hinton media/agar were purchased from Sigma Aldrich
(St. Louis, MI, USA). AlamarBlue™ Cell Viability Reagent and MTT (3-(4,5-Dimethylthiazol-2-
yl)-2,5-Diphenyltetrazolium Bromide) were purchased from ThermoFisher Scientific
(Waltham, MA, USA). All other materials and supplies were purchased from MilliporeSigma.

The following established bacterial strains were used in this study, all of which are
included in our strain collection: A. tumefaciens strain C58 and its isogenic deletion deriva-
tives lacking either visR or the upp loci [48,49], Escherichia coli strain BW21553 (Coli Genetic
Stock Center), and Staphylococcus aureus strain F-182 (ATCC 43300).

3.2. Methods
3.2.1. Synthesis of CHI-CSA Salt

Using a method adapted from Sashiwa et al. [19], 10-camphorsulfonic acid salt of
chitosan (CHI-CSA) was prepared as follows. CHI (5.0 g, 30 mmol of NH2) was suspended
in 1.0 L of water and 10-camphorsulfonic acid (CSA) (7.3 g) in an equimolar amount to
NH2 of CHI was added. The suspension was stirred until a clear solution formed (approx.
1 h). The solution was coarsely filtered and dialyzed in a cellulose membrane (MW cut-off
12,000 Da) against Milli-pure water for 3 days. The solution was then lyophilized to a fluffy
white solid and stored under argon.

3.2.2. Synthesis of L-lysine(Z)-NCA

L-lysine(Z)-OH (1.5 g, 5.3 mmol) was dried under vacuum and added to 50 mL
of anhydrous ethyl acetate in a dried round bottom flask under argon. Triphosgene
(0.8 g, 2.7 mmol) was added to the suspension and the mixture was heated to 60 ◦C with
continuous stirring for 3 h. Upon the formation of a clear solution, the reaction was cooled
to 0 ◦C and extracted with water until a neutral pH of the aqueous phase was achieved.
The purified organic phase was dried with MgSO4 and the solvent was removed under
vacuum. The resulting white solid was recrystallized from THF/hexane (1:3) to remove any
residual triphosgene and dried under high vacuum overnight to obtain L-lysine(Z)-NCA.
Yield: 1.6 g, (75%).
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3.2.3. Synthesis of CHI-graft-poly(L-lysine(Z))

In a dry 250 mL round bottom flask, CHI-CSA (0.8 g, 2.0 mmol) was dissolved in
125 mL of anhydrous DMSO and equipped with a stir bar. Once dissolved, a three-fold ex-
cess L-lysine(Z)-NCA (1.87 g, 6.1 mmol) was added to the solution. The reaction proceeded
at 23 ◦C while stirring over a period of 5 days. CHI-graft-poly(L-lysine(Z)) polymer solution
was isolated by precipitation in diethyl ether (3 × 100mL) and collected by centrifugation.
The resulting residue was dried under vacuum to yield a white solid, 1.78 g (74%).

3.2.4. Synthesis of CHI-graft-poly(L-leucine-co-L-lysine(Z))

Synthesis was carried out in a similar fashion to CHI-graft-poly(lysine(Z)). In a dry
250 mL round bottom flask, CHI-CSA (0.8 g, 2.0 mmol) was dissolved in 125 mL of an-
hydrous DMSO and equipped with a stir bar. Once dissolved, L-lysine(Z)-NCA (0.937 g,
3.0 mmol) and L-leucine-NCA (0.479 g, 3.0 mmol) were added to the solution in a 1.5-fold
molar excess to CHI amines. The reaction proceeded over 5 days and the final product
was isolated by precipitation in diethyl ether and collected by centrifugation. The resulting
residue was dried under vacuum to yield a white solid, 0.74 g (49%).

3.2.5. Synthesis of CHI-graft-poly(L-leucine-block-lysine(Z))

Using the method described above, CHI-graft-poly(L-leucine) was first synthesized.
In a dry round bottom flask, 0.69 g of CHI-graft-Poly(leucine) was dissolved in 125 mL of
anhydrous DMSO and equipped with a stir bar. Once dissolved, L-lysine(Z)-NCA (1.64 g,
5.3 mmol) was added to the solution. The reaction proceeded at 23 ◦C while stirring over
a period of 5 days. The product was isolated by precipitation in diethyl ether and collected
by centrifugation. The resulting residue was dried under vacuum to yield a white solid,
0.76 g (55%).

3.2.6. Synthesis of Linear GlcN-term-poly(L-lysine(Z))

In a dry 250 mL round bottom flask, 1.5 mmol of GlcN was dissolved in 125 mL of
anhydrous DMSO and equipped with a stir bar. Once dissolved, a 3-fold excess of NCA
(4.5 mmol) was added to the solution. The reaction proceeded at 23 ◦C while stirring
over a period of 5 days. The final products were isolated by precipitation in diethyl ether
and collected by centrifugations residue was dried under high vacuum overnight to yield
off-white solids.

3.2.7. Deprotection of N-ε-Carbobenzyloxy-L-lysine (L-lysine(Z)) Moieties

N-ε-Carbobenzyloxy-L-lysine products were deprotected by HBr. Generally, 1.0 g of
polymer was dissolved in 15 mL of trifluoroacetic acid at 0 ◦C in a sealed vessel. Once
dissolved, 15mL of HBr (33% in acetic acid) was added and stirred for 45 min. The polymer
was precipitated with diethyl ether (150 mL) and then collected by centrifugation. The
final products were washed two additional times with diethyl ether and dried under high
vacuum to yield an off-white solid.

3.3. Characterization

Size exclusion chromatography (SEC) was used to characterize the molecular weight
of the GCPs and model linear polypeptides GlcN-term-poly(L-lysine). SEC analysis was
performed using a Perkin-Elmer Series 200 HPLC/SEC with a Waters 410 RI detector. The
column used was GRAM (50 mm × 8 mm, particle size 10 µm) from PSS Polymer Standards
Service GmbH (Mainz, Germany). DMF was used as a mobile phase for analysis. The
column was calibrated with 5 polystyrene standards in the MW range of 600 to 100,000 Da.
GCPs and model linear polypeptide (1% solutions in DMF) were filtered through a 0.2 µm
filter and used for SEC. The flow rate for analysis was 0.5 mL/min at 40 ◦C, and the injection
volume was 40 µL.

1H-NMR spectroscopy was performed at room temperature using a Bruker (Billerica,
MA, USA) Advance III (400 MHz) NMR spectrometer and analyzed with Bruker’s TopSpin
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software. Spectra of the products were evaluated against precursors with DMSO-d6 as
a reference.

IR spectra were collected using a Nicolet iS10 FTIR spectrophotometer (Waltham,
MA, USA) with a Smart iTX Diamond ATR accessory from 4000 cm−1 to 400 cm−1. Each
experiment used 32 scans.

3.3.1. Minimum Inhibitory Concentrations (MICs)

Bacteria cells were grown overnight at 37 ◦C in Müeller–Hinton (MH) media to
a mid-log phase and diluted to 104 to 105 CFU mL−1 in media. A twofold dilution series of
a 100 µL drug solution in the MH media was made in a 96-well microplate, followed by the
addition of 5.0 µL bacterial suspension (104 to 105 CFU mL−1). The plates were incubated at
37 ◦C for 18 h, and the absorbance at 600 nm was measured with a microplate reader (BioTek
Synergy HT, Winooski, VT, USA). Additionally, 10 µL of AlamarBlue Cell viability reagent
assay was added to each well and incubated at 37 ◦C for an additional 2 h. The absorbance
at 570 nm was measured. Positive control measurements were performed without product,
and the negative control was wells without bacteria/inoculum. MICs were determined as
the lowest concentration that inhibited cell growth by ≥90% using curve-fitting.

3.3.2. LIVE/DEAD Assay to Examine Bacterial Viability

The number of viable cells after exposure to test compounds was confirmed by serially
diluting aliquots of bacteria in Müeller–Hinton media and plating onto Müller–Hinton
Agar for A. tumefaciens. The plates were incubated overnight and the numbers of live
bacteria were enumerated and expressed as CFU mL−1. Experiments were performed
in triplicate.

3.3.3. Crystal Violet Biofilm Assay

Static-culture biofilms were grown on sterile PVC coverslips suspended vertically in
the wells of UV-sterilized 12-well polystyrene dishes. Overnight cultures were diluted to an
initial optical density at 600 nm (OD600) of 0.05 in ATGN media. Each well was inoculated
with 3.0 mL of culture, and the dishes were incubated at room temperature for 12 to 96 h.
Coverslips were stained with 0.1% crystal violet (CV) dye. Quantification of the adherent
biomass was achieved via solubilization of adsorbed CV with 33% acetic acid. The OD600
of the 48 h planktonic cultures and the A600 of the solubilized adherent CV were measured
with a BioTek Synergy HT plate reader. The values shown are the mean A600 +/- standard
error of three biofilm cultures for each strain/condition.

3.3.4. Test of Activity against Biofilms

The anti-biofilm activity of the GCPs was evaluated by inoculating wild type
A. tumefaciens and the mutants ∆visR and ∆upp before colonizing the substrate surface.
The deletion mutants ∆visR and ∆upp were included as controls which exhibit increased
and decreased biofilm production, respectively. Changes in biofilm mass were quantified
using a static biofilm coverslip assay optimized for A. tumefaciens [18]. Briefly, the agrobac-
terium strains were cultured overnight and diluted to an optical density of 0.05 A.U. in
35 mm wells. The cultures were inoculated to a concentration of 0.25 mg/mL with the
respective GCP and a polyvinyl chloride coverslip was suspended in the solution. After
a 24 h incubation, planktonic bacteria growth was quantified by spectrophotometry and
the colonized coverslips were stained with crystal violet solution. Images of the stained
biofilms were collected for qualitative analysis. Finally, crystal violet was solubilized from
the films and the absorbance was measured at 600 nm to estimate the relative amounts of
adhered biomass.

4. Conclusions

In conclusion, this work describes the synthesis and characterization of cationic CHI-
based GCPs. Utilizing a “grafting from” approach, the hydrophobic and cationic amino



Mar. Drugs 2023, 21, 243 18 of 20

acids were conjugated to the polysaccharide CHI via ring-opening polymerization of NCA
derivatives of two amino acids: L-lysine and L-leucine. The polymers were designed as
a novel antimicrobial agent that adheres to traditional structure–function relationships of
AMPs while also mimicking the peptidoglycan structure of bacteria. GCPs with block-
peptide chains were successfully synthesized in a two-step sequential synthesis. Several
amino acid combinations and sequences were synthesized. However, CHI-graft-poly(L-
lysine), CHI-graft-poly(L-leucine-co-L-lysine), and CHI-graft-poly(L-leucine-block-L-lysine)
were optimal for further study. The structure of the GCPs was evaluated using NMR, FTIR,
and SEC.

Additionally, the antimicrobial activity and biocompatibility of cationic GCPs were
evaluated. Compared to linear antimicrobial polymers, GCPs have greater conformational
freedom and charge density which may lead to enhanced bactericidal activity and unique
modes of action. Additionally, GCPs with a polysaccharide backbone may have favorable
interactions with the peptidoglycan layer present in bacteria cell walls. A small set of
representative polymers, CHI-graft-poly(L-lysine), CHI-graft-poly(L-leucine-co-L-Lysine),
and CHI-graft-poly(L-leucine-block-L-lysine), along with glucosamine-terminated GlcN-
term-poly(L-lysine) were selected for the study. The in vitro cytotoxicity of the GCPs was
evaluated against human dermal fibroblasts (HDFs). Of the tested compounds, GlcN-term-
poly(L-lysine) and CHI-graft-p(L-lysine) exhibited the lowest toxicity. All four polymers
demonstrated good cytocompatibility at 2.5 mg/mL. All the polymers were found to
inhibit in vitro growth of E. coli but were largely inactive against S. aureus. CHI-graft-poly(L-
leucine-co-L-lysine) was found to be twice as potent as CHI-graft-poly(L-leucine-block-
L-lysine). GlcN-term-poly(L-lysine) effectively inhibited in vitro growth of E. coli and S.
aureus at concentrations well below MIC values. The anti-biofilm activity of the GCPs was
evaluated against A. tumefaciens, a plant pathogen of agricultural relevance. Both GlcN-
term-poly(L-lysine) and CHI-graft-poly(L-leucine-co-L-lysine) showed significant reductions
in the adherent mass of WT and ∆visR strains. On the other hand, CHI-graft-poly(L-leucine-
block-L-lysine) increased the biofilm mass of wild type while decreasing ∆visR. The extent
to which the reductions in biofilm mass correspond to reductions in planktonic bacteria was
evaluated by normalizing the ratio of biofilm mass to the number of planktonic bacteria.
GlcN-term-poly(L-lysine) reduced adherent mass proportionally to cell viability whereas
CHI-graft-poly(L-leucine-co-L-lysine) more selectively inhibited biofilm formation. Finally,
CHI-graft-poly(L-leucine-block-L-lysine) was found to reduce planktonic cell viability while
increasing adherent biofilm mass.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/md21040243/s1, Figure S1: MTT cell viability assay results. Data
are presented as the mean ± standard deviation, n = 3. Figure S2: MBC plates: E. coli cultures with
the lowest concentration of graft copolymer that exhibited no change in growth were subcultured to
determine minimum bactericidal concentrations [50].

Author Contributions: Conceptualization: A.S. and T.P.E.; methodology development: T.P.E. and
J.E.H.; synthetic work and polymer characterization: T.P.E., G.S. and D.L.G.; antimicrobial characteri-
zation: T.P.E., D.L.G. and J.E.H.; writing—original draft preparation, T.P.E. and G.S. writing—review
and editing, T.P.E., G.S., J.E.H. and A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published article.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/md21040243/s1
https://www.mdpi.com/article/10.3390/md21040243/s1


Mar. Drugs 2023, 21, 243 19 of 20

References
1. Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des.

2009, 15, 2377–2392. [CrossRef] [PubMed]
2. Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev.

Drug Discov. 2011, 11, 37. [CrossRef] [PubMed]
3. Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250.

[CrossRef] [PubMed]
4. Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial

peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [CrossRef] [PubMed]
5. Han, Y.; Zhang, M.; Lai, R.; Zhang, Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides.

Peptides 2021, 146, 170666. [CrossRef]
6. D’Souza, A.R.; Necelis, M.R.; Kulesha, A.; Caputo, G.A.; Makhlynets, O.V. Beneficial Impacts of Incorporating the Non-Natural

Amino Acid Azulenyl-Alanine into the Trp-Rich Antimicrobial Peptide buCATHL4B. Biomolecules 2021, 11, 421. [CrossRef]
[PubMed]

7. Chang, H.-I.; Yang, M.-S.; Liang, M. The synthesis, characterization and antibacterial activity of quaternized poly(2,6-dimethyl-
1,4-phenylene oxide)s modified with ammonium and phosphonium salts. React. Funct. Polym. 2010, 70, 944–950. [CrossRef]

8. Huang, K.-S.; Yang, C.-H.; Huang, S.-L.; Chen, C.-Y.; Lu, Y.-Y.; Lin, Y.-S. Recent Advances in Antimicrobial Polymers:
A Mini-Review. Int. J. Mol. Sci. 2016, 17, 1578. [CrossRef]

9. Palermo, E.F.; Kuroda, K. Chemical Structure of Cationic Groups in Amphiphilic Polymethacrylates Modulates the Antimicrobial
and Hemolytic Activities. Biomacromolecules 2009, 10, 1416–1428. [CrossRef]

10. Popa, A.; Davidescu, C.M.; Trif, R.; Ilia, G.; Iliescu, S.; Dehelean, G. Study of quaternary ‘onium’ salts grafted on polymers: Antibac-
terial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. React. Funct. Polym.
2003, 55, 151–158. [CrossRef]

11. Costanza, F.; Padhee, S.; Wu, H.; Wang, Y.; Revenis, J.; Cao, C.; Li, Q.; Cai, J. Investigation of antimicrobial PEG-poly(amino acid)s.
RSC Adv. 2014, 4, 2089–2095. [CrossRef]

12. Liu, L.; Xu, K.; Wang, H.; Jeremy Tan, P.K.; Fan, W.; Venkatraman, S.S.; Li, L.; Yang, Y.-Y. Self-assembled cationic peptide
nanoparticles as an efficient antimicrobial agent. Nat. Nano 2009, 4, 457–463. [CrossRef] [PubMed]

13. Arnusch, C.J.; Branderhorst, H.; de Kruijff, B.; Liskamp, R.M.J.; Breukink, E.; Pieters, R.J. Enhanced Membrane Pore Formation by
Multimeric/Oligomeric Antimicrobial Peptides. Biochemistry 2007, 46, 13437–13442. [CrossRef]

14. Lam, S.J.; O’Brien-Simpson, N.M.; Pantarat, N.; Sulistio, A.; Wong, E.H.H.; Chen, Y.-Y.; Lenzo, J.C.; Holden, J.A.; Blencowe, A.;
Reynolds, E.C.; et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial
peptide polymers. Nat. Microbiol. 2016, 1, 16162. [CrossRef]

15. Hou, Z.; Shankar, Y.V.; Liu, Y.; Ding, F.; Subramanion, J.L.; Ravikumar, V.; Zamudio-Vázquez, R.; Keogh, D.; Lim, H.;
Tay, M.Y.F.; et al. Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial
Effect against Multidrug-Resistant Bacteria. ACS Appl. Mater. Interfaces 2017, 9, 38288–38303. [CrossRef] [PubMed]

16. Divyashree, M.; Mani, M.K.; Reddy, D.; Kumavath, R.; Ghosh, P.; Azevedo, V.; Barh, D. Clinical Applications of Antimicrobial
Peptides (AMPs): Where do we Stand Now? Protein Pept. Lett. 2020, 27, 120–134. [CrossRef] [PubMed]

17. Hitoshi, S.; Yoshihiro, S.; René, R. Dissolution of Chitosan in Dimethyl Sulfoxide by Salt Formation. Chem. Lett. 2000, 29, 596–597.
18. Weinhold, M.X.; Sauvageau, J.C.M.; Keddig, N.; Matzke, M.; Tartsch, B.; Grunwald, I.; Kübel, C.; Jastorff, B.; Thöming, J. Strategy

to improve the characterization of chitosan for sustainable biomedical applications: SAR guided multi-dimensional analysis.
Green Chem. 2009, 11, 498–509. [CrossRef]

19. Kasaai, M.R.; Arul, J.; Charlet, G. Fragmentation of Chitosan by Acids. Sci. World J. 2013, 2013, 508540. [CrossRef]
20. Chi, P.; Wang, J.; Liu, C. Synthesis and characterization of polycationic chitosan-graft-poly (l-lysine). Mater. Lett. 2008, 62, 147–150.

[CrossRef]
21. Kurita, K.; Yoshida, A.; Koyama, Y. Studies on chitin. 13. New polysaccharide/polypeptide hybrid materials based on chitin and

poly(.gamma.-methyl L-glutamate). Macromolecules 1988, 21, 1579–1583. [CrossRef]
22. Yu, H.; Chen, X.; Lu, T.; Sun, J.; Tian, H.; Hu, J.; Wang, Y.; Zhang, P.; Jing, X. Poly(l-lysine)-Graft-Chitosan Copolymers: Synthesis,

Characterization, and Gene Transfection Effect. Biomacromolecules 2007, 8, 1425–1435. [CrossRef] [PubMed]
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