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Abstract: Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently,
the available therapeutic option has several side effects, including hypotension, bradycardia, ar-
rhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural
sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine
sources serve as reservoirs for new bioactive metabolites with various pharmacological activities.
The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringos-
terol showed promising results in several CVDs. The present review focuses on marine-derived
compounds’ cardioprotective potential for hypertension, ischemic heart disease, myocardial infarc-
tion, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived
components, the future trajectory, and restrictions are also reviewed.

Keywords: marine drugs; cardiovascular diseases (CVDs); atherosclerosis; hypertension; myocardial
infarction

1. Introduction

Cardiovascular diseases (CVDs) are one of the most critical conditions affecting human
health globally. It includes pulmonary circulation, heart, vascular, and cerebrovascular
diseases with higher recurrence and incidence rates [1]. According to 2019 data, CVDs
cover 32% with approximately 17.9 million of all deaths around the world. The incidence
of CVD-related mortality has grown from 12.1 in 1991 to 18.6 million in 2019 and is ex-
pected to increase to 24 million by 2030 [2]. It has been estimated that CVDs will affect
approximately 135 million people, with USD 1.1 trillion in costs [3]. Approximately one
third of all fatalities worldwide in 2019 were attributable to CVDs, which caused the deaths
of 8.9 million women and 9.6 million men. A total of 6.1 million of these fatalities occurred
between the ages of 30 and 70. China had the most CVD fatalities, followed by India, the
Russian Federation, the United States, and Indonesia [4]. An equal proportion of males
and females are affected by CVDs globally, but mortality is higher among women [5]. The
goal of the recommendations made by an international group of leaders and professionals
in the area is to significantly lower the burden of cardiovascular disease worldwide by
2030 [6]. There are several possible causes of CVDs, such as obesity, smoking, high blood
pressure, hyperlipidemia, and diabetes [7]. However, mitochondrial dysfunction is a major
factor in CVDs’ pathogenesis via regulating ROS generation [8]. Diseases such as diabetes
mellitus, COVID-19 [9], and chronic kidney disease (CKD) [10] also cause CVDs via various
pathological pathways in both male and female populations around the world [11]. Cur-
rently, several synthetic drugs, including plasminogen activators, angiotensin-converting
enzyme blockers, angiotensin-2 receptor blockers, calcium channel blockers, β-blockers,
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diuretics, and surgery, are used to treat CVDs. However, they are associated with severe
adverse effects, including time-dependent effects, hypotension, hypersensitivity, bradycar-
dia, arrhythmia, alteration in several ion levels, e.g., potassium and sodium, and surgical
complications [12]. Thus, there is a gap in finding new molecular targets and mechanisms
to overcome side effects associated with exitance therapy. Marine drugs have minimal toxi-
city, no multidrug resistance, and no immune system suppression in CVDs’ patients [13].
Marine natural drugs are more convenient for CVDs due to their high safety profile, nu-
merous biological activities, and natural origin [14]. Furthermore, they demonstrate a wide
range of biological actions against various CVDs, including antioxidant, lipid lowering,
anti-inflammatory, thrombin inhibition, anti-coagulation, vasodilation, hypoglycemia in-
ducing, antiplatelet activation, and enzyme and ion channel receptor blocking [15]. Thus,
marine-derived natural compounds are novel candidates over synthetic drugs for the
minimization of adverse effects in CVDs and associated complications. Marine pharmaceu-
ticals are preferable to other products due to their low toxicity, chemical variety, economic
effectiveness, and demonstrated therapeutic promise.

2. Marine Biodiversity: As Bioactive Reservoirs

The importance of marine natural products (MNPs) in drug discovery, particularly
their role in creating current medications, has been well documented [16]. Marine species
are the most current source of bioactive natural compounds compared to terrestrial plants
and nonmarine microbes. By 2016, 28500 MNPs had been identified, and most had anti-
cancer and cytotoxic properties [17].

The marine environment is a natural habitat for a wide diversity of species with
varying physiologies and adaptability to the environment. Out of the more than 33 animal
phyla known today, 32 phyla are represented in the marine environment, 15 of which are
peculiar to the marine environment [18]. More than 80% of the world’s plant and animal
species live in the oceans. Marine organisms include sponges, tunicates, fishes, soft corals,
nudibranchs, sea hares, opisthobranch, mollusks, echinoderms, bryozoans, prawns, shells,
sea slugs, and marine microorganisms are sources of bioactive compounds [19,20]. Marine
ecosystems provide a rich reservoir of novel bioactive chemical entities with significant
medicinal potential [21]. The diversity of such molecules is distinct, and their development
is encouraged by the chemical and physical circumstances of the sea. It is well known
that marine species can create bioactive chemicals to protect themselves against unusual
environmental circumstances such as high salt, reactive oxygen species, photodynamic
damage, and high temperatures [22]. The ancient Greek, Byzantium, and Mediterranean
cultures used marine animals for therapeutic reasons. Since marine invertebrates have
become so significant in medical practice, much work has been committed to utilizing them.
The medicinal or therapeutic properties and how raw materials are handled and delivered
were recorded in ancient literature. Several marine invertebrates have been utilized as fresh
or dried meat in beverages, liquids, crushed goods, soups, and ointments [23]. Traditional
Chinese medicine has also contributed to marine drug research. Local diaries, folk recipes,
bibliographies, early prescriptions, and dietary advice have contributed to our compre-
hensive grasp of marine medicines and other species. All of this information, as well as
subsequent discoveries, may be found in the Chinese marine Materia medica [24]. Despite
over 250 years of marine research, over 91% of marine creatures still require a complete
description. Since the earliest marine animals appeared around 3500 million years ago,
adverse conditions fostered the evolution of a diverse range of bioactive chemicals to resist
environmental stress [25].

The birth of marine drugs occurred in the 19th century, once biotechnology arose
as a science that offered direction to the research of marine medication creation. These
marine-derived medications have been utilized to treat various ailments, including cancer,
heart disease, diabetes, and neurodegenerative disease [26]. Over the last five decades,
evidence has accumulated that marine-based plants and microbes have a greater potential
for cancer treatment. For example, cytarabine, eribulin mesylate, brentuximab vedotin,
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and trabectidine are marine-based drugs used to treat leukemia, metastatic breast cancer,
soft tissue sarcoma, and ovarian cancer [21]. Currently, ≥26,680 have been isolated and
identified from marine-derived sources, with an average addition of 1000 per year. Due
to the specificity of bioactive compounds toward the targets, they are beneficial in cancer
therapy targeting cancerous cells [27].

Classification of Marine Drugs

Marine drugs are classified based on their sources and pharmacological actions, com-
piled in Table 1, Figure 1A,B.

Table 1. Classification of natural marine compounds.

1. Based on the source

(i). Marine microorganism

Marine source Fungus name Marine drugs/metabolites Fungus source Region References

A. Marine-Derived Fungi

Arthrinium arundinis
ZSDS1-F3

4-hydroxy-2-pyridone
alkaloids, arthpyrones Xisha Islands, China

[28]

Stachybotrys chartarum Phenylspirodrimanes, named
chartarlactams

Weizhou Island in Beibuwan
Bay, Guangxi Province of
China

Aspergillus versicolor
MF359 5-methoxydihydrosterigmatocystin Bohai Sea, China

Aspergillus terreus
SCSGAF0162

Territrem and
butyrolactone derivatives South China Sea

Nigrospora oryzae
SCSGAF 0111 Citrinins, nigrospins B and C South China Sea

B. Marine-Derived Bacteria

Bacillus subterraneus 1159 Bacilsubteramide A South China Sea

[29]
Acinetobacter sp. ZZ1275 Indolepyrazine A and B Coastal area of Karachi,

Sindh, Pakistan

Streptomyces sp.
SCSIO 1179

Dienomycin, 6-methoxy-7′,7′ ′-
dichlorochromopyrrolic acid South China Sea

Transfected Escherichia coli Tricepyridinium Shikine-jima Island in Japan

(ii). Marine Invertebrates

A. Marine Sponges

Psammocinia vermis Psammocindoles A–C Chuja-do, Korea

[30]

Guitarra fimbriata and
G. fimbriata

Guitarrins A–E,
aluminumguitarrin A

Chirpoy Island in the Pacific
Ocean and Urup Island, Sea
of Okhotsk

Fascaplysinopsisreticulata (+)- and (−)-oxoaplysinopsins A–G Xisha Island in the South
China Sea

Geodia barretti Bromooxindole, geobar-rettin A, B
and C and bromoindole West of Iceland

B. Bryozoans

Amathia lamourouxi 2,5-dibromo-1-methyl-1H-indole-
3-carbaldehyde

Rock pools of Woolgoolga
and storm debris from
Korora Beach, Coffs Harbor,
New South Wales, Australia

[31]

Flustra foliacea Flustramines Q–W and
flustraminols C–H South-west coast of Iceland

Securiflustra securifrons Securamines H–J West Spitzbergen

(iii). Marine Plants

A. Algae Laurencia similis Brominated indoles South China Sea

[32]B. Mangrove Trees Acanthus ilicifolius Linn Acanthiline A
Zhanjiang Mangrove
National Nature Reserve,
Guangdong Province, China
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Table 1. Cont.

2. Based on biological activities

Biological activities Marine drugs References

Antibacterial activity

Asperthins A, dienomycin, 6-methoxy-7′,7′ ′-dichlorochromopyrrolic acid, brominated indoles,
tris-indole tulongicin A, 5-Bromotrisindoline, 6-bromotrisindoline, bis-indole alkaloid myrindole
A, pyrazino bis-indole dragmacidin G, bis-indole dihydrospongotine C, spongosoritins B,
spongosoritins D and spongocar-bamides A, cephalosporin C, rifamycin,
okadaic acid, acanthifolicin

[32–36]

Antiviral activity Fusaindoterpenes A and B, fusariumindole A and B, ascandinines C, raistrickindole A,
scequinadolines A, scedapins C, dihydrospongotine C, Tulongicin A, vidarabine [36–41]

Antifungal activity Asperthins E, fumigatoside E, Penochalasins I and J, indolepyrazines A and B, [33,42–45]

Antibiofilm activity 2-(2-methyl-3-en-2-yl)-1H-indole-3-carbaldehyde [46]

Anti-inflammatory activity Sperversamides F and G, asperversamides B and C, asperthins A, E and F, geobarrettins B and C,
flustramines Q, S and U, flustraminols H, zonarol, prepacifenol, tetrado toxin [33,47–49]

Antiparasitic activity 5-Bromotrisindoline, 6-bromotrisindoline, dragmacidin G [35,50]

Analgesic activity Ziconotide [36,51]

Cardioprotective activity Omega-3 acid ethyl esters, eldoisin, laminin, xyloketal B [51,52]

Anti-Quorum
sensing activity Aspertoryadins F and G [53]

Neuroprotective activity 16,17-dihydroxydeoxydihydroisoaustamide, 16α,17α-dihydroxydeoxydihydroisoaustamide,
A-conotoxins, cembranoids, ircinialactams, dysideamine [22,54]

Anticancer activity

Ascandinines D, Asperindoles A, penochalasins I, penochalasin K, candidusin D, dienomycin,
6-methoxy-7′,7′ ′-dichorochromopyrrolicacid, (+)-oxoaplysinopsin C (133a), (−)-oxoaplysinopsin C,
dragmacidin G, Dragmacidins I and J, Spongosoritins A–D, cytarabine, fludarabine phosphate,
nelarabine, eribulin mesylate, plitidepsin, trabectedin, brentuximab vedotin,
crassian acetate, sinularin

[34–36,43,44,
48,55–57]

Antidiabetic activity Scequinadoline J, penerpenes A and B, enerpenes E, F and H, SF5280-415, psammocindoles A–C,
(±)-Oxoaplysinopsin B [30,40,58–60]

Pro-angiogenic activity Dinotoamide J [54]

Enzyme inhibitors Guitarrins C, spongosoritins B and C, spongocarbamides A and B, xestosaprols, tasiamide B,
leucettamines, petrosamine [22,48,61]
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3. Role of Marine Drugs in CVDs Management
3.1. Hypertension

Hypertension is one of the most severe problems among all CVDs, and is responsible
for stroke, ischemic heart disease, dementia, chronic kidney disease, and other CVDs [62].
According to 2019 age-standardized prevalence data, 32% of women and 34% of men aged
30–79 worldwide had hypertension [63]. Many marine natural compounds, including
bioactive molecules, chito-oligosaccharide derivatives (COS), and phlorotannins, were
obtained from marine species and are potential leads for ACE inhibitors and evolved as nu-
traceutical medicinal compounds for the treatment of hypertension [64,65]. Natural marine
ACE inhibitors are being studied as alternatives to synthetic drugs to avoid several serious
side effects and hold a significant potential to become new therapeutic options for the
treatment of hypertension [66]. Biopeptides or ACE-inhibitory peptides derived from fish
proteins are often made under controlled circumstances by proteolyzing marine proteins
advanced for the treatment of hypertension [67]. Furthermore, marine red algae Gracilar-
iopsis lemaneiformis have been identified as producing several marine-based new ACE
inhibiting peptides, FQIN [M(O)] CILR and TGAPCR, discovered by LC-MS/MS screening
in G. lemaneiformis protein hydrolysates. These peptides significantly decreased systolic
and diastolic blood pressure (DBP) in the spontaneously hypertensive rat model [68]. In the
same direction, Sato M. et al. identified seven peptides: Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr,
Val-Trp, Ile-Trp, and Leu-Trp from hydrolysates of wakame (Undaria pinnatifida) brown
seaweed using three steps, HPLC and liquid chromatography-mass spectroscopy. Four
of seven seaweed-derived peptides (Val-Tyr, Ile-Tyr, Phe-Tyr, and Ile-Trp) significantly
reduced systolic blood pressure in spontaneously hypertensive rats at a dose of 1 mg/kg.
This offers a possible source of new AEC inhibitors as antihypertensives [69]. In addition,
Sun et al. also identified two Phe-Gly-Met-Pro-Leu-Asp-Arg (FGMPLDR; MW 834.41 Da)
and Met-Glu-Leu-Val-Leu-Arg (MELVLR; MW 759.43 Da) ACE inhibitory peptides from the
protein hydrolysate marine macroalga of Ulva intestinalis. In silico and in vitro molecular
docking studies revealed these two peptides have ACE binding and inhibitory activity [70].

One of the most well-known marine-derived compounds is alginate oligosaccharides
(AOS) that offer protection against perivascular inflammation, reduction in the vascular
luminal area, and hemodynamic alterations of pulmonary hypertension in the rat produced
by monocrotaline (MCT) model via downregulating P-selectin [71]. Another study demon-
strated that omega-3 Q10, a polyunsaturated fatty acid (n3-PUFA) formulation, appears to
be more effective than soybean oil supplementation at reducing diastolic blood pressure
and associated symptoms with hypertension in older adults [72]. Moreover, mangrove
fungus-isolated xyloketal B showed phenylephrine (Phe)-induced contractions induced hy-
pertension protection by decreasing the systolic and diastolic blood pressure via enhancing
endothelial NO release through the Akt/eNOS pathway [51]. In addition, a controlled trial
study conducted by Sámano MJ et al. evaluated the combination of Spirulina (Arthrospira)
maxima (filamentous, gram-negative cyanobacterium) with angiotensin-converting en-
zyme (ACE) inhibitors in patients with systemic arterial hypertension (SAH) and accessed
its effects on endothelial damage and oxidative stress. Results showed that Spirulina
significantly reduced systolic blood pressure, increased anti-oxidant level (glutathione
peroxidase activity and oxidized glutathione), and decreased endothelial damage markers
(sVCAM-1, sE-selectin, and endothelin-1) [73]. It has other properties such as antiviral,
anti-dyslipidemic, and antioxidant [74]. Low molecular mass potassium alginate (L-PA),
brown algae, shows an antihypertensive effect on DOCA salt-induced hypertension in
rats (Figure 2) [75]. Overall, data suggested that marine-derived compounds have the
potential to cure hypertension, but a detailed mechanistic study is still needed. Moreover,
Therapeutic potential of marine drugs in CVDs management has been tubulated in Table 2.
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Table 2. Preclinical study of marine drugs in various CVDs.

S. No. CVDs Marine Drug Name Species Dose, Route and Time MOA Model Inducing Agents Outcomes/Biological Effects References

1. Hypertension

Protein hydrolysate Ulva
intestinalis derived peptides
FGMPLD and MELVLR

In vitro 2.5 mg/mL of
each hydrolysate Inhibit ACE ACE-induced hypertension Antihypertensive effect [70]

Wakame (Undaria pinnatifida)
derived peptides (Val-Tyr,
Ile-Tyr, Phe-Tyr, and Ile-Trp)

Rats 1 mg/kg Inhibit ACE Spontaneously
hypertensive rats Antihypertensive effect [69]

Low molecular mass potassium
alginate (L-PA) Rats 250, 500 mg/kg, once

orally for 30 days
Increased the excretion
of sodium salt

Deoxycorticosterone
acetate
(DOCA)-salt-induced
hypertension

Antihypertensive effect [75]

Alginate oligosaccharides
(AOS)

Rats

5, 10 and 20 mg/kg for
5 weeks

Suppressed intestinal
absorption of salts leads
to vasodilatory effect

Monocrotaline
(MCT)-induced pulmonary
hypertension

Decrease P-selectin expression in
serum, pulmonary tissue, and
pulmonary arteries

[71]

Gracilariopsis lemaneiformis
derived Peptides (FQIN [M(O)]
CILR and TGAPCR)

10 mg/kg, orally
for 24 hrs.

Inhibit
angiotensin-converting
enzyme (ACE)

ACE-induced hypertension
Antihypertensive effects, reduced
both systolic and diastolic
blood pressure

[68,76]

Xyloketal B 20 mg/kg/day, 20 for
12 weeks

Promoted endothelial
NO release and protected
against atherosclerosis
through the
Akt/eNOS pathway.

Phenylephrine
(Phe)-induced contractions
cause hypertension

Antihypertensive effect,
Decrease the systolic and
diastolic blood pressure,
vasorelaxant effect,
anti-inflammatory and
anti-atherosclerotic effects

[51]

2. Atherosclerosis

Asperlin

Mice

80 mg/kg/day, orally
for 12 weeks

Inhibit the
pro-inflammatory
markers

In vitro (LPS-induced foam
cell formation in
macrophages) and in vivo
(high-fat diet-induced-
atherosclerosis lesion in
ApoE−/− mice)

Athero-protection via decreasing
the expression levels of iNOS,
IL-1β, and TNF-α, and increased
the expression of IL-10 and IL-4,

[77]

Xyloketal B
7, 14 and
28 mg/kg/day, orally
for 16 weeks

Inhibit the oxidative
endothelial dysfunction
and increase nitric oxide
(NO) bioavailability

High-fat diet-induced
atherosclerotic lesion

Strong antioxidant actions,
reduced the levels of vascular
oxidative stress, improving the
impaired endothelium integrity
and NO-dependent aortic
vasorelaxation in atherosclerotic

[78]
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Table 2. Cont.

S. No. CVDs Marine Drug Name Species Dose, Route and Time MOA Model Inducing Agents Outcomes/Biological Effects References

Saringosterol Mice 50 mg/kg/day, orally
for 2 weeks

Altered the liver X
receptor (LXR)-regulated
gene expression

High-fat diet-induced
atherosclerosis

Decrease cholesterol level and
anti-atherogenic effect [79]

Manzamine ApoE-/-
deficient mice

30 mg/kg/day, orally
for 80 days

Inhibited the acyl-CoA:
cholesterol acyl-transferase
(ACAT) activity

Decrease the level of total,
free and LDL-cholesterol,
and triglycerides

[80]

Astaxanthin ApoE-/-
deficient mice

0.03% (equivalent to
approx. 200 mg/day in
humans), orally for
4 weeks

By increasing the
expression of LDL
receptor (LDLR)

High-fat diet (high fat 15%
and high cholesterol
0.2%)-induced
atherosclerosis

Decrease the level of total
triglyceride, and cholesterol [81]

Vitamin E Rabbit 450 mg/1000 g chow
fed orally for 6-weeks

Decrease creatine
kinase elevation

High cholesterol-enriched
diet induced
atherosclerosis

Lowered aortic TBARS levels,
favorable prostanoid
generation, and diminished
atherosclerotic lesions

[82]

Fascaplysin BALB/c mice

5 mg/kg,
intraperitoneally 19 h
and 1 h before
inducing thrombus

Inhibited kinase enzyme,
and decreased
GPIIb/IIIa activation

Photochemical-induced
thrombus

Anti-platelet, and anti-thrombus
effect via inhibiting GPIIb/IIIa
integrin complex

[83]

Isaridin E C57BL/6J mice

12.5, 25, 50 and 100
mg/kg, orally at 1, 24
and 48 h before
FeCl3-Induced
thrombus

Inhibited adenosine
diphosphate FeCl3-induced thrombus Antithrombotic, and antiplatelet

effect in atherosclerosis [84]

3.
Myocardial
Infarction (MI)

Cyanobacterial extract (CBE)
and CBE+ GNPs Rats

200 mg/kg/day,
intraperitoneally for
14 days

Inhibit the depletion of
the anti-oxidant enzymes
(GRx and SOD) Isoproterenol-induced MI

Decrease ST and QT segments,
heart rate, and serum activities of
creatine phosphokinase (CPK),
reduced systolic and diastolic
blood pressure

[85]

Docosahexaenoic acid (DHA) Pig
45 mg or 1 mg/kg,
infused in pericardial
space for 40 min.

Inhibited Ca2+ and
Na+/Ca2+ exchanger
currents and prevented
intracellularly Ca2+

concentration

Sternotomy method was
used to expose the heart
and induce MI

Decrease fatal arrhythmias and
infarct sizes, decrease heart rates
and reduce ventricular
arrhythmia scores
during ischemia.

[86,87]
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Table 2. Cont.

S. No. CVDs Marine Drug Name Species Dose, Route and Time MOA Model Inducing Agents Outcomes/Biological Effects References

4. Cardiac Stroke Xyloketal B Mice
50 mg/kg
intraperitoneally 0, 1
and 2 h. after ischemia

By suppressing
TLR4/NF-κB/ROS
signaling pathway

Transient middle cerebral
artery occlusion-
induced stroke

Decrease ROS production, focal
cerebral ischemia, and reduce
infarction volume.

[88]

5.
Cardiac
Arrythmia

Botulinum toxin-chitosan
nanoparticles (BTN) Rat 5 U/kg, subepicardial

injection for 14 days

Decreased the activation
of Ca2+, K+ and
Na+ channels

Calcium chloride-, barium
chloride- and electrically
induced arrhythmia

Inhibit ventricular fibrillation,
reduce the incidence of
ventricular arrhythmias

[89]

Eicosapentaenoic acid (EPA) Dog
5–15 µmol/L,
intravenous infusion
for 50–60 min.

Inhibition of Ca2+ and
Na+/Ca2+ exchanger
currents increase Ca2+

concentrations
intracellularly

High Ca2+, ouabain,
lysophosphatidylcholine,
acylcarnitine, β-adrenergic
agonist, and Ca2+

ionophore-induced
arrhythmia

Inhibit cardiac arrhythmia
through inhibition of fatal
ischemia, prevents
tachyarrhythmias

[86,90]

6. Heart value
disease Fucoxanthin (Fx) Dog 60 mg/kg twice daily

for 2 years

Reduced oxidative
stress-induced
DNA damage

H2O2-induced oxidative
stress-induced heart
value damages

Strong antioxidant,
anti-inflammatory, and antitumor
properties, improved cell
survival and, protective effect
against calcification

[91]

7. Cardiac
dysfunction Zeaxanthin (ZH) Rats 250 µg/kg, orally for

4 weeks

Elevated retinoid
receptor alpha (RAR-α)
expression in
cardiac tissue

D-galactose-induced
cardiac dysfunction

Improve serum levels of
homocysteine, creatinine kinase
isoenzyme and lactate
dehydrogenase, increase the
cardiac contents of glucose
transporter-4 and superoxide
dismutase, decrease inducible
nitric oxide synthetase and
interleukin-6

[92]
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3.2. Atherosclerosis

Atherosclerosis is a chronic, inflammatory, progressive cardiovascular disease that
results from ongoing blood vessel damage brought on by hyperlipidemia and increased
cholesterol levels [93]. Marine-based derived compounds have been effective against
atherosclerosis since ancient times. These compounds have advantages over synthetic
compounds in atherosclerosis due to greater effectiveness and lower side effects [94].
Marine-derived algal polysaccharides are the active ingredients in products made from
marine sources that have a hypolipidemic impact and cure atherosclerosis.

Saringosterol, a phytosterol derived from the edible marine seaweed Sargassum
fusiforme, has high and selective liver X receptor (LXR) activity [95]. Yan et. al. reported
that saringosterol treatment reduced the burden of atherosclerotic plaques while having
no negative effects on the liver of apoE-deficient rats. Saringosterol reduces cholesterol
homeostasis disruption, influencing atherosclerosis’s progression [79]. However, asperlin
is derived from the marine fungus Aspergillus versicolor LZD4403 and possesses antifungal
and anti-inflammatory properties. Zhou Y et. al. reported that asperlin has atheroprotec-
tive potential in vitro and in vivo. Results indicated that asperlin treatment significantly
reduced inflammatory cytokines (iNOS, IL-1β, and TNF-α), increased protective cytokines
(IL-10 and IL-4), and reduced aortic dilation and atherosclerosis plaque formation in the
aorta [77]. This suggested that the anti-inflammatory properties of asperlin could be benefi-
cial against atherosclerosis. Manzamine A is a naturally occurring alkaloid obtained from
the sea sponge Acanthostrongylophora ingens [96]. In atherosclerosis, Eguchi et al. conducted
a study where Manzamine A suppressed acyl-CoA: cholesterol acyl-transferase activity in
hamster ovary cells. In addition, Manzamine A treatment significantly reduced the serum
level of total cholesterol, free cholesterol, LDL-cholesterol, triglyceride, and atherosclerotic
lesion formation in apolipoprotein E (apoE)-deficient mice [80]. Astaxanthin is a xantho-
phyll pigment obtained from microalgae, fungi, complex plants, seafood, and flamingos.
As an antioxidant with anti-inflammatory characteristics, it has the potential to be used as
a treatment for atherosclerotic cardiovascular disease [97]. Yang Y et. al. demonstrated the
hypocholesterolemic effect of astaxanthin via reducing total plasma cholesterol, TG and
increased LDL receptor (LDLR), 3-hydroxy-3-methylglutaryl CoA reductase, and sterol reg-
ulatory element binding-protein 2 (SREBP-2) and greater mature SREBP-2 protein apoE(-/-)
mice (Figure 3) [81]. In high-fat diet mice, Xyloketal B also protects against atherosclerosis
through a strong antioxidant effect [78].
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Moreover, there are several major causes of atherosclerosis. However, thermo-inflmation
plays a crucial role in atherosclerosis pathogenesis via influencing the plague formation.
Thrombo-inflammation refers to the complex cascading interaction between the blood
coagulation process and inflammation in the pathogenesis of CVDs [98]. The formation of
arterial thrombosis is mostly caused by platelet adhesion under high shear stress, which
arises in stenotic atherosclerotic arteries [99]. Meanwhile, platelet-activating factor (PAF)
is a powerful lipid mediator that acts through PAF/PAF-R pathways and is a key player
in inflammation by recruiting neutrophils and activating platelets in the development of
atherosclerosis [100].

Several marine-derived drugs have been investigated to inhibit thrombo-inflammation
in CVDs. Fascaplysin is a Fijian marine sponge derived from the genus Fascaplysinopsis [101],
which is a kinase inhibitor with anti-thrombotic properties via inhibiting GPIIb/IIIa activa-
tion, platelet aggregation, and thrombus formation [83]. Another cyclodepsipeptide marine
compound Isaridin E derived from the Amphichorda feline (Beauveria feline) fungus [102],
demonstrated the dose-dependent inhibition of platelet activation, aggregation, and secre-
tion. However, it does not have any effect against thrombin- or collagen-induced platelet
aggregation. Isaridin E also showed an antithrombotic effect without increasing bleeding
time in a dose-dependent manner against the FeCl3-induced carotid mouse model [84].
F-fucoidan (FD) is a polysaccharide compound derived from the brown alga Laminaria
japonica that also shows an antithrombotic effect through shortening the blood lysis time,
H2O2 expression stimulation, and H2O2 released after induction of PGI2 production and
might be effective in CVDs’ patients [103]. The anti-thrombotic and anti-atherosclerotic
properties of marine-derived omega 3 polyunsaturated fatty acids (n-3 PUFA) may help
to reduce heart failure by lowering the risk of ischemic heart disease. It is known that n-3
PUFA enhances plasminogen activator inhibitor-1 by lowering fibrinogen and decreasing
platelet-derived thromboxane A2 (TXA2), which increases platelet aggregation and vaso-
constriction [104]. Therefore, So, overall, it seems like marine-based drugs could be used to
treat atherosclerosis, but a more detailed mechanistic study is still needed.

3.3. Myocardial Infarction (MI)

MI occurs due to the occlusion of the coronary artery, leads to a shortage in oxygen
and nutrients, and causes irreversible necrosis and death of cardiomyocytes [105]. It
is the major cause of death and disability among other CVDs worldwide [106]. Using
marine-derived metal nanoparticles, a novel method for treating thrombus dissolution
and myocyte healing in infarcted areas (myocardial infarction) [107]. The anti-myocardial
infarction activity of the gold nanoparticles (GNPs) was an innovative method in which
cyanobacterial extract, GNP solution, and a combination of both were developed [85].
Omega-3 polyunsaturated fatty acids (PUFA), a marine compound, have shown beneficial
benefits on myocardial infarction by reducing MI size in experimental and clinical research
(Figure 3) [104]. Docosahexaenoic acid (DHA) is a long-chain omega-3 PUFA obtained from
the marine source that has shown a protective effect against myocardial infarction [87]. An
in vivo study of DHA in a rat model showed a protective effect against MI at 5 g/kg [108].
There are few marine-derived compounds in MI that have been investigated until now.
Thus, in addition, a more detailed mechanistic study is needed.

3.4. Ischemic Heart Disease (IHD)

IHD is an inadequate blood supply of the coronary artery to the myocardium. En-
dothelial dysfunction is the main involvement in the mechanism of IHD [109]. It is the
main cause of morbidity and mortality among all CVDs globally [110]. A 2016 report
states it is responsible for 9 million deaths worldwide [111]. Marine-derived drugs are
better than synthetic drugs to treat IHD due to their affective action and better results [104].
Histochrome, a sodium salt of echinochrome A, is a marine drug found as a common
sea urchin pigment. It is a powerful and biosafe cell-priming agent that prevents cardiac
progenitor cells (CPCs) from cellular apoptosis via the downregulation of BCL2-associated
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X (Bax) cleaved caspase-3, and phosphorylated histone, whereas upregulation of Bcl-xL and
B-cell lymphoma 2 (Bcl-2) proteins, utilizing patient-derived human CPCs in treating heart
disease [112]. In vitro study of echinochrome A (Ech A), a naturally occurring pigment
from sea urchins, showed marine anti-thrombotics, especially sulfated polysaccharides, are
relevant due to their distinct modes of action and absence of bleeding. Their distinct modes
of action as an antithrombotic are due to the high negative charge that sulfation imparts,
which enables them to interact with proteins and molecules involved in vital biological pro-
cesses such as coagulation [113]. In addition, both polysaccharides Enteromorpha prolifera
polysaccharides (EPPs), produced from green algae, and fucoidan, extracted from brown
algae, have anti-oxidant, lipid-lowering, and antiangiogenic properties [114]. Alginate
(ALG), mostly derived from brown seaweed, can lower TC, TG, and LDL-C serum levels
and upregulate HDL-C concentrations, making it an effective treatment for coronary artery
disease [15].

3.5. Cardiac Stroke

Cardiac stroke is the most severe complication of CVDs, causing sudden death. CVDs
are mostly caused by cardiac arrest or stroke in individuals with elevated blood pressure,
high cholesterol, obesity, increased blood glucose levels, and weight gain [115]. Natural
compounds derived from marine sources have already been regarded as lead molecules for
treating CVDs and cardiac arrest due to their varied chemical compositions and pharma-
cological characteristics [116]. A carotenoid molecule called fucoxanthin, obtained from
brown algae, prevents lipids’ oxidation and buildup [117]. Fucoxanthin protects against
cardiac stroke by regulating metabolic syndrome [118]. Another carotenoid, astaxanthin,
showed a positive effect in cardiac stroke via the modulating number of biological processes,
including the reduction in inflammation, augmentation of oxidative stress, enhancement
of antioxidants, and the modification of lipid and glucose concentrations via suppress-
ing TLR4/NF-κB/ROS signaling pathway [119]. A new type of unique structure called
Xyloketal B contains a marine component derived from Xylaria species. Xyloketal B can
benefit cardiac stroke due to its protective effect in the two-clip stroke-prone hypertensive
model [120].

3.6. Cardiac Arrhythmia

Cardiac arrhythmias account for 10%–15% of fatalities, making them a substantial
reason for morbidity and mortality worldwide [121]. Tetrodotoxin (TTX) is a marine com-
pound obtained from the actinomycetes of marine sediments and has a beneficial effect on
cardiac arrhythmia. It is also known as the puffer fish toxin that prevents sodium channels
in excitable neurons [122]. It has also shown an antiarrhythmic effect in combinatorial
therapy with lidocaine [123].

Many toxins, including tetrodotoxin, saxitoxin, brevetoxins, antillatoxin, conotoxins,
and cnidarians, are found in marine species such as pufferfish, shellfish, sea anemones,
and cone snails, are voltage-gated sodium channels (VGSCs) blockers, and show protective
effects against cardiac arrhythmia [124]. Other marine drugs, omega-3 fatty acids eicosapen-
taenoic acid and docosahexaenoic acid, have shown antiarrhythmic effects against various
arrhythmic disturbances, including atrial fibrillation and ventricular arrhythmia [125].
Eicosapentaenoic acid shows antiarrhythmic activity when added to the superfusate be-
fore adding the toxins, including ouabain, lysophosphatidylcholine, high Ca2+, acylcar-
nitine, β-adrenergic agonist, and the Ca2+ ionophore [90]. Botulinum toxin is obtained
from the marine source Clostridium botulinum. Clostridium botulinum is a Gram-positive
anaerobic spore-forming bacterium found in marine environments [126]. The botulinum
toxin (BoNT/A1)–chitosan nanoparticles (BTN) formulation inhibits arrhythmia caused by
sodium, calcium, and potassium channel activation [89].
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3.7. Cardiac Dysfunction

Chronic cardiac dysfunction is caused by contractility overload on the heart my-
ocardium. Different etiologies may favor existing compensatory mechanisms such as
excentric (dilatation) and concentric hypertrophy. Chronic left ventricular dysfunction
is the most prevalent complication of MI. Chronic cardiac dysfunction worsens left ven-
tricular ejection fraction and stroke volume as dilatation progresses, eventually leading
to heart failure [127]. Retinoid receptors play a crucial role in several diseases, including
diabetes [128], cancer [129], and CVDs [130]. A research study reported that the retinoid
receptor is essential for heart function. Moreover, tamoxifen-induced myocardial specific
RARα deletion (RARαKO) mice showed significant diastolic dysfunction, increased intra-
cellular ROS, NOX2 (NADPH oxidase 2), NOX4 and decreased antioxidant level (SOD1
and SOD2). This effect is reversed by overexpression of retinoid receptors [131]. In addition,
Guleria RS et al. also demonstrated that retinoid receptors play a role in diabetic-induced
cardiomyopathy [132]. In the same way, zeaxanthin heneicosylate (ZH) extracted from
microalgae Dunaliella salina significantly reduced plasma biochemical alteration (AST, ALT,
urea, and creatinine level), pro-inflammatory level (IL-6, NF-κB, and iNOS), antioxidant
level (SOD), and histological changes in D-galactose-induced cardiac dysfunction rats
through stimulating the retinoid receptors [92]. There are only a few studies on cardiac
dysfunction; thus, detailed mechanistic studies are needed.

3.8. Heart Valve Disease or Valvular Heart Disease

Valvular heart disease (VHD) is a cluster of frequent cardiovascular disorders that
account for 10–20% of all cardiac surgical operations in the United States. Heart valve
problems include regurgitation (valve flaps do not close properly), stenosis (narrowed
valve opening), and atresia (valve does not have a proper opening). Fucoxanthin is a
marine carotenoid obtained from the seaweed microalgae Phaeodactylum tricornutum and
possesses antioxidant and anti-inflammatory properties [133]. A report by Chiang et al.
demonstrated the protective potential of heart valves in heart valve interstitial cells and
dogs. Results showed that fucoxanthin treatment significantly reduced H2O2-induced
ROS level, DNA damage, cell survival, and protein-related apoptosis and calcification
expression via modulating the Akt/ERK pathway. In addition, long-term (0.5 to 2 years)
supplementation to the dog also improved the left atrium to aortic (LA/AO) dimension
ratio and E/e value (indicate mitral valve inflow, mitral valve leakage, and left ventricular
diastolic dysfunction) [91]. This suggests that marine-derived compounds hold a diverse
therapeutic potential. In addition, marine drugs which hold biological effects in CVDs
tubulated in Table 3.

Table 3. Marine drugs class, source, and their biological effects in CVDs.

Class Marine Drugs Marine Source Biological Effects References

Pigments
(Xanthophyll
carotenoid)

Astaxanthin

Microalgae
(Haematococcus pluvialis, Chlorella
zofingiensis, and Chlorococcum sp.),
fungi (red yeast Phaffia rhodozyma)
crustacean, Shrimp, lobster, trout,
krill, salmon, fungi, complex
plants, seafood, flamingos,
and quail

Cardioprotective (atherosclerosis protective),
antidepressant, antioxidant,
anti-inflammatory, neuroprotective,
anticancer, antidiabetic, gastrointestinal
protective, and hepatoprotective.

[22,134–137]

Fucoxanthin
Macroalgae (Undaria pinnatifida,
Hijikia fusiformis and
Sargassum fulvelum)

Cardioprotective, Antioxidant,
thermogenesis, stroke prevention,
anti-inflammatory, anticancer, and improved
blood pressure and liver function.

[118]
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Table 3. Cont.

Class Marine Drugs Marine Source Biological Effects References

Soluble
dietary fibers

Alginate/Alginic acid
Brown macroalgae (Pseudomonas
and Azotobacter, Pseudomonas
aeruginosa, Azotobacter chroococcum)

Cardioprotective (used in myocardial
infarction), antimicrobial, anti-inflammatory,
anticancer, and antidiabetic.

[137–140]

Carrageenan

Red macroalgae
Chondrus armatus (Gigartinaceae),
Eucheuma, Betaphycus, Kappaphycus,
and Chondrus crispus

Cardioprotective (used for ischemic heart
disease), immunomodulator,
anti-hypercholesterolaemic,
anti-inflammatory, anticancer, and
antivirus properties.

[141]

Agar Gelidium, Pterocladia, and Gracilaria
gracilis (Rhodophyta)

Cardioprotective, anticoagulant, antiviral,
antioxidative, anticancer, and
immune-modulating activities. [137,138,142]

Fucoidans Fucus vesiculosus and L. japonica Cardioprotective, coagulant activity.

Ulvans Ulva pertusua Anti-oxidant activity.

Peptides

Leu-Lys-Gln-Glu-Leu-
Glu-Asp-Leu-Leu-Glu-
Lys-Gln-Glu

Crassostrea gigas
Anticancer, antihypertensive,
anti-thrombosis, antioxidant, and
anticoagulant properties.

[137,138]

Pepsin-hydrolyzed
peptide
(VECYGPNRPQF)

Seaweed (Chlorella vulgaris) Potent antioxidant, anticancer, opioid
agonists or antagonists, immunomodulatory,
antithrombotic, anti-atherosclerotic, and
antimicrobial activities.

[143]
Antitumor
polypeptide Y2 Spirulina platensis

Phycobili protein
byproduct Porphyra columbina

Immunosuppressive effects through
increasing IL-10 production and preventing
the production of IFN-γ and TNF-α.

[144]

Leu-Trp, Val-Tyr, Ile-Tyr,
Phe-Tyr, and Ile-Tyr U. pinnatifida Antihypertensive effects. [69]

α and β subunits
of phycoerythrin Red seaweed (P. palmate) ACE inhibition activity. [145]

Ile-Leu-Ala-Pro,
Leu-Leu-Ala-Pro, and
Met-Ala-Gly-Val-Asp-
His-Ile

Macroalga
(Palmaria palmata)

Inhibited DPP-IV (ischemic cardiovascular
disease marker). [146]

Ile-Pro and Ala-Phe-Leu Chlorophyta U. rigida ACE inhibition activity. [76]

Phlorotannins
(phenolic
compounds)

Phloroglucinol Hyaleucerea fusiformis
Potent antioxidant effects, anti-inflammatory
and anticancer effects, inhibit the
hyaluronidase enzyme. [137,138,147]

Phlorofucofuroeckol A Eisenia bicyclis, Ecklonia cava
(brown algae)

Antidiabetic, antihypertensive,
antioxidant activity.

Minerals

Na, K, Mg, P, I, Zn,
and Fe

Microalgae (Chlorococcum humicola
and Chlorella vulgaris)

Used for the prevention and treatment
of CVDs.

[137,138]

Na+/K+ ratio, Mg Controls blood pressure, prevent metabolic
syndrome and atherosclerosis.

NaCl Increases arterial constriction and peripheral
vascular resistance, increased blood pressure.

K+
Decreases the blood pressure, preventing
problems associated with high
blood pressure.

Lipids

Eicosapentanoic acid Microalga
Nannochloropsis gaditana (NG)

Reduced inflammatory genes expression and
inhibits platelets. [138,148]

Arachidonic acid Mortierella alpina (saprophytic,
oleaginous soil fungus)

Activates the immune functions,
pro-inflammatory properties, maintaining
homeostasis, anticancer, cardioprotective,
anti-psoriasis, anti-arteriosclerosis, and
antiulcer properties.

[138,149]
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Table 3. Cont.

Class Marine Drugs Marine Source Biological Effects References

Sulphated
fucans Fucoidan

Brown seaweeds (Sargassum
ilicifolium and Sargassum
angustifolium)

Reduces lipid deposition in atherosclerosis,
hypolipidemic effect controls obesity.
CVDs

[150,151]

Marine
Neurotoxins Tetrodotoxin (TTX) Sea-slug Pleurobranchaea maculata

and pufferfish Takifugu niphobles
Visceral analgesic, local anesthetic,
controls cardiac contractions. [124,152–154]

Non-peptide
neurotoxin Saxitoxin (STX)

Dinoflagellates species from the
genera Alexandrium, Gymnodinium,
Centrodinium and Pyrodinium

Wound healing, corneal analgesic,
controls myocardial impulse generation. [124,154,155]

Fungus Xyloketal B Mangrove fungus xylaria species [156]

4. Clinical Trial Studies of Marine-Derived Drugs in CVDs

Several marine-derived drugs, such as astaxanthin, alginate, eicosapentaenoic acid,
etc., have been approved for clinical trial studies in various CVDs. These are effective when
used with CVDs patients in clinical trial studies. However, more studies are required to
collect data to prove that marine drugs provide a better therapy for CVDs. All the clinical
studies on marine-derived drugs for CVDs are compiled in Table 4.
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Table 4. List of marine drugs under clinical trials.

Sr.
No. Marine Drugs Disease Sponsor

(Organization)
Phase (Number
of Participants)

Duration of
Intervention Type of Study Current

Status Possible MOA Measured Outcome NCT

1.
Astaxanthin + omega 3
fatty acids + vitamin E +
hawthorn (Ritmonutra)

Arrhythmia
IRCCS
Policlinico S.
Donato

NA (24)
Daily 2 tablets,
orally for
4 weeks

Interventional Unknown Decrease the
number of SVEB

Decrease SVEB-related
symptoms via a
symptom score and
QOL survey

NCT02087033

2.

Astaxanthin +
monacolin K + berberine
+ policosanol + folic acid
+ coenzyme Q10
(Nutraceutical
combination)

Atherosclerosis University Of
Perugia 4 (26) Daily one pill

for 3 months Interventional Completed
(Phase 4)

Decrease the
lipid profile

Changes in LDL-C,
PCSK9, hs-CRP levels,
and arterial stiffness

NCT03470376

3.

Astaxanthin + omega-3
polyunsaturated fatty
acids + vitamin E +
vitamin B complex +
hawthorn + diet
(Ritmonutra)

Benign
ventricular and
supraventricular
arrhythmias

Federico II
University 4 (1500) 4 weeks Interventional Completed

(Phase 4)

Regulate cardiac
pacing, lowering the
overall incidence
of BES and
enhancing QOL

Reduced ventricular
and atrial arrhythmias
and improved QOL

NCT01647984

4. Alginate beverage Cardiovascular
Disease

University of
Copenhagen NA (96) Daily 3 × 500

mL for 12 weeks Interventional Completed

Decrease body
weight and major
risk markers
of CVDs

Improvement in body
weight, blood
pressure, risk markers
for CVDs and T2D

NCT01231178

5. Alginate Hydrogel Heart Failure Xijing Hospital NA (10)
Single-use
implanted in the
myocardium

Interventional Enrolling by
invitation

Reduce the
symptoms of left
ventricular ischemia
and non-ischemic
cardiomyopathy

The device is
successfully setup,
reaches the target
location, and the
occurrence rate
of SADE

NCT04781660

6.
Sodium Alginate
Calcium Gluconate
(IK-5001)

Acute MI, CHF,
ST-elevation MI

Bellerophon
BCM LLC NA (303)

4 mL via
intracoronary
slow bolus
injection for 15
to 30 s after
2 days PCI and
5 days symptoms

Interventional Completed

Decrease ST
segment, and
prevent ventricular
remodeling and
CHF in MI

Assessed LVEDVI by
echocardiography, a
six-minute walk test
performed, and
alginate measured in
plasma and urine

NCT01226563
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Table 4. Cont.

Sr.
No. Marine Drugs Disease Sponsor

(Organization)
Phase (Number
of Participants)

Duration of
Intervention Type of Study Current

Status Possible MOA Measured Outcome NCT

7. AMR101 (ethyl ester of
eicosapentaenoic acid)

Cardiovascular
diseases

Amarin
Pharma Inc. 3 (8179) Daily for

28 days Interventional Completed
(Phase 3)

Decreased CVDs’
events by reducing
triglycerides

Measured CVD death,
nonfatal MI, nonfatal
stroke, coronary
revascularization, or
unstable angina by
invasive/non-
invasive testing

NCT01492361

8.
Icosapent ethyl (ethyl
ester of
eicosapentaenoic acid)

CVDs,
atherosclerotic
CVD,
MI, and
CHF

Canadian
Medical and
Surgical
Knowledge
Translation
Research Group

NA (200) 8 weeks Observational Active, not
recruiting

Decrease LDL and
hypertriglyc-
eridemia

The demographic and
biochemical data are
consistent with the
cohort’s REDUCE-IT
baseline requirements

NCT05271591

9.
Omega-3
polyunsaturated
fatty acids

Cardiovascular
disease Laval University NA (200) Daily 3 g for

6 weeks Interventional
Active, not
recruiting
(NA)

Genetic
polymorphisms
within genes
functioning as fatty
acids sensors affect
the alterations in
metabolic risk
factors caused by
n-3 PUFAs

Changes in blood
lipids, blood pressure,
anthropometric
measures, plasma
glycemia, insulin
levels, and gene
expression levels

NCT01343342

NA: Not applicable; QOL: Quality of life; SVEB: Supraventricular ectopic beats; PCSK9: Proprotein convertase subtilisin/Kexin type 9; hsCRP: High-sensitivity C-reactive pro-
tein; BES: Benign extrasystoles; T2D: Type 2 diabetes; SADE: Serious adverse device events; LVEDVI: Assessed left ventricular end-diastolic volume index; n-3 PUFAs: Omega-3
polyunsaturated fatty acids.
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5. Marine Lipid Bioactive Compounds with Potent Cardio-Protective Properties

Omega-3 polyunsaturated fatty acids (PUFA), carotenoids, lipid vitamins, and po-
lar lipid bioactives from fish sources have been shown to have potent biological effects
against inflammation and CVDs [157]. Fish is a good source of bio-functional marine polar
lipids (PL), rich in n-3 PUFA, and have powerful antithrombotic, anti-inflammatory, and
cardio-protective properties. The amphiphilic features of bioactive fish PL, such as several
phospholipids and glycolipids bearing n-3 PUFA in their structure, resulted in a significant
increase in the bioavailability of n-3 PUFA content [157]. It has been demonstrated that n-3
PUFA-rich fish lowers the incidence of inflammation-related CVDs. Additionally, it has
anti-inflammatory and anti-thrombotic characteristics and transports n-3 PUFA to different
bodily organs more effectively than triglycerides [158]. In addition to n-3 PUFA, other fish-
lipid bioactive nutrients such as fish carotenoids, lipid vitamins A, D, and E, and polar fish
lipids (glycolipids and phospholipids) have also shown anti-thrombotic, anti-inflammatory,
and antioxidant, cardioprotective effects and reduced CVD risk [158,159]. Polar lipid frac-
tions of sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) treated with
fish feed enhanced with olive pomace showed powerful antithrombotic properties [160].
The cold-water marine fish cod (Gadus morhua) is a major source of fat-soluble vitamins,
EPA and DHA, and high-quality protein. Cod is a lean fish that maintains its fat reserves in
the liver as triacylglycerols. It has been reported to possess cardioprotective effects against
atherosclerosis and platelet aggregation [161]. Sardines (Sardina pilchardus) are a significant
Mediterranean commercial fish that reserves fats in the tissue as triacylglycerols. Sardines
have shown a potent cardioprotective effect against platelet aggregation or PAF-induced
platelet aggregation [162]. Microalgae are abundant sources of bioactive lipids, including
polar lipids and omega-3 and -6 PUFA, which have strong anti-inflammatory properties in
CVDs [163].

It has been shown that dietary polar lipids of marine origin can either directly in-
hibit PAF-binding on a particular cell membrane receptor for PAF or indirectly influence
the phospholipid microenvironment in those membranes. These lipids could also pre-
vent PAF production, bringing blood PAF levels to homeostatic levels, which has several
anti-inflammatory and anti-atherogenic health effects for cardiovascular [159]. Spirulina-
extracted lipid substances, including lipid extracts, phycocyanin protein, phycocyanobilin
(PCB), polysaccharides (PS), and bioactive lipid fractions have shown strong cardioprotec-
tive effects such as antithrombotic and anti-PAF in washed rabbit platelets stimulated by
PAF and thrombin [164]. Gilthead sea bream (Sparus aurata) polar lipids have shown an anti-
atherosclerotic effect via modulation of PAF metabolism and decreasing activity and levels
of PAF in the blood [165]. Phosphatidylcholine (PC) is the most predominant phospholipid
(PL) found in marine sources such as mackerel, rainbow trout, tuna, and salmon, followed
by phosphatidylethanolamine (PE). Krill (Euphausia superba) oil (KO), a prominent source
of marine PLs, show a protective effect on heart failure by reducing heart remodeling [166].
KO increases the amount of n-3 PUFA in the myocardial tissue and reduces the risk of left
ventricular (LV) remodeling when taken before myocardial infarction (MI) induction [167].
It also shows a cardioprotective effect by improving blood lipids in dyslipidemia [166].
Marine carotenoids are important bioactive substances with physiological effects connected
to the protection of chronic illnesses such as CVDs. These chronic illnesses, including CVDs,
have been caused by oxidative stress and inflammation [168]. The dietary supplement,
astaxanthin, a xanthophyll carotenoid, is an effective anti-inflammatory and antioxidant
in the CVD model. Astaxanthin has been used in human clinical research to evaluate its
bioavailability, safety, and clinical features related to oxidative stress and inflammation in
CVDs, and no negative consequences were found [118].

Vitamins A and E are abundant in shark liver oil and possess important bio-functionalities,
cardio-protective, and antioxidant effects. Their antioxidant effects protect the body against
free radicals [157]. Vitamin D and its derivatives, mainly paricalcitol, have shown powerful
anti-thrombotic and anti-inflammatory effects against thrombotic PAF and inflammatory-
related pathways [169]. Vitamin D insufficiency has been related to greater mortality and
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CVD incidence via several mechanisms, including the activation of the renin-angiotensin-
aldosterone system, oxidative stress, altered inflammatory pathways, and aberrant nitric
oxide regulation [170]. Vitamin E has anti-inflammatory, anti-thrombotic, and antioxidant
properties. Its antioxidant properties lower the incidence of CVDs by preventing LDL oxi-
dation [157]. Vitamin E or fish oil was proven to reduce atherosclerosis in rabbits with high
cholesterol [82]. Fish oil and n-3 PUFA have been adversely linked to higher levels of LDL
cholesterol as well as a possible increase in LDL oxidizability owing to unfavorable lipid
changes, overcome by vitamin E co-supplementation, which promotes anti-atherogenic
lipid modifications and overall cardiovascular protection, including elevated HDL(2)-
cholesterol levels, lowered postprandial lipemia, decreased triacylglycerol-rich lipoprotein
levels, and lowered remnant levels [171].

6. Potential Effect of Marine Drug Targeting ROS in CVDs

Reactive oxygen species (ROS) have been generated in terms of H2O2, hydroxyl
radicals, and superoxide anions (O2

−) during numerous cascades of cellular processes,
including mitochondria respiration. It is also involved in various biological processes,
including regulating cellular homeostasis and cell signaling [112]. Researchers have already
even reported a significant positive correlation between increased ROS levels and the sever-
ity of CVDs [172]. ROS have been implicated in cellular damage, apoptosis, and necrosis,
as well as the direct oxidizing effect on several macromolecules such as DNA, RNA, and
proteins during CVDs pathogenesis [173]. Moreover, decreased in endothelial nitric oxide
synthase leads to decreased in nitric oxide (NO) production, which consequences in an
increase in ROS that has been linked to endothelial damage by its interaction with other
molecules to produce peroxynitrite radical in hypertension [174]. In addition, patients with
systemic arterial hypertension have shown higher ROS levels and reduced NO availabil-
ity [73]. Several marine drugs, including astaxanthin, fucoidan, fucoxanthin, xyloketal B,
histochrome, and spirulina maxima, show potential effects via targeting ROS in CVDs.
The antioxidant activity of astaxanthin has been proven in in vivo and in vitro studies via
scavenging superoxide, hydroxyl radicals, and hydrogen peroxide and protection from
lipid peroxidation [134]. Astaxanthin has shown antioxidant activity through inhibition
of ROS generation and is effective against CVDs. A study on rabbits confirmed that it
decreased non-protein thiol levels and lipid peroxidation by increasing CAT, SOD, and
thioredoxin activity and inhibited ROS generation in the aortic valve [175].

Fucoidan has shown an anti-atherosclerotic effect by triggering various signaling path-
ways that control lipid metabolism, inhibit inflammation, and reduce oxidative stress. An
in vivo study revealed that fucoidan treatment shows a preventive effect against atheroscle-
rosis through the reduction in ROS generation and the expression of ROS generation-related
proteins such as endothelial nitric oxide synthase, superoxide dismutase 1, and NADPH
oxidase subunit 2/4 in the aorta of LDLR-/-mice. Fucoidan also partially recovers the lipid
peroxidation and antioxidant defense system in a mouse model of alimentary hyperlipi-
demia [176]. Fucoxanthin is another marine drug with a powerful antioxidant effect by
inhibiting ROS generation in heart valve cells. In an in vivo study on rats, fucoxanthin has
shown a protective effect against H2O2-induced ROS generation through decreasing oxida-
tive stress, promoting better cell survival, and preventing DNA damage [91]. Xyloketal
B has also shown potent antioxidant activity in atherosclerotic disease through scaveng-
ing DPPH free radicals and inhibiting ROS generation induced by oxidized low-density
lipoprotein (LDL). It might preserve nitric oxide bioavailability in the existence of higher
ROS. It has also shown antioxidant activity in the zebrafish model and vascular endothelial
cells by heme oxygenase-1 (HO-1) induction [78]. Histochrome is a bio-safe and potent
agent that shows a cardioprotective effect against ROS generation or oxidative stress in
human cardiac progenitor cells [112]. In the clinical trial study, Spirulina maxima showed a
cardioprotective effect against systemic arterial hypertension after decreasing oxidative
stress and endothelial damage [73].
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7. Future Prospectus

CVDs are the leading cause of death, affecting millions of people worldwide [177].
Various drugs have been approved to treat CVDs, including antithrombotic agents, beta-
blockers, diuretics, calcium channel blockers, lipid-lowering drugs, and renin-angiotensin
system (RAS)-acting agents [178]. Several other new synthetics and natural herbal drugs
have been recently discovered to treat CVDs globally. However, CVDs are not completely
cured or eradicated by these drugs, and cases are still increasing at a high rate globally.
Researchers are continuously exploring novel targets and agents that can reduce the burden
of CVDs. Marine-derived drugs are emerging therapeutics in the recent era [179,180].
Experiments and investigations have indicated several marine natural products that are
effective for CVDs with minimum adverse effects. Marine drugs can be used in severe
conditions for multiple complications such as hypertension, atherosclerosis, myocardial
infarction, etc. These drugs may decrease the severe chest pain of anginal pectoris and
some other CVDs complications. In the present review, we have emphasized different
marine-derived compounds such as asperlin, saringosterol, astaxanthin, manzamine A,
xyloketal B, docosahexaenoic acid, echinochrome A, tetrodotoxin, botulinum toxin, zeax-
anthin heneicosylate, and fucoxanthin for various CVDs. All of these marine-derived
compounds have shown very encouraging results in the in vitro and in vivo studies. More-
over, thousands of marine-derived compounds are added every year to the library of
marine compounds. Those compounds need to be explored for their therapeutics in CVDs.
A nano-formulation-based approach must also be developed to delivered marine-based
compound and are the particular target of interest to avoid side effects. Researchers may
directly utilize marine-derived compounds as initial leads for the development of new
medications that are more specialized than the original molecule. Based on this, it appears
that marine natural products could represent a promising “library” of natural compounds
for developing new therapies as adjuvants to gold standard therapies, enhancing the
efficacy of conventional drugs, and exerting synergistic or additive positive effects for
cardiovascular diseases.

8. Conclusions

Several synthetic drugs are those most often used today in pharmaceutical corpo-
rations. Pharmaceutical corporations have given up on bioactive chemical research for
many years in favor of developing and manufacturing synthetic molecules. However,
research into natural substances has resumed since the early 2000s and has a place within
biomedical investigations. The superior biocompatibility of natural chemicals compared
to manufactured pharmaceutical products, without discounting the significant variety of
these molecules and their effects, are one of the primary drivers for this return to natural
medicines. Marine chemicals and their derivatives have grown in pharmaceutical and
medical research during the last 10 years. Unquestionably, one of the reasons is the abun-
dance of available molecules and secondary metabolites, as well as their diversity due to
the many unfavorable habitats of the seas and the virtually endless variety of creatures
that inhabit them. Antioxidant and anti-inflammatory characteristics, particularly useful
for treating cardiovascular disorders, are among the many pharmacological activities on
which the research is focused. This review has discussed the therapeutic potential of these
marine-derived compounds for CVDs with underlying mechanisms.
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