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Abstract: Today, with the salient advancements of modern and smart technologies related to tissue
engineering and regenerative medicine (TE-RM), the use of sustainable and biodegradable materials
with biocompatibility and cost-effective advantages have been investigated more than before. Algi-
nate as a naturally occurring anionic polymer can be obtained from brown seaweed to develop a wide
variety of composites for TE, drug delivery, wound healing, and cancer therapy. This sustainable
and renewable biomaterial displays several fascinating properties such as high biocompatibility, low
toxicity, cost-effectiveness, and mild gelation by inserting divalent cations (e.g., Ca2+). In this context,
challenges still exist in relation to the low solubility and high viscosity of high-molecular weight
alginate, high density of intra- and inter-molecular hydrogen bonding, polyelectrolyte nature of the
aqueous solution, and a lack of suitable organic solvents. Herein, TE-RM applications of alginate-based
materials are deliberated, focusing on current trends, important challenges, and future prospects.

Keywords: alginate; biomaterials; hydrogels; scaffolds; tissue engineering; regenerative medicine;
biomedical engineering

1. Introduction

The primary aim of tissue engineering and regenerative medicine (TE-RM) is to create bio-
logical substitutes in order to maintain, enhance, or restore damaged
tissues/organs [1–5]. It is well known that the application of different types of cells
is considered as the most fundamental component of TE-RM strategies [6,7]. However, it
has been revealed that following free cell therapy, only a small proportion of cells are viable
at the targeted site, and ~90% of them are lost within a few hours after administration [8].
To overcome this challenge, the utilization of cells in combination with biomaterials offers
a favorable microenvironment for tissue regeneration [6,9]. Biomaterials are commonly
deployed to efficiently transport cells and/or biological factors while also providing an
appropriate milieu for cell survival and proliferation [10–13]. A wide variety of natu-
ral and synthetic biomaterials have been introduced that allow the natural deposition of
extracellular matrix (ECM) and the regeneration of injured tissues [14].

Alginate, an anionic and hydrophilic polysaccharide, is one of the most abundant
biosynthesized biomaterials worldwide [15]. This natural biomaterial is primarily derived
from brown seaweed and bacteria (i.e., Pseudomonas and Azotobacter) [16]. Alginate
is also commercially produced using various marine algae such as Laminaria hyperborea,
Laminaria digitata, Macrocystis pyrifera, Ascophyllum nodosum, Eclonia maxima, Laminaria japonica,
Lessonia nigrescens, Durvillea antarctica, and Sargassum spp. [17]. Alginate contains one thou-
sand blocks of β-D-mannuronic acid (M) and α-L-guluronic acid (G) monomers connected
via 1→4 linkage. The blocks are typically composed of three different forms of polymer
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segments G-block, M-block, and GM-block (Figure 1) [18,19]. Alginate-based biomaterials
are developed into different forms such as hydrogels, foams, sponges, fibers, microspheres,
and microcapsules using various fabrication techniques [20–22]. Nevertheless, alginate
hydrogels are of great interest for a wide range of applications, particularly as the support-
ing matrix or delivery system for tissue repair and regeneration [23]. There are different
physicochemical crosslinking approaches (covalent or non-covalent) for fabricating alginate
hydrogels that are highly dependent on structure types (Figure 2) [23]. In this context,
chelating with divalent cations (Mg2+, Ca2+, etc.) is the easiest and most cost-effective way
to fabricate alginate hydrogels from an aqueous solution under mild conditions [24–27].
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Alginate and its hydrogels have been widely employed in TE-RM due to its outstand-
ing properties in terms of hygroscopicity, biocompatibility, biodegradability, non-toxicity,
flexibility, and chelating ability [24,28,29]. However, alginate alone has some drawbacks
(high viscosity, low solubility, poor degradability, etc.) which hinder its potential for further
biomedical applications [30]. To overcome this problem, a wide range of natural or synthetic
biomaterials have been incorporated into the alginate structure to enhance its properties
and multifunctionality [30]. In addition, modifications of alginate hydrogels with various
nanomaterials have recently garnered immense attention, leading to their wide-ranging
applications in the biomedical field [17]. There are several fabrication methods deployed
for synthesizing alginate-based nanomaterials, the most prominent ones being illustrated
in Figure 3. These methods include but are not limited to the controlled gelification, spray
drying, electrospinning/electro-spraying, ionotropic gelation, thermally-induced phase
separation, microfluidics-aided polyelectrolyte complexation, etc. [17,27,28,30].

Due to the pH-dependent anionic nature of alginate, it has the ability to bind and inter-
act with cationic polyelectrolytes and proteoglycans. These simple electrostatic interactions
have been exploited to create delivery systems for cationic drugs and molecules [29]. Algi-
nate hydrogels have also been considered as favorable matrices for the immobilization of
various responsive biomaterials and proteins which results in a variety of stimuli-responsive
nanosystems for cancer treatment. In addition, alginate-based biomaterials are suitable car-
riers for gene therapeutic agents owing to their high cell transfection ability for many genes.
The networks of alginate-based scaffolds also provide a suitable microenvironment for the
cultivation and delivery of therapeutically useful stem cells [31]. For TE-RM, alginate-based
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scaffolds have been applied in the regeneration of both hard and soft tissues such as skin,
bone, cartilage, heart, vascular tissues, etc. [32]. Based on the aforementioned informa-
tion, alginate, a Food and Drug Administration (FDA)-approved polymer, has become
one of the most promising biomaterials for a wide range of TE-RM applications [15,33].
Alginate-based biomaterials have been deployed for TE-RM in the forms of hydrogels/gels,
films, fibers, gauzes, foams, wafers, etc. [34]. In this context, their several advantages have
been mentioned, including their high porosity and surface area (sponges), inexpensive and
easy-to-manufacture nature (gauzes), strong absorption capacity (nanofibers), facilitated
cell migration ability (hydrogels), among others [35,36]. The most common technique of
alginate gel preparation is ionic crosslinking with multivalent cations such as Ca2+, as
exemplified in the case of alginate-pectin hydrogel film for diabetic wound healing [37].
Other techniques such as covalent crosslinking (e.g., alginate/chitosan/gelatin hydro-
gel) [38], enzymatic crosslinking [39], polyelectrolyte crosslinking (e.g., chitosan/alginate
hydrogel for bone regeneration) [40], and self-assembly technique (e.g., alginate-based
cyclodextrin/azo-polyacrylamide hydrogel) [41], have been introduced.
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Alginate with the advantages of biocompatibility and ease of integration with drugs
and cells can be simply processed into 3D scaffolding materials such as hydrogels, foams,
sponges, microcapsules, microspheres, and fibers [29,42]. However, pure alginate has
limited features (e.g., weak mechanical strength), restricting its future clinical applications;
thus, suitable hybridization or combination with other materials can improve its properties
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for TE-RM. One of the disadvantages of using alginate-based biomaterials is that they
have poor cell adhesion properties. In addition, the degradation rate of alginate is variable
and should be improved depending on its applications [15]. Remarkably, alginate-based
biomaterials have several advantages over chitosan-based biomaterials, such as excellent
biocompatibility, biodegradability, and low toxicity. Alginate hydrogels can be simply
prepared by crosslinking with divalent cations, offering suitable candidates for TE-RM. In
addition, alginate hydrogels offer good mechanical features and can be modified to control
their degradation rate. Despite the biocompatibility and biodegradability of chitosan-based
biomaterials, chitosan has poor solubility in water at a neutral pH, limiting its applications
in TE-RM. On the other hand, chitosan-based hydrogels exhibited the disadvantage of low
mechanical resistance, difficulty in controlling the pore size, and uncontrollable dissolu-
tion, which restrict their future clinical applications [43]. In addition, chitosan has limited
mechanical strength and needs chemical modifications to improve its characteristics. It
appears that alginate-based biomaterials have several advantages over chitosan-based
biomaterials owing to their high biocompatibility, ease of formation into hydrogels, ad-
justable degradation rate, and good mechanical features [43,44]. This review endeavored to
elaborately discuss the current applications of alginate-based biomaterials in TE-RM, with
a focus on recent advancements, important challenges, and future perspectives.

2. TE-RM Applications

Several alginate-based composites have been constructed for TE-RM purposes (Table 1).
In this context, their biocompatibility and immunogenicity still ought to be systematically
evaluated [29,45]. In addition, clinical translational studies and biodegradability improve-
ments still need additional efforts; oxidized alginate displays suitable biodegradability at
physiological conditions and can be deployed for targeted drug/cell delivery [45]. For
instance, alginate-based hydrogels have been constructed from oxidized alginate, polyethy-
lene glycol (PEG), and carboxymethyl chitosan or gelatin [46]. These hydrogels with a
significant degree of crosslinking exhibited the capability of surviving and proliferating
mesenchymal stem cells (MSCs), offering them as suitable candidates for injectable self-
crosslinking deployment in TE [46]. In another study, thermal-sensitive hydrogels were
developed using cystamine-functionalized sodium alginate-g-pluronic F127, showing suit-
able antibacterial activities and good biocompatibility for long-term cell cultivation [47].
It was revealed that fibroblasts could attach to the hydrogels, which effectively mimic
the porous structure of these hydrogels after five days of culture. Such alginate-based
composites have been deployed as attractive cellular delivery platforms for versatile TE
applications [47]. Overall, the prospects for clinical translation of alginate-based biomateri-
als are promising because of their biocompatibility and ease of modifications [48]. Some
alginate-based composites have been approved by regulatory agencies (such as the FDA)
for wound dressings; they have passed clinical assessments and are now available on the
market [30,49]. For instance, Kaltostat® (based on calcium alginate or sodium alginate) is
one of the commercial wound dressings in the shape of absorbent gel-fiber matrices with
fluid contact, thus facilitating atraumatic removal and hemostatic effects as well as helping
to control minor bleeding [30]. In another study, alginate-silver wound dressing (Askina®

Calgitrol® Ag) was clinically evaluated on patients to compare its activity with the 1%
silver sulfadiazine in the outpatient management of partial-thickness burn wounds [50].
Additionally, Emdogain® (Straumann) is a clinically available injectable hydrogel product
(porcine enamel matrix derivatives in propylene glycol alginate gel) for the regeneration of
periodontal tissue [51].
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Table 1. Some selected examples of alginate-based composites for versatile TE-RM applications.

Composites Applications Advantages/Properties Ref

Bioactive transforming growth factor
beta 1 (TGF-β1)/hydroxyapatite

alginate-based scaffolds
Osteochondral tissue repair

- Proper mechanical features
and resorbability

- Highly porous osteochondral graft
with bioactivity

- Suitable cell adhesion and cell-material in-
teraction for up to seven days

- No significant evidence of inflammatory reac-
tions (in vivo studies)

[52]

Composite of oxidized alginate,
gelatin, and tricalcium phosphate Bone TE and regeneration

- Good biocompatibility (in vitro)
- The composite exhibited potentials as in-

jectable systems for TE
[53]

Oxidized alginate-gelatin-biphasic
calcium phosphate

composite hydrogels
Bone TE and regeneration

- Hydrogels with good porosity and excel-
lent biocompatibility

- Controllable gelation and bio-degradation
time

- Good mechanical strength

[54]

Chitosan-gelatin-alginate-
hydroxyapatite scaffold Bone TE

- Excellent hydrophilicity and biodegradability
- Good mechanical stability
- Improved cell viability, proliferation

rate, adhesion, and maintenance of
osteoblastic phenotype

[55]

Self-crosslinked oxidized
alginate/gelatin hydrogels Cartilage regeneration

- Promising adhesive matrix for neo-
cartilage generation

- Injectable biomimetic scaffolds for carti-
lage regeneration

[56]

Collagen-alginate three-dimensional
(3D) cell printing bioinks Cartilage TE

- Improved mechanical strength
- Improved cell adhesion and proliferation,

along with an enhancement in the expres-
sion of cartilage-specific genes (e.g., Sox9,
Col2al, and Acan)

[57]

Cell-laden methacrylamide
gelatin/alginate hydrogels Cartilage repair

- Improved biocompatibility and mechani-
cal properties

- Excellent potential for cartilage TE
[58]

Covalently polysaccharide-based
alginate/chitosan

hydrogel-embedded
alginate microspheres

Soft TE
- Improved mechanical features and stability
- Controlled release of bull serum albumin [59]

Alginate dialdehyde crosslinked
gelatin hydrogels Polyester vascular graft

- Good biodegradability
- Nontoxic, hemocompatible, with sufficient

efficiency in sealing the pores of the graft
- Enhanced adhesion and proliferation of en-

dothelial cells

[60]

Oxidized alginate/hydroxypropyl
chitosan hydrogels

Reconstruction of the corneal
endothelium

- Nontoxic and biodegradable
- The transplanted corneal endothelial cells

by alginate-based composite could survive
and retain normal morphology

[61]

Self-crosslinked oxidized
alginate-gelatin hydrogels Muscle TE

- High rate of cell proliferation in the hydro-
gel with oxidized alginate-gelatin weight
ratio of 30/70

- Good biodegradability

[62]

Oxidized alginate covalently
crosslinked galactosylated

chitosan scaffold
Liver TE

- The porosity of scaffolds was ~70%
- Good thermal stability and biocompatibil-

ity (in vitro)
[63]

Oxidized alginate hydrogels Corneal dysfunction treatment

- Oxidized hydrogels with increased pore
size and decreased stiffness contributed to
enhanced cell viability

- Hydrogels holding corneal ECM proteins
could affect the function of corneal epithe-
lial cells, with beneficial effects on corneal
wound healing

[64]

Hyaluronic acid/Na-alginate films Bioactive wound dressings/healing

- High antibacterial activities
- Effective wound dressings to

restore the homeostasis of
skin tissue

[65]

Chitosan-alginate films Wound healing

- Improved mechanical properties; high ten-
sile strength

- Non-hemolytic and stable in physiologi-
cal fluids

- The incorporation of thymol and beta-
carotene could improve the bioactivity of
the formulation

[66]

Cefazolin nanoparticles-loaded
crosslinked films of sodium alginate

and pectin
Wound dressings

- The alginate-based films with 0.5%
crosslinking exhibited improved break-
ing elongation, water absorption and water
vapor transmission, and wetting ratio

- Efficient treatment of infections, with im-
proved release profiles

[67]
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Table 1. Cont.

Composites Applications Advantages/Properties Ref

Alginate-carboxymethyl
chitosan scaffold Enamel TE

- The printed scaffolds were signifi-
cantly porous

- The scaffolds exhibited a high degree of
printability and structural integrity

- Excellent capabilities to stimulate
ameloblast differentiation, calcium phos-
phate deposition, and matrix mineraliza-
tion (in vitro study)

[68]

Bioinspired alginate hydrogel Endodontic regeneration

- Sustained release from
the scaffolds; enhanced
cell proliferation

- Vascular endothelial and fibroblast
growth factors synergized co-culture
of dental pulp stem cells/human um-
bilical vein endothelial cells within
the scaffolds

[69]

2.1. Musculoskeletal TE-RM

Scaffolds applied for bone TE and tissue regeneration should have good biocompat-
ibility, osteoconductivity, and biodegradability/bioactivity, along with the promotion of
osseointegration as well as stimulation of ingrowth and differentiation of bone [70–72].
Different alginate-based composites have been introduced for bone TE applications, in-
cluding alginate-polymers (e.g., chitosan or PEG), alginate-biosilica, alginate-ceramics,
alginate-bioglasses, alginate-bone morphogenetic protein-2, and alginate-proteins (e.g.,
collagen or gelatin). These composites have shown improved cell adhesion/proliferation,
biocompatibility, porosity, mechanical strength, along with alkaline phosphatase (ALP)
enhancement, great mineralization, and osteogenic differentiation [28]. Tao et al. [73] pre-
pared polycaprolactone/carboxymethyl chitosan/sodium alginate composite micron-fibers
(~2.381 µm) with excellent tensile strength as a scaffold for bone TE through an emulsion
electrospinning process, which could facilitate the osteoblast adhesion. The composite
could up-regulate the primary expression of osteogenic genes ALP and Runt-related tran-
scription factor 2 (RUNX2), displaying high biocompatibility and osteoinductive potential
to osteoblasts. Such composites should be further explored as transplantable scaffolds for
treating large-segment bone defects [73]. In another study, an electrospun nanofiber mesh
tube was introduced for directing bone regeneration combined with peptide-modified algi-
nate hydrogel injected inside the tube for the controlled release of growth factor (Figure 4).
The hybrid delivery system was capable of transferring recombinant bone morphogenetic
protein-2 (rhBMP-2) to heal the critically-sized segmental bone defects in a rat model [74].
Despite several advantages of hydrogels, their deployment for repairing bone defects is dif-
ficult due to the poor mechanical features and rapid degradation, restricting their bone TE
applications. Thus, future explorations ought to be conducted towards the improvement of
their mechanical and osteoinductive features through the combination/hybridization with
other materials/polymers. In one study, Yan et al. [75] introduced injectable and biodegrad-
able alginate/hydroxyapatite gel scaffolds combined with gelatin microspheres for TE.
The addition of hydroxyapatite and gelatin microspheres could improve the mechanical
features of these scaffolds, stabilizing the gel network as well as decreasing weight loss,
swelling ratio, and gelation time. The alginate-based gel scaffolds with suitable physical
activity and bioactive features offer great opportunities for bone TE applications [75].

Alginate-based chitosan hybrid structures were introduced with suitable supporting
capabilities for fibroblast adhesion [76]. Compared to the alginate polymer fibers, the
prepared alginate-based chitosan hybrid polymer fibers exhibited excellent tensile strength
(>200 MPa), offering enhanced adhesion capacity with fibroblasts. After morphologic as-
sessments, it was indicated that the dense fibers of the type I collagen could be generated
by the fibroblast in the designed hybrid biomaterials, paving a way for the construction of
biomaterial scaffolds with great potential for tendon and ligament TE [76]. Zhou et al. [77]
introduced degradable alginate/palygorskite hybrid hydrogels with suitable biocompati-
bility and robust mechanical features, showing excellent potential for bone defect repair.
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By increasing the content of palygorskite, the modified hydrogels exhibited improved
mechanical features, along with an increased swelling ratio in phosphate-buffered saline
(pH = 7.4). The in vitro assessments on bone marrow-derived mesenchymal stem cells
(BMSCs) revealed that these composites were cytocompatible after 1, 3, and 7 days [77].
They were loaded with JWH133 (as an agonist of cannabinoid receptor type 2, showing
anti-osteoclastogenic and anti-inflammatory effects) to enhance the osteogenic differentia-
tion of rat BMSCs, showing efficient inhibitory effects towards osteoclast generation and
the mRNA expression of osteoclast-specific markers. The results of this study indicated
that the drug-loading capacity and biocompatibility of alginate-based hydrogels can be
improved by suitable modification, paving the way to achieve promising drug carriers
against osteoporosis [77]. In addition, 3D-printed scaffolds with desired pore sizes were
constructed from sodium alginate and chitosan biomaterials for bone TE and regeneration,
exhibiting appropriate capabilities for cell attachment and proliferation. These biocompati-
ble scaffolds with high tensile strength (~0.387± 0.015 MPa) exhibited adjustable swelling
and degradation manner as well as superb biological properties [78].
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Figure 4. (A) Scanning electron microscopy (SEM) image of electrospun nanofiber mesh, showing
the smooth and bead-free nano-scaled fibers. (B) Hollow tubular implant without perforations
constructed from nanofiber meshes. (C) Tubular implant with perforations. (D) The composite
was constructed from an electrospun nanofiber mesh tube applied for repairing the bone defect.
(E) Picture of the defect after placement of a perforated mesh tube; the alginate inside the tube can be
seen through the perforations. (F) A specimen was taken down after one week and the mesh tube
was cut open. The alginate was still present inside the defect, with a hematoma present at the bone
ends. (G) The release kinetics of alginate >21 days (in vitro); sustained release of the rhBMP-2 could
be detected during the first week. Adapted from Ref. [74] with permission. Copyright 2010 Elsevier.

Despite several natural or synthetic polymers introduced for cartilage TE, alginate-
based composites with tunable mechanical properties and easy manufacturing processes
have acquired significant attention [79]. A platelet-rich plasma/sodium alginate-based
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hydrogel was embedded in a porous 3D scaffold of chitosan/chondroitin sulfate/silk
fibroin to obtain a hybrid scaffold for cartilage TE applications, showing a uniform dis-
tribution of cells and mimicking gel-like cartilage tissue ECM [80]. The matrix exhibited
suitable porosity (~77 ± 4.3%) with compressive strength (~0.13 MPa), offering promising
structures for cartilage TE. Notably, the introduced cartilage structure exhibited improved
metabolic activities, glycosaminoglycan deposition, and collagen type II expression [80].
In addition, a 3D printed scaffold was developed from a double crosslinked alginate
hydrogel, in which human umbilical cord MSCs could differentiate into chondrocytes
on it after 4 weeks of culturing [81]. After the modification of alginate with L-cysteine
and 5-norbornene-2-methylamine, the double crosslinked alginate hydrogels with robust
mechanical features similar to natural cartilage were fabricated utilizing CaCl2 under ultra-
violet light. These hydrogels exhibited long-term stability in Dulbecco’s modified eagle
medium (>1 month) with suitable viability for human umbilical cord MSCs. In addition, the
expression of chondrogenic genes (e.g., asaggrecan, collagen II, and SRY-box transcription
factor-9) could be obtained after culture of human umbilical cord MSCs (4 weeks) in the
3D-printed scaffolds, showing great potential for cartilage repair [81].

2.2. Cardiovascular TE-RM

Alginate-based polyurethane elastomers benefiting from the presence of two physical
networks of different strengths of soft tertiary ammonium-soft sulfate pairs (as robust ionic
bonds) and soft tertiary ammonium-hard carboxylate groups (as the weak bonds) were
deployed for vascular TE applications [82]. Notably, considerable toughness/stretchability
along with suitable energy dissipation could be obtained due of the existence of sulfate
groups, which led to a low Young’s modulus, as well as being endowed with unique
self-healing properties. In addition, improved endothelial cell attachment, enhanced
anticoagulation performance, and lower platelet adhesion could be obtained, offering these
elastomers as attractive candidates for vascular TE applications; the implanted scaffold
exhibited low fibrosis and slow biodegradation (within two months) [82]. In addition,
alginate dialdehyde was combined with gelatin and MSCs to improve the vascularization
capability, along with de novo tissue generation. As a result, alginate dialdehyde-gelatin
microcapsules exhibited efficient vascularization by applying an arteriovenous loop tactic,
along with enhanced biocompatibility and biodegradability [83].

Tubular alginate-based hydrogels combined with collagen type I were fabricated with
high mechanical stability and low swelling ratio through an ionotropic gelation process
for blood vessel engineering [84]. The alginate solutions were exposed to Ca2+-loaded
gelatin for controlling the wall thickness of the hydrogels; a second crosslinking phase with
barium chloride could prevent their degradation for ~14 days and improve mechanical
features by two-fold. It has been revealed that alginate-based hydrogels enriched with
collagen were capable of successfully supporting EA.hy926 and MRC-5 cells’ growth
and characteristic phenotype, showing promising potential for fabricating freestanding
vascular substitutes with controllable features [84]. Additionally, stem cell implantation
tactics with promising potentials for the treatment of myocardial infarction (MI) still have
some drawbacks, such as low retention and survival, limiting their application due to the
reactive oxygen species (ROS) microenvironment after MI [85]. Hao et al. [85] incorporated
fullerenol nanoparticles into alginate hydrogel to obtain an injectable cell delivery vehicle
with antioxidant properties. The hydrogels with excellent injectability and mechanical
strength could successfully scavenge the superoxide anion and hydroxyl radicals; they
had no cytotoxicity effects on brown adipose-derived stem cells, thereby suppressing the
oxidative stress damage of brown adipose-derived stem cells and improving their survival
capacity under an ROS microenvironment through the activation of the extracellular signal-
regulated kinase (ERK) and p38 pathways while obstructing the c-Jun N-terminal kinase
(JNK) pathway. These fullerenol/alginate hydrogels could effectively reduce the ROS level
in the MI region, improving the retention and survival of implanted brown adipose-derived
stem cells and inducing the angiogenesis to stimulate the recovery of cardiac functions [85].
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2.3. Neural TE-RM

Alginate-polyvinyl alcohol hydrogel was deployed as a supportive biomaterial for 3D
neural cell cultures, showing stiffness quite similar to brain tissue; neuronal dispersal and
3D network generation could be improved inside the softest hydrogels [86]. In addition,
alginate-based hydrogels with a highly anisotropic capillary structure were evaluated
for an axon outgrowth assay (in vitro) and healing of spinal cord lesions (in vivo) [87].
Accordingly, the alginate-based scaffolds provoked the regrowth of a vastly oriented linear
axon and targeted the re-innervation of a neuron. Notably, alginate-based hydrogels
were joined to the spinal cord parenchyma without noticeable inflammatory reactions
after implantation into acute cervical spinal cord lesions in adult rats, maintaining their
anisotropic structure; they could also stimulate the directed regeneration of axons across
the artificial scaffolds. Adult neural progenitor cells with stimulatory effects towards
cell-contact-mediated axon regeneration have been seeded into alginate-based hydrogels,
improving the regenerative potential of the artificial growth-supportive matrices. Such
alginate-based hydrogels can be deployed for inducing directed nerve regrowth after spinal
cord injuries [87].

2.4. Corneal TE-RM

Alginates with biocompatibility, non-toxicity, and biodegradability can be deployed for
corneal TE-RM, but more elaborative studies are still required to overcome the challenges
pertaining to the optimal manufacturing and processing conditions for obtaining alginate-
based composites with specific properties [88]. A micro-patterned bioadhesive film with a
double-layered structure was developed using silk nanofibrils and gelatin methacrylate-
alginate, leading to the sustained release of ascorbic acid for corneal regeneration as well
as stimulation of the attachment, alignment, and proliferation of corneal stroma cells
(Figure 5) [89]. This hybrid composite film could facilitate the adhesion and orientation of
corneal stroma cells, showing suitable mechanical robustness and light transmission owing
to the presence of the silk nanofibril/gelatin methacrylate layer; an alginate layer could
provide robust adhesion to the tissue. The evaluations indicated that 90% of cells aligned
at an angle of 0–20◦ to the perpendicular axis, signifying the significance of surface micro-
patterning to mimic the morphology of the corneal stroma tissue. After accomplishing the
optimization process on micro-patterned film, the tensile features near those of native tissue
along with the excellent transparency that could be obtained, rendered this composite film
suitable for stroma TE-RM [89]. In addition, the alginate-chitosan hydrogel was introduced
for limbal stem cells transplantation (in situ), inducing corneal reconstruction after corneal
alkali burns [90]. Accordingly, the highly transparent hydrogel with good biocompatibility
and low cytotoxicity could be shaped on the wound surface through self-crosslinking
with no need for chemical crosslinking components. The hydrogel could significantly
improve epithelial reconstruction, leading to rapid and efficient corneal wound healing [90].
It appears that several challenges still exist to specifically control the mechanical and
degradation properties of these alginate-based composites for corneal TE-RM purposes [88].
The blend of alginate hydrogels with the protein derived from the ECM (e.g., gelatin and
collagen) could provide an improvement in cell adherence, proliferation, and viability in
alginate networks. At the post-crosslinking stages, the utilization of suitable chelating agents
along with the employment of oxidized alginate form could help improve the biodegradability,
drug kinetic release, and functionality of the final alginate-based TE composites [88].

2.5. Skin TE-RM and Wound Healing

Various types of alginate-based materials have been introduced for wound healing and
dressings, including hydrogels/gels, films, fibers, gauzes, foams, wafers, etc. [91]. For in-
stance, vitamin E-loaded hydrogels with biodegradability and high porosity (~89.2 ± 12.5%)
were developed using alginate and chitosan for skin TE-RM, showing improved healing
properties. As a result, the hydrogel-based dressings exhibited promising potential to treat
skin injuries in the clinic [92]. Cai et al. [93] introduced a high-water-absorbing calcium
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alginate fibrous scaffold prepared after microfluidic spinning and centrifugal reprocessing.
The scaffolds with biocompatibility could mimic the ECM, offering promising candidates
for the healing of chronic wounds and wound dressings [93]. In another study, a hydrox-
ylated lecithin complexed iodine/carboxymethyl chitosan/sodium alginate composite
membrane was prepared using a microwave drying process, which displayed high contents
of activated iodine (as antibacterial agents) as well as improved mechanical and swelling
properties [94]. These membranes with suitable water vapor permeability exhibited pH-
controllable iodine release and high antibacterial effects, which could be deployed for
treating chronic wounds and repairing open trauma infections [94].
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Copyright 2021 Elsevier.

Different adhesive peptides or natural/synthetic polymers have been incorporated
into alginate fibers to provide desired physicochemical properties and functionality [27].
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3D alginate-based composites were constructed for wound healing applications with high
stability and porous architectures [95]. Accordingly, the utilization of the freeze-dried
gel of Aloe vera could accelerate the water uptake ability of these scaffolds and also the
employed aqueous leaf extracts of Moringa oleifera could provide suitable antioxidant,
anti-inflammatory, and antimicrobial effects. The scaffolds containing plant extracts and Ca-
alginate-polyethylene glycol (PEG)-methyl ether methacrylate exhibited an enhanced cell
proliferation capability [95]. In addition, bioinspired alginate/gum Arabic hydrogels were
constructed to transfer mitsugumin protein for cell membrane treatment and chronic wound
healing (Figure 6) [96]. The introduced sundew-inspired hydrogel exhibited biphasic-
kinetics release behavior, facilitating rapid delivery of mitsugumin 53 to improve the re-
epithelization procedure of the wounds and sustained release of the protein to treat chronic
wounds. Such hydrogels with tunable structures and unique physicochemical features can
be deployed as promising delivery vehicles for the healing of chronic wounds [96].
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2.6. Dental TE-RM

Today, studies have focused on using alginate-based biomaterials in dental TE-RM;
alginate hydrogels with non-toxicity can be deployed for directing the differentiation
of dental-derived stem cells [97,98]. In addition, injectable hydrogels can be deployed
as carriers with excellent potential to incorporate cells or growth factors for dental tis-
sue regeneration [99]. In one study, self-crosslinkable hydrogels were constructed from
oxidized alginate and carboxymethyl chitosan as cell carriers for dental enamel regener-
ation (in vitro), showing suitable self-healing property. These hydrogels also exhibited
antibacterial activities against Streptococcus mutans and Streptococcus sobrinus. After in vitro
enamel regeneration studies, it was revealed that the dental epithelial cell line, HAT-7,
had high cell viability in the injected hydrogels [99]. In addition, an injectable, non-toxic,
and biodegradable scaffold was developed using oxidized alginate microbeads, which
encapsulated periodontal ligament and gingival MSCs [97]. Compared to the control group,
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these alginate hydrogels were capable of directing the differentiation of these stem cells
to osteogenic and adipogenic tissues (in vitro); these encapsulated stem cells could be
viable (in vitro) as well as osteo- and adipo-differentiated after four weeks of culturing
in the induction media. Remarkably, the alginate hydrogels had a tunable chemistry and
degradation rate, and their degradation profile and swelling kinetics significantly depended
on the degree of oxidation [97].

Due to their biocompatibility and biodegradability properties, alginate-based scaffolds
are promising candidates in dental TE-RM, especially after suitable modification with
definite ligands or combined with other substances. An alginate/hydroxyapatite-based
nanocomposite scaffold was constructed for bone TE to enhance dental pulp biomineraliza-
tion and differentiation. As a result, human dental pulp stem cells expressed osteogenic
differentiation-related markers and promoted calcium deposition and biomineralization
after growing onto the scaffold [100]. Zhu et al. [101] reported that after the combination of
alginate with other materials, self-adhesive hydrogels could be designed for dental pulp
regeneration. A calcium alginate hydrogel was combined with dental pulp stem cells and
fibroblast growth factor 21 for promoting recovery after spinal cord hemi-section in mice
through the regulation of apoptosis and autophagy, offering potential for hemi-section
spinal cord injury treatment [101]. Liang et al. [102] introduced core-shell microcapsules
constructed from gelatin methacryloyl-alginate for the encapsulation of both human dental
pulp stem cells and human umbilical vein endothelial cells. Remarkably, human umbilical
vein endothelial cells could promote the osteo/odontogenic differentiation of human dental
pulp stem cells in microcapsules. In vivo assessments revealed the improved micro-vessel gen-
eration and pulp-like tissue regeneration, offering promising candidates for pre-vascularization
micro-tissue formation as well as endodontic regeneration and TE purposes [102].

3. Conclusions and Perspectives

Alginate-based biomaterials have been widely exploited for drug/gene delivery, can-
cer theranostics, antimicrobial agents, wound dressing/healing, and tissue regeneration
applications because of their biocompatibility, cost-effectiveness, and ease of process-
ing/functionalization, among others. Remarkably, alginates can be considered as promising
biomaterials for bioinks due to their good biosafety and rapid ionic gelation. However,
ionically crosslinked alginate hydrogels have the disadvantages of insufficient mechanical
properties and long-term stability owing to ion exchange. Furthermore, alginate-based
scaffolds still require additional improvements pertaining to their biodegradability, stability,
and mechanical properties before they can be routinely applied in clinical stages; these
scaffolds should provide suitable structures with optimal cellular activities. In this context,
alginate-based hydrogels comprised of collagen or agarose have shown excellent potential
as scaffolds for TE-RM due to their good biocompatibility/biodegradability along with
their similarity to the natural ECM; thus, offering 3D support for cellular growth and
tissue regeneration. Alginate-based biomaterials can also be deployed for the delivery of
drugs/therapeutic agents with sustained release behavior, showing improved biodistri-
bution/dissolution rate, bioavailability, and targeting properties. The delivery systems
that are composed of these biomaterials have shown improved stability in the acidic envi-
ronments of physiological fluids. However, systematic in vivo and clinical translational
studies as well as biosafety/biocompatibility assessments are still warranted for evaluating
their clinical efficacy. Remarkably, finding the optimal manufacturing conditions focusing
on solubility, reactivity, and characterizations can help to obtain efficient alginate-based
composites with TE-RM applications. Overall, the renewable and sustainable biomateri-
als can be utilized in hybridization or modification processes to design next-generation
alginate-based composites with multi-functionalities.
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