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Abstract: Three new phenolic compounds, epicocconigrones C–D (1–2) and flavimycin C (3), to-
gether with six known phenolic compounds: epicocconigrone A (4); 2-(10-formyl-11,13-dihydroxy-
12-methoxy-14-methyl)-6,7-dihydroxy-5-methyl-4-benzofurancarboxaldehyde (5); epicoccolide B
(6); eleganketal A (7); 1,3-dihydro-5-methoxy-7-methylisobenzofuran (8); and 2,3,4-trihydroxy-6-
(hydroxymethyl)-5-methylbenzyl-alcohol (9), were isolated from fermentation cultures of a deep-sea
sediment-derived fungus, Aspergillus insulicola. Their planar structures were elucidated based on the
1D and 2D NMR spectra and HRESIMS data. The absolute configurations of compounds 1–3 were
determined by ECD calculations. Compound 3 represented a rare fully symmetrical isobenzofuran
dimer. All compounds were evaluated for their α-glucosidase inhibitory activity, and compounds
1, 4–7, and 9 exhibited more potent α-glucosidase inhibitory effect with IC50 values ranging from
17.04 to 292.47 µM than positive control acarbose with IC50 value of 822.97 µM, indicating that these
phenolic compounds could be promising lead compounds of new hypoglycemic drugs.

Keywords: marine fungus; Aspergillus insulicola; phenolic compounds; ECD calculations; α-glucosidase
inhibition

1. Introduction

According to the International Diabetes Federation, 537 million people worldwide
were diagnosed with diabetes mellitus in 2021, and about 90 percent of them were type 2
diabetes mellitus (T2DM) [1,2]. T2DM is a chronic metabolic disease that is characterized by
postprandial hyperglycemia in the case of insulin resistance and relative lack of insulin [3].
The inhibition of α-glucosidase can reduce the cleavage of glucose from disaccharides or
oligosaccharides to inhibit postprandial hyperglycemia [4]. Therefore, α-glucosidase is a
common therapeutic target for the treatment of T2DM [5]. Currently available α-glucosidase
inhibitors, such as acarbose, voglibose and miglitol, have been used to treat T2DM patients.
Nevertheless, the use of these drugs has been associated with serious side effects, such as
abdominal distension and diarrhea [6,7]. For this reason, the search for natural, efficient
and non-toxic α-glucosidase inhibitors provides an attractive strategy for the development
of new hypoglycemic drugs.

Phenolic compounds have been proved to be effective α-glucosidase inhibitors [8–11].
Marine phenolic compounds are far less researched than those from terrestrial sources,
which could suggest great potential in the ocean to develop novel diabetes drugs [12]. Some
marine phenolic compounds isolated from seaweed [13,14] and seagrass [15] have been
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confirmed to have wonderful α-glucosidase inhibitory activity. In order to find more marine
phenolic compounds with α-glucosidase inhibitory activity, our team studied marine fungi
from the South China Sea. Aspergillus insulicola, a fungi previously not extensively studied,
had great development and utilization value. Previous chemical studies of A. insulicola
have discovered many peptides [16–18] and nitrobenzoyl sesquiterpenoids [19,20], which
showed significant biological activities, including anti-bacteria [16] and cytotoxic [19,20].
During our ongoing research in finding new compounds with potential bioactivities [21–23],
a chemical investigation of the deep-sea sediment-derived fungus A. insulicola led to the
isolation and identification of three new phenolic compounds, epicocconigrones C–D
(1–2) and flavimycin C (3), together with six known phenolic compounds (4–9) (Figure 1).
All compounds were investigated for their α-glucosidase inhibitory activity. Herein, we
describe the structure elucidation of the new metabolites as well as the α-glucosidase
inhibitory activity of the isolated compounds.
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Figure 1. Structures of compounds 1–9 from Aspergillus insulicola: epicocconigrones C–D (1–2);
flavimycin C (3); epicocconigrone A (4); 2-(10-formyl-11,13-dihydroxy-12-methoxy-14-methyl)-
6,7-dihydroxy-5-methyl-4-benzofurancarboxaldehyde (5); epicoccolide B (6); eleganketal A (7);
1,3-dihydro-5-methoxy-7-methylisobenzofuran (8); and 2,3,4-trihydroxy-6-(hydroxymethyl)-5-
methylbenzyl-alcohol (9).

2. Results and Discussion
2.1. Structure Elucidation of New Compounds 1–3

Epicocconigrone C (1) was isolated as a yellow solid, and its molecular formula was
determined to be C19H16O9 with 12 degrees of unsaturation by HRESIMS data at m/z
411.0698 (calcd. 411.0687 for C19H16O9Na, [M + Na]+), which was supported by the 13C
NMR and DEPT spectral data. The IR spectrum of 1 featured typical absorption bands
for hydroxyl (3413 cm−1) and conjugated ketone (1670 cm−1). The 1H NMR spectrum
(Table 1) of 1 revealed two methyls (δH 2.26 and δH 2.31), one methoxy (δH 3.70), two
oxymethines (δH 6.38 and δH 6.83), one aldehyde proton (δH 10.34), and one hydroxyl
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proton (δH 11.33). The 13C NMR (Table 2) and DEPT spectra showed 19 well-resolved
carbon atom signals, including one ketone carbonyl (δC 196.9), one aldehydic carbonyl
(δC 191.2), two oxygenated tertiary carbons (δC 89.8 and δC 68.6), one methoxy carbon
(δC 60.2), two methyls (δC 11.8 and δC 10.2), and twelve olefinic quaternary carbons at δC
156.9−104.5, accounting for 8 degrees of unsaturation. Thus, compound 1 was thought to
possess a tetracyclic skeleton. The strong heteronuclear multiple-bond correlation (HMBC)
correlations from H-17 (δH 2.31) to C-12 (δC 121.7), C-13 (δC 121.9), and C-14 (δC 144.3),
from H-18 (δH 10.34) to C-11 (δC 112.6), C-12, C-13, and C-14, as well as the weak signals
from H-17 to C-11, C-15 (δC 138.4), and C-16 (δC 135.8) confirmed the existence of ring A
(Figure 2). The HMBC correlations from H-19 (δH 2.26) to C-3 (δC 130.8), C-4 (δC 115.8), and
C-5 (δC 156.9), as well as the HMBC correlations from 7-OH (δH 11.33) to C-6, C-7 (δC 153.6),
and C-8 (δC 104.5) established the substitution of the aromatic ring D. Furthermore, the
HMBC correlations from H-2 (δH 6.83) to C-10 (δC 68.6) and C-16, from H-10 (δH 6.38) to
C-2 (δC 89.8), C-11, C-12 and C-16 suggested the presence of two oxygen bridges between
C-16/C-2 and C-2/C-10 in ring B, which could be confirmed by the low field chemical shift
signal of CH-2 (δC 89.8, δH 6.83). Ring C was established by the HMBC correlations from
H-2 to C-4 and C-8, and from H-10 to C-8 and C-9 (δC 196.9). The comprehensive NMR
analysis indicated that 1 shared the same oxygen-bridged skeleton with epicocconigrone A
(4) [24], with the exception that the appearance of 6-OCH3 in 1 replaced 6-OH in 4, which
was supported by the HMBC correlation from 6-OCH3 (δH 3.70) to C-6 (δC 134.7). Thus, the
planar structure of 1 was elucidated as shown (Figure 1), named epicocconigrone C. In the
nuclear Overhauser effect spectroscopy (NOESY) spectrum of 1, the correlation between
H-2 and H-10 was indicative of their cis relationship (Figure 2). The absolute configuration
of 1 was confirmed by the ECD calculation. Its experimental ECD curve for the absolute
configurations of 2S and 10R was consistent with the calculated ECD curve of (2S, 10R)
(Figure 3).

Table 1. 1H NMR data of epicocconigrones C–D (1–2) and flavimycin C (3) (δ in ppm, J in Hz) in
DMSO-d6.

Position 1 a 2 a 3 b

1 4.54 (d, 15.0)
4.65 (d, 15.0)

2 6.83, s 6.76, s
3 4.30, s
10 6.38, s 5.65, s 4.30, s
12 4.54 (d, 15.0)

4.65 (d, 15.0)
17 2.31, s 2.09, s
18 10.34, s 4.81 (d, 12.1)

4.32 (d, 12.1)
19 2.26, s 2.18, s 1.88, s
20 1.88, s

6-OCH3 3.70, s 3.57, s 3.64, s
14-OCH3 3.64, s
15-OCH3 3.69, s

5-OH 8.55, s
7-OH 11.33, s 11.46, s 8.68, s

14-OH 8.92, s
15-OH 8.68, s
17-OH 8.55, s

a Recorded at 500 MHz; b Recorded at 600 MHz.
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Table 2. 13C NMR (125 MHz) data of epicocconigrones C-D (1–2) and flavimycin C (3) in DMSO-d6.

Position 1 2 3

1 65.8, CH2
2 89.8, CH 89.9, CH
3 130.8, C 131.0, C 66.1, CH
4 115.8, C 115.8, C 112.2, C
5 156.9, C 158.9, C 147.0, C
6 134.7, C 134.6, C 134.3, C
7 153.6, C 153.6, C 147.8, C
8 104.5, C 103.4, C 109.7, C
9 196.9, C 196.8, C 129.7, C
10 68.6, CH 70.3, CH 66.1, CH
11 112.6, C 108.3, C
12 121.7, C 132.1, C 65.8, CH2
13 121.9, C 118.1, C 129.7, C
14 144.3, C 148.5, C 109.7, C
15 138.4, C 134.6, C 147.8, C
16 135.8, C 140.3, C 134.3, C
17 11.8, CH3 11.0, CH3 147.0, C
18 191.2, CH 55.8, CH2 112.2, C
19 10.2, CH3 10.3, CH3 9.5, CH3
20 9.5, CH3

6-OCH3 60.2, CH3 60.3, CH3 60.2, CH3
14-OCH3 60.2, CH3
15-OCH3 60.0, CH3
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Epicocconigrone D (2) was obtained as a yellow solid. The molecular formula of 2 was
determined as C20H20O9 with 11 unsaturated degrees by HRESIMS data at m/z 427.1004
(calcd. 427.1000 for C20H20O9Na, [M + Na]+), which was supported by the 13C NMR and
DEPT spectral data. The IR spectrum of 2 featured typical absorption bands for hydroxyl
(3446 cm−1) and conjugated ketone (1626 cm−1). The 1H NMR spectrum (Table 1) of 2
indicated two methyl groups (δH 2.09 and δH 2.18), two methoxy groups (δH 3.57 and
δH 3.69), one methylene (δH 4.32, d, J = 12.1 Hz; 4.81 d, J = 12.1 Hz), two oxymethines
(δH 5.65 and δH 6.76), and two hydroxyl protons (δH 8.92 and δH 11.46). The 13C NMR
(Table 2) and DEPT spectra revealed 20 carbon atom signals, including one ketone carbonyl
(δC 196.8), two oxygenated tertiary carbons (δC 89.9 and δC 70.3), two methoxy carbons
(δC 60.3 and δC 60.0), one methylene (δC 55.8), two methyls (δC 11.0 and δC 10.3), and
twelve olefinic quaternary carbons. Detailed analysis of 2D NMR spectra of 2 revealed
that it had a similar structure to 1. The major differences in 2 were a hydroxymethylene
group and a methoxy group substituted at C-12 and C-15, instead of the aldehyde group
and the hydroxyl group, respectively, when compared to 1 (Figure 2), which were further
confirmed by the HMBC correlations from H2-18 (δH 4.32, 4.81) to C-11 (δC 108.3), C-12
(δC 132.1), and C-13 (δC 118.1), and from 15-OCH3 (δH 3.69) to C-15 (δC 134.6). Thus, the
planar structure of 2 was elucidated as shown (Figure 1), named epicocconigrone D. The
ROESY correlation between H-2 and H-10 indicated their cis orientation (Figure 2). The
absolute configuration of 2 was understood to be 2S, 10R by comparing the experimental
and simulated ECD curves (Figure 3).

Flavimycin C (3) was isolated as a white solid. It had a molecular formula of C20H22O8
with 10 degrees of unsaturation, as determined by HRESIMS data at m/z 391.1385 (calcd.
391.1387 for C20H23O8, [M + H]+), which was supported by the 13C NMR and DEPT spectral
data. The IR spectrum of 3 featured typical absorption bands for hydroxyl (3449 cm−1).
The 1H NMR spectrum (Table 1) of 3 exhibited one methyl (δH 1.88), one methoxy (δH 3.64),
one methine (δH 4.30), one methylene (δH 4.54 d, J = 15.0 Hz; 4.65 d, J = 15.0 Hz), and two
hydroxyl protons (δH 8.55, δH 8.68). The 13C NMR (Table 2) and DEPT spectra displayed 10
well-resolved carbon atom signals, dividing into six quaternary carbons that were assigned
to one benzene ring, one methylene (δC 65.8), one methine (δC 66.1), one methoxy carbon
(δC 60.2), and one methyl (δC 9.5). The NMR data of 3 were very similar to those of 8 except
for the absence of the methylene signal, and instead, the presence of the methine signal
of C-3 (δH 4.30/δC 66.1) in 3. Combined with molecular formula, 3 was deduced to be a
symmetrical dimeric derivative. The above data suggested 3 was a symmetrical dimer of 8,
connecting at C-3/C-10 between the two units (Figure 2), which was further confirmed by
the HMBC correlation from H-3 to C-10. Thus, the planar structure of 3 was confirmed as
shown (Figure 1), and named flavimycin C. The 1H and 13C NMR spectra (Tables 1 and 2)
of this aromatic polyketide dimer only exhibited a set of signals of aromatic polyketide
monomer. There were three possible absolute configurations of two chiral carbons C-3
and C-10 in 3. The obvious negative optical activity ([α]20

D = −70.0) and the Cotton effect
indicated that compound 3 was not a mesomer, which implied the possibility of 3R, 10S
was excluded. Consequently, the absolute configurations of C-3 and C-10 were the same
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(3S, 10S or 3R, 10R). The absolute configuration of 3 was understood to be 3R, 10R by
comparing the experimental and simulated ECD curves (Figure 3).

The known compounds: epicocconigrone A (4) [24]; 2-(10-formyl-11,13-dihydroxy-12-
methoxy-14-methyl)-6,7-dihydroxy-5-methyl-4-benzofurancarboxaldehyde (5) [25]; epic-
occolide B (6) [26]; eleganketal A (7) [27]; 1,3-dihydro-5-methoxy-7-methylisobenzofuran
(8) [28]; and 2,3,4-trihydroxy-6-(hydroxymethyl)-5-methylbenzyl-alcohol (9) [29] were iden-
tified by comparing their NMR data with those reported in the literature.

The new compounds 1–3 are all aromatic polyketide dimers, particularly compounds
1 and 2 simultaneously featuring consistent 6/6/6/6 heterotetracyclic ring cores and
compounds 1–3 co-occurrence in the same marine-derived fungus suggest that they should
originate from the same biogenetic pathway. A plausible biosynthetic pathway toward
the formation of compounds 1–3 can be proposed by detailed analysis of their structures
(Scheme 1).
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Scheme 1. Putative biosynthetic pathways toward the formation of compounds 1–3.

2.2. In Vitro Evaluation of α-Glucosidase Inhibitory Activity

All compounds were tested for their α-glucosidase inhibitory activities using a re-
ported method [30], with acarbose as the positive control. The results revealed that com-
pounds 1, 4–7, and 9 showed more potent inhibitory activity (IC50 values ranging from
17.04 ± 0.28 to 292.47 ± 5.87 µM) than acarbose (IC50, 822.97 ± 7.10 µM) (Table 3). The
potent α-glucosidase inhibitory activity of epicocconigrone A (4) and epicoccolide B (6) has
been already reported [31]. It could be noted herein that the number of hydroxyl groups
of polyhydroxy phenolic compounds was important for α-glucosidase inhibitory activity,
as reflected by the low IC50 values of compounds 4 and 6, while structures with fewer
hydroxyl groups (compounds 1 and 5) exhibited little activity.
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Table 3. α-Glucosidase inhibitory activities of compounds 1–9.

Compounds IC50 ± SD (µM) a

1 292.47 ± 5.87
2 –
3 –
4 25.69 ± 0.30
5 40.07 ± 4.64
6 17.04 ± 0.28
7 49.53 ± 2.45
8 –
9 130.63 ± 2.87

Acarbose b 822.97 ± 7.10
a Values represent means ± SD based on three parallel experiments. b Positive control.–no activity at a concentra-
tion of 200 µM.

3. Materials and Methods
3.1. Fungal Material and Fermentation

The fungal strain A. insulicola was isolated from deep-sea sediments, which were
collected from the South China Sea at the depth of 2500 m. After grinding, the sample
(1.0 g) was diluted to 10−2 g/mL with sterile H2O, 100 µL of which was spread on potato
dextrose agar medium (200.0 g potato, 20.0 g glucose, and 20.0 g agar per liter of seawater)
plates containing chloramphenicol as a bacterial inhibitor. It was identified by its mor-
phological characteristics and ITS gene sequences (GenBank accessing No. ON413861),
the used primers of which were ITS1 (TCCGTAGGTGAACCTGCGG) and ITS4 (TCCTC-
CGCTTATTGATATGC). A reference culture of A. insulicola was deposited at the Hainan
Provincial Key Laboratory for Functional Components Research and Utilization of Marine
Bio-resources, Haikou, China.

3.2. Culture Conditions

The fungal strain A. insulicola was cultured in potato dextrose broth medium (consist-
ing of 200.0 g/L potato, 20.0 g/L glucose, and 1000.0 mL deionized water), and incubated
on a rotary shaker (150 rpm) for 72 h at 28 ◦C. Thereafter, 3 mL of seed broth was transferred
to fifty 1000 mL Erlenmeyer flasks containing solid rice medium (each flask contained 80 g
rice and 120 mL seawater), used for fermentation. The flasks were incubated under static
conditions at room temperature for 30 days.

3.3. General Experimental Procedures

Optical rotation was measured using a Modular Circular Polarimeter 5100 polarimeter
(Anton Paar, Austria). The NMR spectra were measured on Bruker Avance 500 NMR spec-
trometer (Bruker, Bremen, Germany) and Bruker DRX-600 spectrometer (Bruker Biospin
AG, Fällanden, Germany) using TMS as an internal standard. HRESIMS were determined
with an API QSTAR Pulsar mass spectrometer (Bruker, Bremen, Germany). ECD and
UV spectra were recorded on a MOS-500 spectrometer (Biologic, France). IR data were
measured on a Nicolet 380 infrared spectrometer (Thermo Electron Corporation, Madi-
son, WI, USA). Analytic HPLC was performed with an Agilent Technologies 1260 Infinity
II equipped with an Agilent DAD G1315D detector (Agilent, Palo Alto, CA, USA), the
separation columns were (COSMOSIL-packed C18, 5 mm, 4.6 mm × 250 mm). Semi-
preparative HPLC was performed on reversed-phased columns (COSMOSIL-packed C18,
5 mm, 10 mm × 250 mm). Silica gel (60–80, 200–300 and 300–400 mesh, Qingdao Marine
Chemical Co. Ltd., Qingdao, China) and Sephadex LH-20 (Merck, Germany) were used
for column chromatography. TLC was conducted on precoated silica gel GF254 plates
(Qingdao Marine Chemical Co. Ltd., Qingdao, China), and spots were detected by spraying
with 10% H2SO4 in EtOH followed by heating.
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3.4. Extraction and Isolation

After the fermentation of the strain, the cultures were extracted with EtOAc, then
filtered with filter paper. After repeating the procedure three times, the EtOAc extract was
evaporated under a reduced pressure to obtain a crude extract (124.0 g). The crude extract
was dispersed in water and extracted with petroleum ether, ethyl acetate and n-butanol
three times, respectively. After vacuum concentration, the petroleum ether extract (11.3 g),
ethyl acetate extract (34.0 g) and n-butanol extract (20.0 g) were obtained, respectively.
Then, the EtOAc extract (34.0 g) was subjected to silica gel vacuum liquid chromatography
using step gradient elution with CHCl3/MeOH (1:0, 200:1, 150:1, 100:1, 80:1, 50:1, 20:1, 10:1,
0:1, v/v) to obtain 13 fractions (Fr.1–Fr.13). Fr.4 (425.0 mg) was applied to Sephadex LH-20
gel chromatography eluted with CHCl3/MeOH (1:1, v/v) to give six subfractions (Fr.4.1–
Fr.4.6). Fr.4.3 (150.5 mg) was subjected to silica gel column chromatography (petroleum
ether/EtOAc, 10:1, v/v) to afford nine subfractions (Fr.4.3.1–Fr.4.3.9). Fr.4.3.9 (40.5 mg) was
separated by semi-preparative HPLC, eluting with 45% MeOH/H2O to yield compound
2 (tR 11.5 min, 4.5 mg), and Fr.4.3.7 (29.8 mg) was separated by semi-preparative HPLC,
eluting with 35% MeOH/H2O to give compound 8 (tR 15.3 min, 4.2 mg). Fr.6 (1.15 g) was
applied to ODS chromatography eluting with MeOH/H2O (10%–100%) to give thirteen
subfractions (Fr.6.1–Fr.6.13). Fr.6.11 (91.5 mg) was subjected to Sephadex LH-20 (eluted with
100% MeOH) and then purified by semi-preparative HPLC (eluted with 48% MeOH/H2O)
to give compound 1 (tR 21.9 min, 11.1 mg). Fr.6.12 (58.9 mg) was subjected to Sephadex
LH-20 (eluted with 100% MeOH) and then purified by semi-preparative HPLC (eluted with
65% MeOH/H2O) to give compound 5 (tR 10.0 min, 4.2 mg). Fr.6.6 (72.3 mg) was purified
on silica gel (petroleum ether/EtOAc, 3:2, v/v) to yield compound 3 (7.5 mg). Fr.9 (10.0 g)
was subjected to Sephadex LH-20 gel chromatography eluted with MeOH to give ten
subfractions (Fr.9.1–Fr.9.10). Fr.9.7 (2.1 g) was subjected to silica gel column chromatography
(CH2Cl2/MeOH, 100:1, v/v), and subsequently purified by semi-preparative HPLC, eluting
with 50 % MeOH/H2O to yield compounds 4 (tR 12.0 min, 5.1 mg) and 6 (tR 18.5 min,
2.7 mg). Fr.9.6 (1.67 g) was separated by Sephadex LH-20 column chromatography eluted
with MeOH and then purified by silica gel column chromatography eluting with petroleum
ether/EtOAc (3:1; v/v) to obtain compound 9 (5.1 mg). Fr.9.8 (0.8 g) was subjected to silica
gel column chromatography (CH2Cl2/MeOH, 35:1, v/v), and subsequently purified by
semi-preparative HPLC, eluting with 55 % MeOH/H2O to yield compound 7 (tR 6.8 min,
8.1 mg).

Epicocconigrone C (1): Yellow film. [α]20
D = +98.0 (c 0.10, MeOH); UV (MeOH) λmax

(logε): 237 (4.31) nm; 261 (3.91) nm; 309 (4.27) nm; 359 (4.06) nm; IR (KBr) vmax (cm−1): 3413,
1669, 1466, 1395, 1355, 1296, 1117. 1H and 13C NMR data see Tables 1 and 2; HRESIMS
[M + Na]+ m/z 411.0698 (calcd. for C19H16O9Na, 411.0687).

Epicocconigrone D (2): Yellow film. [α]20
D = +57.0 (c 0.10, MeOH); UV (MeOH) λmax

(logε): 234 (4.26) nm; 260 (4.04) nm; 309 (4.21) nm; 365 (4.19) nm; IR (KBr) vmax (cm−1):
3446, 2931, 1626, 1469, 1359, 1226, 1154, 1115. 1H and 13C NMR data see Tables 1 and 2;
HRESIMS [M + Na]+ m/z 427.1004 (calcd. for C20H20O9Na, 427.1000).

Flavimycin C (3): White film. [α]20
D = −70.0 (c 0.10, MeOH); UV (MeOH) λmax (logε):

232 (4.15) nm; 284 (3.56) nm; IR (KBr) vmax (cm−1): 3449, 2928, 1606, 1478, 1376, 1264, 1110,
1027. 1H and 13C NMR data see Tables 1 and 2; HRESIMS [M + H]+ m/z 391.1385 (calcd. for
C20H23O8, 391.1387).

3.5. ECD Calculation

The conformers of compounds were generated using the Confab [32] program ebbed
in the Openbabel 3.1.1 software, and further optimized with xtb at GFN2 level [33]. The
conformers with population over 1% were subjected to geometry optimization using the
Gaussian 16 package [34] at B3LYP/6-31G(d) level and proceeded to calculation of excitation
energies, oscillator strength, and rotatory strength at B3LYP/TZVP level in the polarizable
continuum model (PCM, methanol). The ECD spectra were Boltzmann-weighted and
generated using SpecDis 1.71 software [35].
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3.6. α-Glucosidase Inhibitory Activity

All the assays were carried out under 0.1 M sodium phosphate buffer (PH = 6.8). The
samples were dissolved with DMSO and diluted into a series of gradient concentrations
(final concentrations of 6.25, 12.5, 25, 50, 100, 200, 400, and 800 µM). The 10 µL sample
was mixed with 100 µL α-glucosidase solution (0.2 U/mL, Sigma) and shaken well, then
added to a 96-well plate and placed at 37 ◦C for 15 min. Subsequently, 40 µL of 2.5 mM
4-nitrophenyl-α-D-glucopyranoside was added and further incubated at 37 ◦C for 15 min.
Finally, the OD value of each well was detected at 405 nm wavelength of microplate reader.
Acarbose was used as a positive control. The control was prepared by adding DMSO
instead of the sample in the same way as the test. The blank was prepared by adding
sodium phosphate buffer instead of 4-nitrophenyl-α-D-glucopyranoside using the same
method. The percentage inhibition was calculated using the following equation:

% inhibition= [(ODcontrol − ODsample)/(ODcontrol − ODblank)] × 100

4. Conclusions

In summary, two new tetracyclic cores of integrastatins, named epicocconigrones C–D
(1–2), one new dimeric isobenzofuran, named flavimycin C (3), and six known compounds
(4–9) were isolated from fermentation cultures of the deep-sea sediment-derived fungus
A. insulicola. The biological evaluation revealed compounds 1, 4–7, 9 exhibited significant
α-glucosidase inhibitory with IC50 values ranging from 17.04 ± 0.28 to 292.47 ± 5.87 µM,
among which compound 6 was the most potent α-glucosidase inhibitor, with an IC50 value
48-fold stronger than positive control acarbose. Comparing the structure of compounds
1, 4, 5 and 6 revealed the α-glucosidase inhibitory activity was greatly enhanced after the
hydroxyl group replaced the methoxy group, which further confirmed that polyhydroxy
phenolic compounds were efficient α-glucosidase inhibitors, and provided a reference
value for the synthesis of novel α-glucosidase inhibitors. In conclusion, the study has
enriched the structural diversity of phenolic compounds and provided a promising lead
toward the development of novel α-glucosidase inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21030157/s1, Figures S1–S30: 1D, 2D NMR, MS, UV, and IR
spectra of compounds 1–3.
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